
HAL Id: ensl-00446889
https://ens-lyon.hal.science/ensl-00446889v1

Submitted on 13 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Method for Evaluating Complex
Polynomials

Milos Ercegovac, Jean-Michel Muller

To cite this version:
Milos Ercegovac, Jean-Michel Muller. An Efficient Method for Evaluating Complex Polynomials.
Journal of Signal Processing Systems, 2010, 58 (1), pp.17-27. �10.1007/s11265-008-0265-8�. �ensl-
00446889�

https://ens-lyon.hal.science/ensl-00446889v1
https://hal.archives-ouvertes.fr


J Sign Process Syst (2010) 58:17–27
DOI 10.1007/s11265-008-0265-8

An Efficient Method for Evaluating Complex Polynomials

Miloš D. Ercegovac · Jean-Michel Muller

Received: 30 October 2007 / Revised: 26 May 2008 / Accepted: 26 August 2008 / Published online: 24 September 2008
© 2008 Springer Science + Business Media, LLC. Manufactured in the United States

Abstract We propose an efficient hardware-oriented
method for evaluating complex polynomials. The
method is based on solving iteratively a system of linear
equations. The solutions are obtained digit-by-digit on
simple and highly regular hardware. The operations
performed are defined over the reals. We describe
a complex-to-real transform, a complex polynomial
evaluation algorithm, the convergence conditions, and
a corresponding design and implementation. The la-
tency and the area are estimated for the radix-2 case.
The main features of the method are: the latency of
about m cycles for an m-bit precision; the cycle time
independent of the precision; a design consisting of
identical modules; and digit-serial connections between
the modules. The number of modules, each roughly
corresponding to serial-parallel multiplier without a
carry-propagate adder, is 2(n + 1) for evaluating an
n-th degree complex polynomial. The method can also
be used to compute all successive integer powers of the
complex argument with the same latency and a similar
implementation cost. The design allows straightforward
tradeoffs between latency and cost: a factor k decrease
in cost leads to a factor k increase in latency. A similar

This is an expanded version of a paper presented at the
ASAP’2007 conference [9].

M. D. Ercegovac (B)
Computer Science Department, University of California
at Los Angeles, Los Angeles, CA 90095, USA
e-mail: milos@cs.ucla.edu

J.-M. Muller
CNRS-Laboratoire LIP, projet Arénaire, Inria,
Université de Lyon, Ecole Normale Supérieure de Lyon,
69364 Lyon Cedex 07, France
e-mail: Jean-Michel.Muller@ens-lyon.fr

tradeoff between precision, latency and cost exists. The
proposed method is attractive for programmable plat-
forms because of its regular and repetitive structure of
simple hardware operators.

Keywords Complex polynomials · Complex powers ·
Complex-to-real transform · Digit-by-digit
algorithms · Left-to-right evaluation

1 Introduction

In this paper we describe a new method for evaluating
complex polynomials suitable for hardware implemen-
tation. It has a latency of m cycles for m-bit precision
and a repetitive implementation which corresponds
roughly to 2(n + 1) serial-parallel multipliers for poly-
nomials of degree n. The coefficients and argument are
fixed-point complex numbers. The proposed method is
a generalization to the complex domain of a polynomial
evaluation method over the reals introduced as the
E-method [2, 3], and recently described in [7]. Briefly,
the complex E-method (CE-method) achieves the same
latency as the real E-method at twice the cost. This
paper is based on the report [8], where the complex
E-method is introduced and discussed in general terms,
and on a shorter version presented at the ASAP 2007
conference [9].

The method uses the following approach: (i) a poly-
nomial is mapped onto a system of linear equations, (ii)
a transform is applied to change the complex domain
to the real domain, and (iii) the system is solved in
a digit-by-digit manner, the most-significant digit first,
all elements of the solution vector in parallel. The
main characteristics of the method are: (i) the m-digit



18 J Sign Process Syst (2010) 58:17–27

solution is computed in about m steps, each step con-
sisting of a sum of number-by-digit products, (ii) the
cycle time does not depend on the precision m (if
redundant additions are used), (iii) for a system of
order n, the shortest latency requires n elementary
units (modules) for the real part, and n units for the
imaginary part, and (iv) the elementary units are in-
terconnected with digit-wide links. As a special case,
the proposed method is used to compute consecutive
integer powers of a complex argument.

The CE-method is applicable in some other compu-
tations. It is particularly efficient when the coefficient
matrix of the linear system is sparse as is the case of
rational functions and tridiagonal systems [12] which
require two off-diagonal elements. Other examples are
special expressions such as the complex multiply-add,
sum of products and sum of squares [10].

Complex polynomials appear in many areas such as
digital signal and image processing, control systems,
and applied mathematics. A method of Horner type
for evaluating complex polynomials is proposed in [1]
at the algorithm level, implicitly assuming a software
implementation. The method uses O(n) full-precision
multiplications and O(n) additions for a complex
polynomial of degree n. If these multiplications and
additions are performed in a sequential order, the la-
tency of the method is about n × TMU LT−ADD which
is significantly slower than our method. If a parallel
algorithm for polynomial evaluation is used, the total
time is about log n × TMU LT−ADD which is still slower
than our method at a much higher cost of digit-parallel
interconnections. The evaluation of complex polynomi-
als on equispaced arguments [14], error analysis [16],
and a complexity analysis [17] are other examples of
research involving complex polynomials.

In the next section we describe the transformation
which maps computation from the complex to the real
domain. In Section 3 we show the CE-method for
complex polynomials. In Section 4 iterations and con-
vergence conditions are considered. Implementation
aspects are discussed in Section 5. The special case
of complex integer powers is described in Section 6.
Some extensions and applications to complex division
are given in Section 7.

2 Complex-Real (CR) Transforms

As commonly known, complex numbers can be repre-
sented by 2 × 2 skew-symmetric matrices

x + iy ↔
(

x −y
y x

)
(1)

This is an isomorphism which holds for complex ad-
dition and multiplication - the operations used in the
proposed method :

(a + ib) + (c + id) ↔
(

a −b
b a

)
+

(
c −d
d c

)

=
(

a + c −b − d
b + d a + c

)

↔ (a + c) + i(b + d) (2)

(a + ib) × (c + id) ↔
(

a −b
b a

)
×

(
c −d
d c

)

=
(

ac − bd −(ad + bc)
ad + bc ac − bd

)

↔ (ac − bd) + i(bc + ad) (3)

Consequently, an m × n matrix of complex numbers
can be represented as a 2m × 2n matrix of real num-
bers. For n × n complex matrices, considered in this
paper, the transform from the complex domain to the
real domain is shown next.

Definition 1 The CR-transform of the n-dimensional
complex linear system
⎛
⎜⎜⎜⎜⎜⎝

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

a3,1 a3,2 · · · a3,n
...

... · · · ...

an,1 an,2 · · · an,n

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

s1

s2

s3
...

sn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

t1
t2
t3
...

tn

⎞
⎟⎟⎟⎟⎟⎠

(4)

is the 2n-dimensional real linear system
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ar
1,1 −ai

1,1 ar
1,2 −ai

1,2 · · · ar
1,n −ai

1,n

ai
1,1 ar

1,1 ai
1,2 ar

1,2 · · · ai
1,n ar

1,n

ar
2,1 −ai

2,1 ar
2,2 −ai

2,2 · · · ar
2,n −ai

2,n

ai
2,1 ar

2,1 ai
2,2 ar

2,2 · · · ai
2,n ar

2,n

ar
3,1 −ai

3,1 ar
3,2 −ai

3,2 · · · ar
3,n −ai

3,n

ai
3,1 ar

3,1 ai
3,2 ar

3,2 · · · ai
3,n ar

3,n
...

...
...

... · · · ...

ar
n,1 −ai

n,1 ar
n,2 −ai

n,2 · · · ar
n,n −ai

n,n

ai
n,1 ar

n,1 ai
n,2 ar

n,2 · · · ai
n,n ar

n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sr
1

si
1

sr
2

si
2

sr
3

si
3
...

sr
n

si
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (
tr
1, ti

1, tr
2, ti

2, tr
3, ti

3, . . . , tr
n, ti

n

)T
(5)

where aj,k = ar
j,k + iai

j,k, sj = sr
j + isi

j and tj = tr
j + iti

j.
These two linear systems are equivalent which can be



J Sign Process Syst (2010) 58:17–27 19

shown either by a straightforward calculation, or by
using the fact that the transformation

x + iy →
(

x −y
y x

)

is an isomorphism.
In other words, the real linear system Eq. 5 is ob-

tained from the complex linear system Eq. 4 by re-
placing each element x + iy by the 2 × 2 matrix defined
in Eq. 1. In the next section we consider a hardware-
oriented method for solving such a system.

3 CE-Method: An Overview

The E-method [2, 3] provides an iterative approach to
solving diagonally dominant linear systems in the real
domain. The method has characteristics desirable for
efficient hardware implementation: the basic operators
are digit-vector multiplexers, and redundant adders of
[q : 2] type (q ∈ {3, 4, 6}), and registers. The overall
structure consists of n elementary units, interconnected
digit-serially. The method computes one digit of each
element of the solution vector per iteration in the
MSDF (Most Significant Digit First) manner which al-
lows digit-serial communication. The modules operate
concurrently. The time to obtain the solution to m
digits of precision is about m cycles (iterations), and
cycle time can be made independent of the precision by
using redundancy in the representation of intermediate
results (residuals and output digits). The amount of
hardware required is roughly related to the number
of nonzero terms of the matrix of the system, which
makes the proposed method very efficient in hardware
resources when the matrix of the system is sparse. Typ-
ical applications of the method are evaluation of poly-
nomial and rational functions, since these correspond
to such sparse linear systems. Concerning polynomials,
the solution of the linear system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −x 0 0 0 · · · 0

0 1 −x 0 0 · · · 0

...
...

...
...

... · · · ...

0 0 · · · 0 0 1 −x

0 0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

...

yn−1

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (p0, p1, . . . , pn−1, pn)
T

is

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0 + p1x + p2x2 + · · · + pnxn

p1 + p2x + · · · + pnxn−1

...

pn−1 + pnx

pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

that is, the first element of the solution vector y is

y0 = p0 + p1x + p2x2 + · · · + pnxn = p(x)

Now consider the evaluation of polynomials with
complex coefficients and complex argument:

p(z) = p0 + p1z + p2z2 + . . . + pnzn

where the pj’s and z are complex numbers. As in the
real case, the desired value p(z) is clearly equal to the
first component of the solution of the linear system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −z 0 0 0 . . . 0

0 1 −z 0 0 . . . 0

0 0 1 −z 0 . . . 0

...
...

...
...

...
...

...

0 0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

s0

s1

s2
...

sn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

p0

p1

p2
...

pn

⎞
⎟⎟⎟⎟⎟⎠

(6)

The method cannot directly solve the linear system
Eq. 6. If we define real numbers x and y such that x +
iy = z, and pr

j and pi
j such that pj = pr

j + ipi
j, then we

can apply the CR-transform to Eq. 6, and get the linear
system with the coefficient matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −x y 0 0 0 0 · · · 0

0 1 −y −x 0 0 0 0 · · · 0

0 0 1 0 −x y 0 0 · · · 0

0 0 0 1 −y −x 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 1 0 −x y

0 0 · · · 0 0 0 0 1 −y −x

0 0 · · · 0 0 0 0 0 1 0

0 0 · · · 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



20 J Sign Process Syst (2010) 58:17–27

The first two components of the solution s of the
linear system

A × (
sr

0, si
0, sr

1, si
1, . . . , sr

n−1, si
n−1, sr

n, si
n

)T

= (
pr

0, pi
0, pr

1, pi
1, . . . , pr

n−1, pi
n−1, pr

n, pi
n

)T
(7)

are equal to the real and imaginary parts of

p0 + p1z + p2z2 + · · · + pnzn.

For instance, in the case n = 3, we get the solutions
shown in Fig. 1.

The linear system Eq. 7 is easily solved by the
proposed method, provided that it is diagonally dom-
inant. The iterations and convergence conditions are
discussed in the next section. Note that the method
does not evaluate directly the expressions given for
the solution s0. These would require at least 16+16
full-precision multiplications which, assuming enough
multipliers are available, would take at least 3 consecu-
tive multiply times. Moreover, the reduction of product
terms would require a [10:2] reduction. Of course, all
the interconnections are of full precision. Instead, as
explained later, the proposed method computes s0 on
12 serial-parallel (left-to-right) multipliers, including
the additions, in about one serial-parallel multiplication
time. Moreover, the interconnections are digit-serial
which simplifies routing and reduces power dissipation.

4 Iteration and Convergence Conditions

For simplicity, we discuss here radix-2 iterations. Adap-
tation to higher radices is rather straightforward. The
radix-2 method solves the n-dimensional real linear
system

As = p

by using the following basic recursion on residuals:

w( j ) = 2 ×
[
w( j−1) − Ad( j−1)

]
(8)

with w(0) = [p0, p1, . . . , pn]T , and d( j ) =[d0, d1, . . . ,

dn]T where the digits d( j )
k are in {−1, 0, 1}. Define the

number D( j )
k = d(0)

k .d(1)

k d(2)

k . . . d( j )
k (the d( j )

k are the dig-
its of a radix-2 signed-digit representation of D( j )

k ). By
induction, we show that

w( j ) = 2 j [w(0) − AD( j−1)
]

(9)

and, for a precision of m bits, after performing m + 1
iterations

AD(m) − p = −2−(m+1)w(m+1) (10)

where D(m) is the solution s with error less than 2−m.
Using Eq. 9, one can show that if the residuals |w( j )

k |
are bounded, then for all k, D( j )

k goes to sk as j goes
to infinity. The problem at step j is to find a selection
function that produces a value of the digits d( j )

k from
the residuals w

( j )
k such that the values w

( j+1)

k remain
bounded. In [3], the following selection function as a
form of rounding is proposed

SEL(x) =
{

sign x × �|x| + 1/2� , if |x| ≤ 1

sign x × �|x|� , otherwise,
(11)

We apply the selection function to an estimate of
the residual to avoid carry-propagate addition: d( j )

k =
SEL(ŵ

( j )
k ), where ŵ

( j )
k is a low-precision approxima-

tion to w
( j )
k .

Consider next in more detail evaluation of an
n-degree complex polynomial.

pnzn + pn−1zn−1 + · · · + p0

Figure 1 Solutions to system
Eq. 7.



J Sign Process Syst (2010) 58:17–27 21

at the complex point z = x + iy, with pk = pr
k +

ipi
k. The matrix of the CR-transform, introduced in

Section 3, is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −x y 0 0 0 0 · · · 0

0 1 −y −x 0 0 0 0 · · · 0

0 0 1 0 −x y 0 0 · · · 0

0 0 0 1 −y −x 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 0 0 1 0 −x y

0 · · · 0 0 0 0 0 1 −y −x

0 · · · 0 0 0 0 0 0 1 0

0 · · · 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We adjust the notation for w, d and the residual
recurrence Eq. 8 to adapt them to the complex case.
The residual vector w( j ) is

w( j ) =
[
w

( j )
0,r , w

( j )
0,i , w

( j )
1,r , w

( j )
1,i , · · · , w( j )

n,r , w
( j )
n,i

]
,

and its initial value are given by

w
(0)

k,r = pr
k, w

(0)

k,i = pi
k

The digit-vector d( j ) will be denoted

d( j ) =
[
d( j )

0,r , d( j )
0,i , d( j )

1,r , d( j )
1,i , · · · , d( j )

n,r, d( j )
n,i

]
.

Therefore, iteration Eq. 8 becomes

for k = 0, . . . , n − 1

w
( j )
k,r = 2

[
w

( j−1)

k,r − d( j−1)

k,r + xd( j−1)

k+1,r − yd( j−1)

k+1,i

]
w

( j )
k,i = 2

[
w

( j−1)

k,i − d( j−1)

k,i + yd( j−1)

k+1,r + xd( j−1)

k+1,i

] (12)

for k = n⎧⎨
⎩

w
( j )
n,r = 2

[
w

( j−1)
n,r − d( j−1)

n,r

]
w

( j )
n,i = 2

[
w

( j−1)

n,i − d( j−1)

n,i

]

We now examine the convergence conditions. The
iterations converge to the desired result if the residual
vector w( j ) is bounded. Define constants ξ , α and �

(with 0 ≤ � < 1) such that

1. |x| + |y| ≤ α;
2. for any k between 0 and n, |pr

k| ≤ ξ , |pi
k| ≤ ξ ,

|w( j )
k,r − ŵ

( j )
k,r | ≤ �

2 , and |w( j )
k,i − ŵ

( j )
k,i | ≤ �

2

Since |d( j−1)

k,r − ŵ
( j−1)

k,r | ≤ 1/2 and |d( j−1)

k,i − ŵ
( j−1)

k,i | ≤ 1/2,
from Eq. 19 we find

|w( j )
k,r | ≤ 2

(
1

2
+ �

2
+ α

)
= 1 + � + 2α. (13)

The same bound holds for |w( j )
k,i |. For this bound to be

feasible, we must assure that a suitable choice of d( j )
k,r

and d( j )
k,r in {−1, 0, 1} is possible. This requires that |w( j )

k,r |
and |w( j )

k,i | should be less than 3/2. This immediately
gives the following condition

� + 2α ≤ 1

2
(14)

Now, let us turn to the initial values. Since |w(0)

k,r| and

|w(0)

k,i | must also be less than 3/2, we get

ξ ≤ 3

2
. (15)

Consider the following example: we wish to evaluate

p(z) = (1 + i) z3 − (0.5 + 1.25 i) z2 + z + 1.

at point

z = 1

100
+ i

10
.

We assume that � = 0 (that is, we use non-redundant
residuals). We get:

• Initialization:

w(0) = [
pr

0, pi
0, pr

1, pi
1, pr

2, pi
2, pr

3, pi
3

]t

= [
1, 0, 1, 0, −0.5, −1.25, 1, 1

]t

• Step 1: from w(0) and the selection function, we get

s(0) = [1, 0, 1, 0, 0, −1, 1, 1]t,

which gives

w(1) = [0.02, 0.2, 0.2, −0.02, −1.18, −0.28, 0, 0]t.

• Step 2: from w(1) and the selection function, we get

s(1) = [0, 0, 0, 0, −1, 0, 0, 0]t,

which gives

w(2) = [0.04, 0.4, 0.38, −0.24, −0.36, −0.56, 0, 0]t.

• After 20 iterations, the number

d(0)
0,r.d

(1)
0,rd

(2)
0,r · · · d(20)

0,r + i × d(0)

0,i .d
(1)

0,i d
(2)

0,i · · · d(20)

0,i

is equal to

533789

524288
+ 57727

524288
i ≈ 1.018121719 + 0.110105514 i

whereas the exact value of p(z) is

p(z) = 1.018121 + 0.110106 i

Table 1 shows first 17 iterations of the computation
of p(z) using the CE-method recurrences. For brevity,
only the real and imaginary signed bits of all four



22 J Sign Process Syst (2010) 58:17–27

Table 1 Computing p(z) using CE-method.

j d( j )
0,r d( j )

0,i d( j )
1,r d( j )

1,i d( j )
2,r d( j )

2,i d( j )
3,r d( j )

3,i s( j )
0,r s( j )

0,r

0 1 0 1 0 0 −1 1 1 1.0 0.0
1 0 0 0 0 −1 0 0 0 1.0 0.0
2 0 0 0 0 0 −1 0 0 1.0 0.0
3 0 1 1 0 −1 1 0 0 1.0 0.001
4 0 0 0 −1 1 0 0 0 1.0 0.001
5 1 0 −1 0 −1 0 0 0 1.00001 0.001
6 −1 −1 1 −1 0 −1 0 0 1.000001 0.000111
7 0 0 0 1 0 0 0 0 1.000001 0.000111
8 1 0 0 0 1 0 0 0 1.00000101 0.000111
9 −1 0 −1 0 0 0 0 0 1.000001001 0.000111
10 1 1 0 0 0 1 0 0 1.0000010011 0.0001110001
11 −1 0 −1 0 0 −1 0 0 1.00000100101 0.0001110001
12 0 −1 1 0 −1 1 0 0 1.00000100101 0.000111000011
13 0 0 −1 −1 1 −1 0 0 1.00000100101 0.000111000011
14 1 0 1 1 −1 0 0 0 1.00000100101001 0.000111000011
15 0 0 0 −1 1 0 0 0 1.00000100101001 0.000111000011
16 0 0 1 0 0 1 0 0 1.00000100101001 0.000111000011
17 −1 0 −1 1 0 1 0 0 1.00000100101000111 0.000111000011

solution elements are shown. We also show the accu-
mulated real and imaginary part of p(z) in the binary
form.

Exactly as in the real case, even if polynomial p
and point z do not satisfy the convergence constraints,
one can easily “transform” them using mere shifts, so
that p(z) can be computed using the proposed method.
Once � is chosen, and α is defined as 1

4 − �/2, this is
done as follows:

1. Find the smallest integer k such that |	(z/2k)| +
|
(z/2k)| should be less than α.

2. Now, p(z) = π(t), where the degree-m coefficient
of polynomial π is 2mk pm, and t = z/2k. If at least
one of the coefficients of π has the absolute value of
its real or imaginary part greater than ξ = 3/2, then
divide π by 2�, where � is the smallest integer such
that ρ = π/2� has the absolute value of the real and
imaginary parts of its coefficients less than ξ .

3. What we actually compute using the method is
ρ(z/2k). This result will then be multiplied by 2�

(a simple left-shift) to get p(z). Consequently � + k
extra iterations are performed.

Consider the following example:

p(z) = 4iz2 + (1 − i)z + 5,

in the domain defined by −1 < 	(z) < +1 and −1 <


(z) < +1, with α = 1/8. First, the smallest k such that
t = z/2k satisfies |	(t)| + |
(t)| < α is k = 4. We there-
fore get a new polynomial

π(t) = 256 × 4it2 + 16 × (1 − i)t + 5.

Second, the smallest � such that the real and imaginary
parts of the coefficients of π(t)/2� have absolute value
less than 3/2 is � = 10. By dividing π(t) by 2� we get the
polynomial

ρ(t) = it2 +
(

1

64
− i

64

)
t + 5

1024
.

We evaluate ρ using the CE-method. It is straightfor-
ward to check that ρ satisfies the convergence condi-
tions and that

p(z) = 210ρ
( z

24

)
.

5 Implementation

In this section we discuss implementation of the pro-
posed method. The main difference from implemen-
tation of a real domain evaluation E-method is that
the number of non-zero off-diagonal elements doubles:
for the polynomial case from one to two. This has
two consequences. First, the bounds on the elements
are smaller by a factor of two, and second, the cycle
time is increased as explained later in this section. The
corresponding implementations considered for the real
domain method are discussed in [3, 7].

A scheme for evaluation of complex polynomials
is shown in Fig. 2 for n = 3 and the corresponding
elementary unit (PEU) is illustrated in Fig. 3. A bit-
parallel bus transmits x and y values in a broadcast
mode, while the real and imaginary coefficients pr and
pi can be preloaded into local storage in each PEU in
separate cycles prior to the evaluation iterations so that



J Sign Process Syst (2010) 58:17–27 23

Figure 2 Scheme for
evaluating complex
polynomial (n = 3).

SR3r

SR3i

SR3r, SR3i-shift registers OFC-on-the-fly-converter

PEU0i

PEU1r

PEU1i

PEU2r

PEU2i

PEU0r

x, y, pr
, p

i

bus

OFCr

OFCi

digit-serial digit-parallel

P3(z)

d (j-1)
0,r

d (j1)
0,i

d (j-1)
1,r

d (j-1)
1,i

d (j-1)
2,r

d (j-1)
2,i

d (j-1)
3,r

d (j-1)
3,i

s r
0

s i
0

the latency is not affected. Note that the initialization
cycles could be shorter than the iteration cycles. These
design aspects are not discussed here.

A block diagram of an elementary unit PEU0r (real
part only) for polynomial evaluation is shown in Fig. 3.
The modules are:

• Registers (4)
• Multiple generators MG (2), producing {−1, 0, 1} ×

x and {−1, 0, 1} × y, with buffers
• Multiplexer MUX for initializing the residual
• A [4:2] adder
• Output digit selection SEL (a table or a gate

network)

The digit-serial outputs of PEU0 can be converted
into digit-parallel form using on-the-fly converters

OFCr and OFCi. The cycle time, in terms of a full
adder (complex gate) delay t, is estimated as

TPEU = tBU F F + tMG + tSEL + t[4:2] + tREG

≈ (0.4 + 0.3 + 1 + 1.3 + 0.9)t = 3.9t (16)

The cost, again in terms of area of a full adder AF A, is
estimated as

APEU (m) = ASEL + 2ABU F F + (m + 2)[2AMG

+AMU X + A[4:2] + 4AREG + 2AOFC]
≈ [5 + 2 × 0.4 + (m + 2)(3 × 0.45

+2.3 + 4 × 0.6 + 2 × 2.1)]AF A

≈ [26 + 10m]AF A (17)

The cost is estimated as area occupied by modules
using the area of a full-adder AF A as the unit. The areas



24 J Sign Process Syst (2010) 58:17–27

REG

MG

REG

MG

MUX

REG

MUX

REG

[4:2] ADDER

x y pr
0 0

ws (j)
0,r

PEU0r  (PEU0i similar)

SEL

d (j)
0,rd (j-1)

0,r

Reg

- d (j-1)
0,r

d (j-1)
1,r d (j-1)

1,i

wc (j)
0,r

ws (j-1)
0,r wc (j-1)

0,r

ws (j)
0,r wc (j)

0,r

Figure 3 Block diagram of elementary unit.

of primitive modules are: Register AREG = 0.6AF A;
buffer ABU F F = 0.4AF A; MUX AMU X = 0.45AF A;
multiple generator MG AMG = 0.45AF A; [4:2] adder
A[4:2] = 2.3AF A; SEL ASEL = 5AF A, and on-the-fly
converters AOFC = 2AMU X + 2AREG = 2.1AF A.

6 Computing Consecutive Integer Powers
of Complex Argument

The scheme proposed for evaluating complex poly-
nomials can be used in evaluating integer powers of
a complex argument [10]. Let us first consider this
computation in the real domain. Consecutive integer
powers x2, x3, ..., xk are computed in parallel by solving
the corresponding linear system as indicated next.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −x 0 0 0 · · · 0

0 1 −x 0 0 · · · 0

...
...

...
...

... · · · ...

0 0 · · · 0 0 1 −x

0 0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0

s1

...

sk−1

sk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
0
x

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and the integer powers are obtained as

s0 = xk, s1 = xk−1, . . . , sn−1 = x2

The mapping in the complex domain is shown next.
The complex argument is z = x + iy.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −x y 0 0 0 0 · · · 0

0 1 −y −x 0 0 0 0 · · · 0

0 0 1 0 −x y 0 0 · · · 0

0 0 0 1 −y −x 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 1 0 −x y

0 0 · · · 0 0 0 0 1 −y −x

0 0 · · · 0 0 0 0 0 1 0

0 0 · · · 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The components of the solution s of the linear system

A × (
sr

0, si
0, sr

1, si
1, . . . , sr

k−1, si
k−1, sr

k, si
k

)T

= (0, 0, 0, 0, . . . , 0, 0, x, y)T (18)

are equal to the integer powers of z.
The residual recurrences are

w
( j )
h,r = 2

[
w

( j−1)

h,r − d( j−1)

h,r + xd( j−1)

h+1,r − yd( j−1)

h+1,i

]

w
( j )
h,i = 2

[
w

( j−1)

h,i − d( j−1)

h,i + yd( j−1)

h+1,r + xd( j−1)

h+1,i

]
(19)

for h = k,

w
( j )
k,r = 2

[
w

( j−1)

k,r − d( j−1)

k,r

]

w
( j )
k,i = 2

[
w

( j−1)

k,i − d( j−1)

k,i

]

with the initial conditions for h = 0, . . . , k − 1

w
(0)

h,r = 0, w
(0)

h,i = 0

and

w
(0)

k,r = x, w
(0)

k,i = y

The following conditions need to be satisfied for the
convergence of iterations

|x| + |y| ≤ α (20)

From condition Eq. 14 and using � = 1/8, we get α ≤
3/16 and |x|, |y| ≤ 3/32 which guarantee convergence
of the algorithm. When needed, a range reduction can
be achieved by scaling of the initial values [3].



J Sign Process Syst (2010) 58:17–27 25

PEU0i

PEU1r

PEU1i

PEU2r

PEU2i

PEU0r

SR3r

SR3i

(x, y)
bus

digit-serial digi-parallel

z2

z3

z4

OFCr

OFCr

OFCr

OFCi

OFCi

OFCi

SR3r, SR3i-shift registers OFC-on-the-fly-converter

d (j-1)
0,r

d (j-1)
0,i

d (j-1)
1,r

d (j-1)
1,i

d (j-1)
2,r

d (j-1)
2,i

d (j-1)
3,r

d (j-1)
3,i

s r
0

s i
0

s r
1

s i
1

s r
2

s i
2

Figure 4 Scheme for CI P computation.

A scheme for implementing the computation of con-
secutive integer powers of a complex argument (CI P
scheme) is shown in Fig. 4. The corresponding elemen-
tary unit is similar to the EU of the complex polynomial
scheme, illustrated in Fig. 3. The cycle time and cost
are similar. Again, a bit-parallel bus transmits x and y
parts of the complex argument z = x + iy in a broadcast
mode. The load phase is simpler than for complex
polynomials because there is no need to load complex
coefficients. A total cost of an m-bit CI Pk scheme for
evaluating z2, z3, . . . , zk is

ACI Pk(m) = (k − 1) × APEU (m) + 2 × (m + 2)AREG

If the results are needed in bit-parallel, conventional
form, 2(k − 1) on-the-fly converters (OFC) are used at
a cost of 2(k − 1) × [2(m + 2)(AREG + AMU X)].

7 Possible Applications of the Method

In [1] the author discusses how in control system theory,
the frequency response of a linear continuous time
invariant system is obtained by substituting s = iω in
the system transfer function H(s) = q(s)/p(s) where q
and p are one-variable polynomials. Evaluating such
polynomials would be easily done using our method.
Moreover, we could easily take into account the fact
that s has no real part: Eq. 19 would be simplified, since
variable x of that equation would disappear.

Another application of complex polynomials is re-
lated power amplifiers used in communications sys-
tems. In [21] implementation of predistortion is based
on a 5-th order polynomial evaluated in the analog do-
main. Our technique maybe applicable for implemen-
tations in the digital domain. A time-domain adaptive
algorithm for compensation of nonlinear distortions in
high power amplifiers using complex polynomials is
presented in [15] .

In [13] a technique is introduced to obtain coeffi-
cients in rational function approximations to satisfy the
convergence conditions of the E-method in the real
domain. Extending this idea to the complex domain
appears plausible and attractive in reducing the cost
of implementation. Generalizing that technique to the
complex domain is rather simple.

In a paper [4] a digit-recurrence algorithm for per-
forming complex divisions is presented. The algorithm
requires a prescaling step to get an approximation to
the reciprocal of the divisor. In that paper, this is done
using a table that can be very large. Instead of that, we
propose to approximate the reciprocal of 1 + z (with,
say, |z| ≤ 1/2, with reduction to this rather large do-
main easily done) by the truncated series

1 − z + z2 − z3 + · · · + (−1)kzk

Using k terms, we have an error bounded by 2−k.
Moreover, a brief examination of [4] and this paper
shows that much hardware can be common to both
methods.

8 Summary

With the exception of complex addition and multiplica-
tion, complex operations are typically not implemented
in hardware. Recently, hardware-oriented methods for
complex division and square root have been introduced
[4–6, 11]. The method for evaluating complex poly-
nomials discussed in this paper can be extended to
evaluation of complex rational functions and complex
operators such as multiply-add and sum of products



26 J Sign Process Syst (2010) 58:17–27

[8, 10]. Complex online arithmetic algorithms for
basic operations and certain linear-algebra computa-
tions, suitable for FPGA implementation, have been
developed in [18] and presented in several papers
[19, 20].

In this paper we extend a class of algorithms for com-
plex arithmetic suitable for hardware implementation.
We presented a method for evaluating complex polyno-
mials by solving diagonally-dominant linear systems in
complex domain by a digit-recurrence algorithm. The
latency is roughly m cycles for m bits of precision,
independent of the order of the system. This does not
take into account potentially needed scaling steps. The
cycle time is independent of m. We discussed the trans-
form from real to complex numbers, the iteration, and
the convergence conditions. Implementation is given
at a high level with estimates of the cost and latency.
Consecutive integer powers of a complex argument,
which can be computed using the proposed polynomial
scheme, are also discussed.

Acknowledgement We thank the reviewers for comments and
suggestions.

References

1. Benmahammed, K. (1994). Evaluation of complex polynomi-
als in one and two variables. Multidimensional Systems and
Signal Processing, 5, 245–261.

2. Ercegovac, M. D. (1975). A general method for evaluation of
functions and computation in a digital computer. PhD thesis,
Dept. of Computer Science, University of Illinois, Urbana-
Champaign.

3. Ercegovac, M. D. (1977). A general hardware-oriented
method for evaluation of functions and computations in a
digital computer. IEEE Transactions on Computers, C-26(7),
667–680.

4. Ercegovac, M. D., & Muller, J.-M. (2003). Complex division
with prescaling of operands. In IEEE international conference
on application-specific systems, architectures and processors
(pp. 293–303).

5. Ercegovac, M. D., & Muller, J.-M. (2004). Design of a
complex divider. In Proc. SPIE on advanced signal process-
ing algorithms, architectures, and implementations XII
(pp. 51–59).

6. Ercegovac, M. D., & Muller, J.-M. (2004). Complex square
root with operand prescaling. In IEEE international confer-
ence on application-specific systems, architectures and proces-
sors (pp. 293–303).

7. Ercegovac, M. D., & Lang, T. (2004). Digital arithmetic.
San Francisco: Morgan Kaufmann (an Imprint of Elsewier
Science).

8. Ercegovac, M. D., & Muller, J.-M. (2007). Solving systems
of linear equations in complex omain: Complex e-method.
LIP report no. 2007-2. Lyon: École Normale Supérieure de
Lyon.

9. Ercegovac, M. D., & Muller, J.-M. (2007). A hardware-
oriented method for evaluating complex polynomials.
In IEEE international conference on application-specific
systems, architectures and processors.

10. Ercegovac, M. D., & Muller, J.-M. (2007). Complex multiply-
add and other related operators. In Proc. SPIE on advanced
signal processing algorithms, architectures, and implementa-
tions XII (pp. 1–11).

11. Ercegovac, M. D., & Muller, J.-M. (2007). Complex square
root with operand prescaling. Journal of VLSI Signal Process-
ing, 49, 19–30

12. Ercegovac, M. D., & Muller, J.-M. (2006). Arithmetic proces-
sor for solving tridiagonal systems of linear equations. Proc.
40th asilomar conference on signals, systems and computers
(pp. 337–340).

13. Brisebarre, N., & Muller, J.-M. (2004). Functions approx-
imable by E-fractions. In 38th asilomar conference on signals,
systems and computers, pacific grove, California (Nov).

14. Nutall, A. H. (1987). Efficient evaluation of polynomials and
exponentials of polynomials for equispaced arguments. IEEE
Transactions on Acoustics, Speech, and Signal Processing,
ASSP-35, 1486–1487.

15. Ohmori, Y. D., & Sano, H. (2003). Time-domain adaptive
compensation for nonlinear distortion of high power ampli-
fiers. In Proc. of the American control conference (Vol. 1,
pp. 356 – 361) (June).

16. Olver, F. W. J. (1986). Error bounds for polynomial eval-
uation and complex arithmetic. IMA Journal of Numerical
Analysis 6, 373–379.

17. Reif, J. H. (1997). Approximate complex polynomial eval-
uation in near constant work per point. In STOC 97
(pp. 30–39).

18. McIlhenny, R. (2002). Complex number on-line arithmetic for
reconfigurable hardware: Algorithms, implementations, and
applications. PhD. Dissertation, University of California, Los
Angeles.

19. McIlhenny, R., & Ercegovac, M. D. (2005). On the de-
sign of an on-line complex matrix inversion unit. In Proc.
39th asilomar conference on signals, systems and computers
(pp. 1172–1176).

20. McIlhenny, R., & Ercegovac, M. D. (2006). On the de-
sign of an on-line complex householder transform. In Proc.
40th asilomar conference on signals, systems and computers
(pp. 318–322).

21. Westesson, E., & Sundstrom, L. (1999). A complex polyno-
mial predistorter chip in CMOS for baseband or IF lineariza-
tion of RF power amplifiers. In Proceedings of the 1999 IEEE
international symposium on circuits and systems (Vol. 1,
pp. 206 – 209).



J Sign Process Syst (2010) 58:17–27 27

Miloš D. Ercegovac is a Professor and a former Chair in the
Computer Science Department of the Henry Samueli School of
Engineering and Applied Science, University of California at Los
Angeles, where he has been on the faculty since 1975. He earned
his MS (Õ72) and PhD (Õ75) in computer science from the
University of Illinois, Urbana-Champaign, and BS in electrical
engineering (Õ65) from the University of Belgrade, Serbia. Dr.
Ercegovac has specialized for over 30 years in research and
teaching in digital arithmetic, digital and computer system design,
and parallel architectures. His dedication to teaching and re-
search has also resulted in several co-authored books: two in the
area of digital design (Digital Systems and Hardware/Firmware
Algorithms, Wiley & Sons, 1985, and Introduction to Digital
Design, Wiley & Sons, 1999), and two in digital arithmetic
(Division and Square Root: Digit-Recurrence Algorithms and
Implementations, Kluwer Academic Publishers, 1994, and Dig-
ital Arithmetic, Morgan Kaufmann Publishers - a Division of
Elsevier, 2004.) Dr. Ercegovac has been involved in organizing
the IEEE Symposia on Computer Arithmetic since 1978. He
served as an associate editor of the IEEE Transactions on Com-
puters 1988–1992 and as a subject area editor for the Journal of
Parallel and Distributed Computing 1986–1993. Dr. Ercegovac’s
work has been recognized by his election in 2003 to IEEE Fellow

and to Foreign Member of the Serbian Academy of Sciences and
Arts in Belgrade, Serbia. He is also a member of the ACM and
of the IEEE Computer Society.

Jean-Michel Muller was born in Grenoble, France, in 1961. He
received his Ph.D. degree in 1985 from the Institut National
Polytechnique de Grenoble. He is Directeur de Recherches (se-
nior researcher) at CNRS, France, and he is the former head of
the LIP laboratory (LIP is a joint laboratory of CNRS, Ecole
Normale Supérieure de Lyon, INRIA and Université Claude
Bernard Lyon 1). His research interests are in Computer Arith-
metic. Dr. Muller was co-program chair of the 13th IEEE Sym-
posium on Computer Arithmetic (Asilomar, USA, June 1997),
general chair of SCAN’97 (Lyon, France, Sept. 1997), general
chair of the 14th IEEE Symposium on Computer Arithmetic
(Adelaide, Australia, April 1999). He is the author of several
books, including “Elementary Functions, Algorithms and Imple-
mentation” (2nd edition, Birkhäuser Boston, 2006). He served as
associate editor of the IEEE Transactions on Computers from
1996 to 2000. He is a senior member of the IEEE.


	An Efficient Method for Evaluating Complex Polynomials
	Abstract
	Introduction
	Complex-Real (CR) Transforms
	CE-Method: An Overview
	Iteration and Convergence Conditions
	Implementation
	Computing Consecutive Integer Powers of Complex Argument
	Possible Applications of the Method
	Summary
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


