Computing specified generators of structured matrix inverses
Claude-Pierre Jeannerod, Christophe Mouilleron

To cite this version:

HAL Id: ensl-00450272
https://ens-lyon.hal.science/ensl-00450272
Submitted on 26 Jan 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Computing specified generators of structured matrix inverses

Claude-Pierre Jeannerod
LIP - ENS de Lyon
INRIA
claude-pierre.jeannerod@ens-lyon.fr

Christophe Mouilleron
LIP - ENS de Lyon
Université de Lyon
christophe.mouilleron@ens-lyon.org

ABSTRACT
The asymptotically fastest known divide-and-conquer methods for inverting dense structured matrices are essentially variations or extensions of the Morf/Bitmead-Anderson algorithm. Most of them must deal with the growth in length of intermediate generators, and this is done by incorporating various generator compression techniques into the algorithms. One exception is an algorithm by Cardinal, which in the particular case of Cauchy-like matrices avoids such growth by focusing on well-specified, already compressed generators of the inverse. In this paper, we extend Cardinal’s method to a broader class of structured matrices including those of Vandermonde, Hankel, and Toeplitz types. Besides, some first experimental results illustrate the practical interest of the approach.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Algebraic Manipulation—Algebraic Algorithms

General Terms
Algorithms, Theory

Keywords
Structured linear algebra, matrix inversion

1. INTRODUCTION
Since [10], a classical way of exploiting the structure of dense matrices is via the displacement rank approach: typically, $n \times n$ matrices are represented by pairs (G,H) of $n \times \alpha$ matrices such that $L(A) = GH^T$ for some linear operator L called a displacement. Classical choices for L are Stein’s displacement $\Delta[M,N] : A \mapsto A - MAN$ and Sylvester’s displacement $\nabla[M,N] : A \mapsto MA - AN$. With respect to a given displacement, (G,H) is called a generator of length α for A, and A is considered to be structured when α is “small” (in a sense that depends on the context) compared to n. According to the unified treatment [19], many of the structures encountered in practice are covered by the following operator matrices: for a field \mathbb{K} and a positive integer n, let

$$M,N \in \{ \mathbb{D}(x), Z_{m,\varphi}, \mathbb{Z}_{m,\psi}^T \}, \quad x \in \mathbb{K}^n, \quad \varphi, \psi \in \mathbb{K},$$

with $\mathbb{D}(x)$ the diagonal matrix whose entry (i,i) is the ith coefficient x_i of vector x, and $Z_{m,\varphi}$ the $n \times n$ unit φ-circulant matrix having a φ in position $(1,n)$, ones in positions $(1+i,1)$, and zeros everywhere else.

When a structured matrix $A \in \mathbb{K}^{n \times n}$ is invertible, its inverse A^{-1} is known to be structured too, and some asymptotically fast algorithms are available for computing length-α generators for A^{-1} and linear system solutions, whose costs in terms of operations in \mathbb{K} are in $O(\alpha^2 n)$ (see [19] and the references therein) and, since more recently, in $O(\alpha^{e-1} n)$ (see [2, 3]). (Here and hereafter the O notation hides all logarithmic factors.) Such algorithms are essentially variations or extensions of the Morf/Bitmead-Anderson (MBA) divide-and-conquer approach [13, 1]. In practice, they apply to important types of structures like those of (1). However, most of these algorithms must deal with the growth in length of intermediate generators, and this is done by recursively using a generator compression stage which, given matrices $G,H \in \mathbb{K}^{n \times \beta}$ such that GH^T has rank $\alpha \leq \beta$, computes matrices G_α, H_β that satisfy $G_\alpha H_\beta = GH^T$ but now have exactly α columns; see [17, 15, 16, 11, 12] and [19, §4.6].

One exception is a variant of MBA due to Cardinal [4, 5]: assuming Sylvester’s displacement equation

$$\nabla[M,N](A) = GH^T$$

and in the particular case where both M and N are diagonal (Cauchy-like structure), Cardinal’s algorithm completely avoids generator compression by directly computing

$$Y = -A^{-1}G, \quad Z = A^{-T}H.$$

As already noted in [9] —and this is readily verified by pre- and postmultiplying (2) with the inverse of A—, the matrix pair (Y,Z) is a $\nabla[N,M]$-generator of length α for A^{-1}. Due to its very special form, we shall call it a specified generator for the inverse of A.

The goal of this paper is to extend Cardinal’s algorithm beyond the Cauchy-like structure and to show that, in MBA and for Sylvester’s displacement, generator compression can be systematically avoided by targeting a specified generator for the inverse, rather than just an arbitrary one of length α. More precisely, our three main contributions can be summarized as follows:
First, we propose a recursive formula that allows us to factor a specified generator of the inverse for A in terms of specified generators for the inverse of its upper-left block A_{11} and for the inverse of the Schur complement of A_{11} in A.

Second, we show how to reduce the computation of specified inverse generators for the structures defined in (1) to the computation of specified inverse generators for the three basic cases below:

$$\{ (M, N) \in \{(D(x), D(y)), (D(x), Z_{n,0}^T), (Z_{n,0}, Z_{n,0}^T)\} \} .$$ (4)

For each of those three structures, which are of the Cauchy-like, Vandermonde-like, and Hankel-like types, respectively, we further give and analyze explicit algorithms for computing a specified generator of the inverse. These algorithms are compression-free and thus, in that sense, simpler to analyze and implement than traditional MBA variants. Moreover, although removing generator compression does not affect the overall asymptotic costs, it yields smaller dominant terms.

Third, we report on a first set of experiments done with our C++ implementation of MBA and of several of the new compression-free algorithms. For the Cauchy-like structure, for example, the speed-ups compared to MBA are by a factor from 4.6 to 6.7. This suggests that our extension of Cardinal's compression-free approach may yield algorithms that are not only simpler but also significantly faster in practice.

Outline of the paper. After some notation and preliminaries in §2, some properties of specified generators are studied in §3. Then §4 gives a compression-free algorithm for the case where M and N^T are lower triangular. The algorithm is specialized to the Cauchy-like and Vandermonde-like structures in §4.1 and §4.2, and then extended in §4.3 to the irregular Hankel-like case $(M, N) = (Z_{n,0}, Z_{n,0}^T)$. Experiments are reported in §5 and we conclude in §6.

2. NOTATION AND PRELIMINARIES

Here and hereafter, I_n is the identity matrix of order n, $e_{n,i}$ is the ith unit vector of K^n, and J_n is the reflexion matrix of order n, whose (i,j) entry is 1 if $i + j = n + 1$, and 0 otherwise. For $A \in K^{n \times m}$, a_{ij} denotes its (i,j) entry and a_j its jth column. Also, for $\alpha \leq m$, we write $A^{\alpha \times m}$ for the matrix $[a_1, \ldots, a_{\alpha}] \in K^{n \times \alpha}$.

Given positive integers n_1 and n_2 such that $n_1 + n_2 = n$, we will often partition A, G, H, M, N into $n_1 \times n_2$ blocks as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad G = \begin{bmatrix} G_1 \\ G_2 \end{bmatrix}, \quad H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix} .$$ (5)

$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}, \quad N = \begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix} .$$ (6)

We shall write μ and ν for the rank of, respectively, M_{12} and N_{21}. Consequently, those two matrices can be written

$$M_{12} = U_1 V_1^T, \quad N_{21} = U_2 V_1^T$$ (7)

for some full column rank matrices $U_1 \in K^{n_1 \times \mu}$, $V_1 \in K^{n_2 \times \mu}$, and $V_1 \in K^{n_2 \times \nu}$. The Schur complement of A_{11} in A is written S:

$$S = A_{22} - A_{21} A_{11}^{-1} A_{12} .$$ (8)

Recall that S is nonsingular if A_{11} and A are nonsingular; if A is strongly regular then so are A_{11} and S. Finally, let

$$E = \begin{bmatrix} I_{n_1} & -A_{11}^{-1} A_{12} \\ -A_{21} A_{11}^{-1} & I_{n_2} \end{bmatrix}, \quad F = \begin{bmatrix} I_{n_1} & -A_{11}^{-1} A_{12} \\ I_{n_2} & I_{n_2} \end{bmatrix} .$$ (9)

From $E A F = \text{diag}(A_{11}, S)$, we deduce the following classical recursive factorization of the inverse of A [19, p. 157]:

$$A^{-1} = F \begin{bmatrix} A_{11}^{-1} \\ S^{-1} \end{bmatrix} E .$$ (10)

2.1 Properties of Sylvester’s displacement

The properties below show how to deduce, given a $\nabla [M, N]$-generator for A, a generator for various matrices related to A. All of them appear in/follow immediately from [18, 19].

Generation of the transpose. Let A, G, H be as in (2). By transposing the identity $MA - AN = GH^T$, we obtain

$$\nabla [N^T, M^T](A^T) = -HG^T ,$$ (11)

so that the pair $(-H, G)$ is a $\nabla [N^T, M^T]$-generator of A^T.

Generation of products. One has the following classical rule for generating matrix products [19, p. 10]:

$$\nabla [M, N](AB) = \nabla [M, \ast](A)(B) + \nabla [\ast, N](B) ,$$ (12)

for any matrix \ast of conforming dimensions. Applying this rule twice, we can straightforwardly deduce explicit formulas for generating products of three matrices:

Lemma 1. Let A, G, H be as in (2) and, for two matrices P_1 and P_2, let

$$\nabla = P_1 A P_2 .$$ (13)

If $\nabla [M, N](P_1) = G P_1 H P_1^T$, and $\nabla [N, H](P_2) = G P_2 H P_2$ then

$$\nabla [M, N](\nabla) = G H^T .$$ (14)

As an example, let us mention three special cases which we will use later: assuming $M, N \in \{Z_{n,0}, Z_{n,0}^T\}$, let first

$$(P_1, P_2) = (I_n, J_n) \quad \text{and} \quad (M, N) = (M, N^T) .$$ (15)

Then obviously $\nabla [M, N](P_1)$ is zero and, using the facts that $Z_{n,0}^2 = I_n$ and $J_n Z_{n,0} \overline{J}_n = Z_{n,0}^2$ (see [19, p. 24]), we deduce that $\nabla [N, H](P_2)$ is zero as well. Consequently, since J_n is symmetric, applying (12) yields

$$\nabla [M, N^T](A J_n) = G(J_n H)T .$$ (16)

Similarly, exchanging the roles of P_1 and P_2 yields

$$\nabla [N^T, M^T](J_n A) = (J_n G)H^T ,$$ (17)

while taking $P_1 = P_2 = J_n$ gives

$$\nabla [M^T, N^T](J_n A J_n) = (J_n G)(J_n H)T .$$ (18)

Generation of submatrices. From (2) and (6) and the partitioning into blocks we deduce that, for $i, j \in \{1, 2\}$, submatrix A_{ij} satisfies the following matrix equation

$$\nabla [M_{ij}, N_{ij}](A_{ij}) = G_{ij} H_{ij}^T ,$$ (19)

where, in particular (see for example [18, Proposition 4.4]),

$$G_{11} = \begin{bmatrix} G_1 - U_1 A_{12} U_2 \end{bmatrix} \in K^{n_1 \times (\mu + n_2 + \nu)} ,$$ (20)

$$H_{11} = \begin{bmatrix} H_1 A_{12}^T V_1 \end{bmatrix} \in K^{n_1 \times (\mu + n_2 + \nu)} .$$ (21)

Generation of Schur complements. By combining [18, Proposition 4.5] with (6), we have the following description of the structure of the Schur complement S of A_{11} in A:

$$\nabla [M_{22}, N_{22}](S) = G S H_S^T .$$ (22)
with G_S and H_S the two matrices in $K_{n_2 \times (\alpha + \mu + \nu)}$ given by
\begin{align}
G_S &= \begin{bmatrix} G_2 - A_2 A_1^T G_1 A_2 A_1^T U_2 - S U_2 \end{bmatrix}, \quad (17a) \\
H_S &= \begin{bmatrix} H_2 - A_2^T A_1^T H_1 [S^T V_2 | A_2^T A_1^T V_1] \end{bmatrix}, \quad (17b)
\end{align}
When the operator matrices M and N^* are lower triangular, one has $\mu = \nu = 0$ and the above formulas for generating the Schur complement can thus be simplified as follows (see [8, Theorem 2.3], [14, Lemma 3.1], [19, §8.4]):
\[G_S = G_2 - A_2 A_1^T G_1, \quad H_S = H_2 - A_2^T A_1^T H_1. \quad (18) \]

2.2 Computing with basic structures

We conclude our preliminaries by reviewing three basic inverse displacement operators that we shall repeatedly use in the sequel, as well as some associated cost functions. Here we assume that (2) holds in the rectangular case, that is, for $A \in K_{n \times m}$, $G \in K_{m \times n}$, and $H \in K_{m \times n}$; this assumption will allow us to handle off-diagonal blocks in Section 4. Recall also that $\nabla[M, N]$ is invertible if and only if the spectra of M and N are disjoint [19, p. 123].

Cauchy-like structure. For $x \in K^n$ and $y \in K^m$, assume
\[M = D(x), \quad N = D(y), \quad x_i \neq y_j \text{ for all } (i, j). \quad (19a) \]
Then $\nabla[M, N]$ is invertible and it is known [7] (see also [19, p. 8] and [20, Lemma 2.1]) that (2) is equivalent to
\[A = \sum_{j=1}^{m} D(g_j) C(x, y) D(h_j), \quad (19b) \]
with $C(x, y)$ the n by m Cauchy matrix $[1/(x_i - y_j)]_{i,j}$.

Vandermonde-like structure. For $x \in K^n$, assume now
\[M = D(x), \quad N = Z_{m, 0}, \quad x_i \neq 0 \text{ for all } i. \quad (20a) \]
Then $\nabla[M, N]$ is invertible and, in this case, A can be recovered as follows (see [19, Example 4.4.6(d)]):
\[A = \sum_{j=1}^{m} D(x^{-1} \cdot g_j) \nabla(x^{-1} \cdot n) U(h_j), \quad (20b) \]
where, for $x \in K^n$, $\nabla(x, m)$ is the n by m Vandermonde matrix whose (i, j) entry equals x_i^{-1}, and $U(h_j)$ is the m by m upper triangular Toeplitz matrix whose first row is h_j^T.

Hankel-like structure. Assume finally that
\[M = Z_{n, 1}, \quad N = Z_{m, 0}. \quad (21a) \]
Since $Z_{n, 1}$ and $Z_{m, 0}$ have disjoint spectra, $\nabla[M, N]$ is invertible. In addition, we can recover A as follows:
\[A = \sum_{j=1}^{m} T_{n \times n}(g_j) L(h_j) J_{n_1}, \quad (21b) \]
where, for $x \in K^n$, $T_{n \times m}(x)$ is the n by m Toeplitz matrix $[x_{i+k-j} \mod n]_{i,j}$, and where $L(h_j)$ is the m by m lower triangular Toeplitz matrix whose first column is h_j. (A proof of (21b) is given in Appendix A.)

Cost functions. Our algorithms in the next sections will essentially require the ability to efficiently evaluate products of the form $A v$ and $A^T v$, where A has one of the three basic structures above, m is of the same order of n, and v consists of one or several vectors.

In order to relate the costs of our algorithms in Section 4 to the costs of such products, we introduce the following functions. For the Cauchy-like structure (19a), let $M_{N^*}: N_{n,m} \times N_{n,m} \times N_{n,m} \rightarrow R_{n,m}$ be such that, for $A \in K_{n \times n}$ given by the right hand-side of (19b) and $v \in K^{n \times \beta}$, the products $A v$ and $A^T v$ can be computed using at most $M_{N^*}(\alpha, n, \beta)$ operations in K. We define the functions M_N and M_H in a similar way for, respectively, the Vandermonde-like and Hankel-like structures. Also, when $\beta = \alpha$ we shall simply write $M_M(\alpha, n, \beta)$ for $* = C, V, H$.

Following [6, p. 242], we write $M(n)$ for the cost of multiplying two polynomials of degree less than n over $K[x]$, and we assume that $M(n)$ is “superlinear,” that is, $M(n)/n$ is nondecreasing.

It is known (see for example [19]) that $C(x, y) = C(y,x)$ and that multiplying $C(x, y)$, $V(x, n)$, or $V(x, n)^T$ by a vector can be done in time $O(M(n) \log(n))$ via (transposed) multipoint evaluation. Hence by a straightforward application of the summation formulas (19b), (20b), and (21b), one has
\[M_M(\alpha, n, 1) \in O(\alpha (M(n) \log(n))) \quad \text{for } * = C, V, H, \]
\[M_M(\alpha, n, 1) \in O(\alpha (M(n) \log(n))). \quad (22a) \]
We shall also use the three basic properties given below:

Lemma 2. Let $k, \ell \in O(1)$. Then $M_M(\alpha + k, n, \alpha) \in M_M(\alpha, n) + O(\alpha (M(n) \log(n)))$, (22a)
\[M_M(\alpha + k, n, \alpha) \in M_M(\alpha, n) + O(\alpha (M(n))), \quad (22b) \]
and, for $* = C, V, H$,
\[M_M(\alpha, n, \ell) \in k \ell M_M(\alpha, n) + O(\alpha(n)). \quad (23) \]

Proof. To get (22) note that, for all α, $M_M(\alpha + k, n, \alpha)$ is in $M_M(\alpha, n, \alpha) + M_M(\alpha, n, \alpha) + O(\alpha(n))$. Indeed, one can evaluate our sum of $\alpha + k$ products by adding the first α terms and the last k terms separately, and then combining the two intermediate results. Since moreover $M_M(\alpha, n, \alpha) \leq M_M(\alpha, n, 1)$, (22a) and (22b) follow from the complexities of $M_M(\alpha, n)$ and $M_M(\alpha, n)$ mentioned above. To establish (23), notice that a sum of $k \alpha$ terms for $\ell \alpha$ vectors can be evaluated via k sums of α terms for α vectors plus a final sum in $O(\alpha(n))$, repeated ℓ times.

Finally, we assume as for $M(n)$ that the function $M(\cdot, n)$ is “superlinear,” that is, $M(\cdot, n)/n$ is nondecreasing. This assumption will allow us to simplify the cost bounds of the algorithms of Section 4 and can be easily supported by “naive” implementations in $O(\alpha^2 n)$ as those used in Section 5.

3. PROPERTIES OF SPECIFIED GENERATORS OF THE MATRIX INVERSE

3.1 Recovery after matrix transformations

We recalled in Section 2 some formulas for generating the matrix $A \in \{ A^T, P_i A P_2 \}$ from some generators of the matrix A. Conversely, we give in the theorem below some formulas for recovering specified generators of the inverse of A from specified generators of the inverse of A.

Theorem 1. Let $A \in K_{n \times n}$ be invertible and let $G, H \in K_{n \times n}$ and $Y, Z \in K_{n \times n}$ be as in (2) and (3). Let $A \in K_{n \times n}$ be invertible and, for $G, H \in K_{n \times n}$, $\beta \geq \alpha$, define
\[Y = -A^{-1} G, \quad Z = A^{-1} H. \]
Then
- for $A = A^T$ and $(G, H) = (-H, G), \text{ one has}$
\[Y = -Z, \quad Z = Y; \]
for $\tilde{A} = P_1 P_2$ with $P_1, P_2 \in K^{n \times n}$ invertible, and for G, H as in (12), one has
\[
Y = P_2 \tilde{Y}^{-\alpha}, \quad Z = P_1^T \tilde{Z}^{-\alpha}.
\]

Proof. In the first case, $Y = -(A^{-T})(-H) = A^{-T}H = Z$ and $\tilde{Z} = (A^T)^{-1}(G) = A^{-1}G = -Y$. Now, in the case where $\tilde{A} = P_1 P_2$ Lemma 1 implies that the first two columns of \tilde{Y} are $\tilde{Y}^{-\alpha} = -(P_1 P_2)^{-1} P_1 G = P_2^{-1} Y$. Similarly, the first two columns of \tilde{Z} are $\tilde{Z}^{-\alpha} = (P_1 P_2)^{-1_T} P_1^T H = P_1^{-1_T} Z$.

For example, when $P_1, P_2 \in \{I_n, J_n\}$, it follows from (12) that $\beta = \alpha$. Consequently, Theorem 1 yields
\[
(Y, Z) = (J_n Y, J_n Z) \quad \text{if } \tilde{A} = A J_n, \tag{25a}
\]
\[
(Y, Z) = (J_n, J_n Z) \quad \text{if } \tilde{A} = J_n A, \tag{25b}
\]
\[
(Y, Z) = (J_n, J_n Z) \quad \text{if } \tilde{A} = J_n A J_n. \tag{25c}
\]

Reduction to basic displacements. A consequence of Theorem 1, when it comes to computing specified inverse generators, is that the nine possible displacements defined in (1) can be reduced to the three basic ones shown in (4).

First, it follows from (13a) and (25a) that the case $N = Z_{n,\varphi}$ reduces to the case $N = Z_{n,\psi}$. Similarly, (13b) and (25b) imply that the case $M = Z_{n,\varphi}$ reduces to the case $M = Z_{n,\psi}$. We thus are left with the four cases defined by
\[
M \in \{D(x), Z_{n,\varphi}\} \quad \text{and} \quad N \in \{D(y), Z_{n,\psi}\}.
\]
Using (9) to further reduce the case where $M = Z_{n,\varphi}$ and $N = D(y)$ to the case where $M = D(y)$ and $N = Z_{n,\psi}$.

Due to the nature of the transformations applied to the $n \times \alpha$ generators (sign changes, permutations), the three reductions done so far imply an extra cost of only $O(\alpha n)$ operations in K.

To reach (4) it remains to zero out the scalars φ and ψ. This can be done without transforming A, but only its displacement: for example, by combining the obvious identity
\[
Z_{n,\varphi} = Z_{n,0} + \varphi e_{n,1} e_{n,1}^T,
\]
with $\nabla[D(x), Z_{n,\psi}](A) = GH^T$ and $\nabla[Z_{n,\varphi}, Z_{n,\psi}](A) = GH^T$, we arrive at, respectively,
\[
\nabla[D(x), Z_{n,\psi}](A) = \tilde{G}H^T \quad (i)
\]
\[
\nabla[Z_{n,\varphi}, Z_{n,\psi}](A) = \tilde{G}H^T \quad (ii)
\]
with $\tilde{G} = [G]\varphi e_{n,1} [Ae_{n,1}]$ and $\tilde{H} = [H]A^T e_{n,1}[\psi e_{n,1}]$. The last column or row of A needed to set up the matrices \tilde{G} and \tilde{H} can be computed in $O(\alpha M(n) \log(n))$ — case (i) — or $O(\alpha M(n))$ — case (ii) — field operations from the explicit bilinear expressions of A given in (19). Examples 4.4.4 and 4.4.6(d).

Due to the shape of \tilde{G}, H, above, extracting the first two columns of $\tilde{Y} = A^{-1} G$ and $\tilde{Z} = A^{-1} H$ in time $O(\alpha n)$ then yields the desired specified inverse generator (Y, Z).

Reduction to strong regularity. Theorem 1 further allows to restrict to matrices that are not only invertible but strongly regular. Strong regularity, which is needed in order to apply Theorem 2 recursively, is classically obtained by pre-conditioning A into $\tilde{A} = P_1 P_2$ with two random structured matrices P_1 and P_2 (see [19, 5.6.6]). Thus, one may generate \tilde{A} as in Lemma 1, then compute an associated specified generator (Y, Z) of its inverse, and finally recover via Theorem 1 a specified generator (Y, Z) of the inverse of A.

Let r_1 and r_2 be two random vectors in K^n and whose first entry is one. Then, applying the rules of [19, p. 167], possible pre-conditions for each of the three basic displacements of (4) are as follows (with $\tilde{x}, \tilde{y} \in K^n$ and such that $\tilde{x} \neq x$ and $\tilde{y} \neq y$, for all i):
\[
\begin{array}{c|c|c}
M & N & P_1 \\
\hline
D(x), D(y) & C(x, x) D(r_1) & C(\tilde{x}, x) D(r_2) \\
D(y), Z_{n,0} & C(x, x) D(r_1) & \mathbb{L}(r_2) \\
Z_{n,0}, Z_{n,0} & \mathbb{U}(r_1) & \mathbb{L}(r_2)
\end{array}
\]
For all these cases, one may check that the structure of A, P_1, and P_2 allows to prepare (G, H) in Lemma 1 and to recover (Y, Z) in Theorem 1 in time $O(\alpha M(n))$ or $O(\alpha M(n) \log(n))$.

3.2 Recursive factorization formula

Theorem 2. Let $A \in K^{n \times n}$ be nonsingular and generated by G and H as in (2). Assume that A_{11} is nonsingular as well, that it is generated by G_{11} and H_{11} as in (15), and let
\[
Y_{11} = -A_{11}^{-1} G_{11}, \quad Z_{11} = A_{11}^{-1} H_{11}.
\]
Assume further that the Schur complement S of A_{11} in A is generated by G_S and H_S as in (17), and let
\[
Y_S = -A_S^{-1} G_S, \quad Z_S = A_S^{-1} H_S.
\]
Then the matrices Y and Z in (3) satisfy
\[
Y = F \left[\begin{array}{c} Y_{11} \\ Y_S \end{array} \right], \quad Z = E^T \left[\begin{array}{c} Z_{11} \\ Z_S \end{array} \right],
\]
where E and F are the elimination matrices defined in (7).

Proof. Using (5) and (8), we obtain
\[
-A^{-1} G = F \left[\begin{array}{c} -A_S^{-1} G_S \\ -S^{-1} (G_2 - A_2 A_S^{-1} G_1) \end{array} \right].
\]
It follows from (15a) and (17a) that $G_1 = G_{11}^{-1}$ and that $G_2 - A_2 A_S^{-1} G_1 = G_S^{-1}$. The expression claimed for $Y = -A^{-1} G$ then follows from applying the rule $A(B^{-\alpha}) = (AB)^{-\alpha}$ twice, and from the definitions of Y_{11} and Y_S. The expression for Z can be obtained in a similar way, using (15b) and (17b).

A first consequence of this theorem is a “compressed” analogue of the classical recursive factorization formula (8):
\[
YZ^T = F \left[\begin{array}{c} Y_{11} \\ Y_S \end{array} \right] \left[\begin{array}{c} Z_{11} \\ Z_S \end{array} \right]^T E.
\]
A second consequence of Theorem 2 is that, for A strongly regular, we immediately get a recursive algorithm \tilde{a} in MBA whose key steps are the computation of (G_{11}, H_{11}) and (G_S, H_S):

Given generators G, H of length α for A,

- Compute a generator (G_{11}, H_{11}) for A_{11} using (15);
- Recursively, compute $(Y_{11}, Z_{11}) = (-A_S^{-1} G_{11}, A_S^{-1} H_{11})$;
- Compute a generator (G_S, H_S) for S using (17);
4. ALGORITHMS FOR LOWER TRIANGULAR OPERATOR MATRICES M AND N^T

In order to cover simultaneously the three displacements in (4) to which we have previously reduced, we assume in this section that both operator matrices M and N^T are lower triangular.

This assumption implies in particular that the blocks M_{12} and N_{21} in (6) are zero, so that their respective ranks μ and ν satisfy μ = ν = 0. From (15) it then follows that the submatrix A_{11} satisfies
\[\nabla [M_{11}, N_{11}] (A_{11}) = G_1 H_1^T. \] (27)

Thus, some generators of length at most α for A_{11} can be read off the first n_{11} rows of some generators of length at most α for A.

Assuming that A_{11} is invertible, consider now the associated specified generators of A_{11}, that is,
\[Y_{11} = -A_{11}^{-1} G_1, \quad Z_{11} = A_{11}^{-1} H_1. \] (28)

Combining the two identities in (28) with the explicit Schur complement generation formulas in (17) and (18) yields
\[\nabla [M_{22}, N_{22}] (S) = (G_2 + A_{21} Y_{11}) (H_2 - A_{21}^T Z_{11})^T. \] (29)

In other words, the precise specification of the above generators of the inverse of A_{11} can be exploited to simplify even further the generators of the Schur complement. In [4, Proposition 1], Cardinal had already noted this formula but only for the Cauchy-like structure (M and N diagonal).

Now, if we assume further that A is strongly regular (which, if randomization is allowed, makes sense in view of the probabilistic reductions to strong regularity shown in Section 3.1), we obtain the following general algorithm:

```
GenInvLT(M, N, G, H)
```

Input: M, N ∈ K^{n×n} and G, H ∈ K^{n×n} such that M and N^T are lower triangular, and \(\nabla [M, N] (A) = G H^T \).

Assumptions: A is strongly regular, m_{i,j} ≠ n_{i,j} for all (i, j).

Output: Y = -A^{-1} G and Z = A^{-1} H.

if n = 1 then
 Evaluate the dot product GH^T;
 Deduce the scalar A;
 \[Y := -A^{-1} G, \quad Z := A^{-1} H; \]
else
 \[n_1 := \lfloor n/2 \rfloor, \quad n_2 := \lceil n/2 \rceil; \]
 \[G_{11} := G_1; \quad H_{11} := H_1; \]
 \[(Y_{11}, Z_{11}) := GenInvLT(M_{11}, N_{11}, G_{11}, H_{11}); \]
 \[G_2 := G_2 + A_{21} Y_{11}; \quad H_2 := H_2 - A_{21}^T Z_{11}; \]
 \[(Y_2, Z_2) := GenInvLT(M_{22}, N_{22}, G_2, H_2); \]
 \[Y := \begin{bmatrix} Y_{11} & -A_{11}^{-1} A_{21}^T Y_2 \\ Y_2 \end{bmatrix}, \quad Z := \begin{bmatrix} Z_{11} & -A_{11}^{-1} A_{21}^T Z_2 \\ Z_2 \end{bmatrix}; \]
fi;
return (Y, Z).

Theorem 3. Algorithm GenInvLT is correct.

Proof. When n = 1, the assumption on M and N implies that A is the scalar \((\sum_{i=1}^n g_i h_i)/(m_{11} - n_{11})\). Correctness then follows immediately in this case. Assume now that \(n > 1 \) and, in order to proceed by induction, assume correctness for \(n' < n \). The matrix A_{11} is strongly regular (since A is) and it satisfies (27), when, by assumption M_{11} and N_{11}^T are both lower triangular and with disjoint diagonals. Since \(n_1 < n \), the induction assumption then implies that the pair (Y_{11}, Z_{11}) returned by the first recursive call is precisely \((-A_{11}^{-1} G_1, A_{11}^{-1} H_1)^T\). Therefore, the computed pair (G_2, H_2) satisfies (29), where, by assumption, S is strongly regular (since A is) and where M_{22} and N_{22}^T are both lower triangular and have disjoint diagonals. Since \(n_2 < n \), the induction assumption implies that the pair (Y_2, Z_2) returned by the second recursive call is exactly \((-A_{21}^{-1} G_2, -A_{21}^{-1} H_2)^T\).

The conclusion then follows from Theorem 2.

To implement Algorithm GenInvLT and bound its cost, all we need is to be able to evaluate the four matrix products
\[A_{21} Y_{11}, \quad A_{11}^{-1} A_{21} Y_5, \quad A_{11}^{-1} A_{21} Z_5, \quad A_{11}^{-1} A_{21}^T Z_5. \] (30)

In the next subsections, we study the evaluation of those expressions for each of three basic structures of the Cauchy, Vandermonde, and Hankel types. That requires in each case a detailed analysis of the structure of the matrices A_{11}, A_{12}, A_{21}, and their transposes. Since in (30) there are two ways of parenthesizing the products of three matrices, we will also study the structure of A_{11}^{-1} A_{12} and (A_{21} A_{11})^T. The parenthesizations (A_{11}^{-1} A_{12}) Y_5 and (A_{21} A_{11})^T Z_5 will be referred to as “Cardinal’s trick” later on, as they have been initially used in [4] for the Cauchy-like case.

4.1 Application to Cauchy-like matrices

We consider here the specialization of Algorithm GenInvLT to the Cauchy-like structure defined in (19a). Partitioning the two vectors x and y conformally with A yields
\[x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad x_1, y_1 \in K^{n_1}, \quad x_2, y_2 \in K^{n_2}. \]

Lemma 3. Let the matrices A, G, H, Y_{11}, Z_{11}, G_5, H_5 be as in Algorithm GenInvLT. Then
\[\nabla [D(x_i), D(y_j)] (A_{ij}) = G_i H_i^T \text{ for } 1 \leq i, j \leq 2, \]
\[\nabla [D(y_1), D(x_1)] (A_{11}^{-1}) = Y_{11} Z_{11}^T, \]
\[\nabla [D(y_1), D(y_2)] (A_{12}^{-1}) = Y_{11} H_5^T, \]
\[\nabla [D(x_2), D(x_1)] (A_{21}^{-1}) = G_5 Z_{11}^T. \]

Proof. Since D(x) and D(y) are diagonal, all their off-diagonal blocks are zero, and the first identity follows from (2). To get the second identity, it suffices to pre- and postmultiply by A_{11}^{-1} both sides of the first identity for (i, j) = (1, 1), and then to use the specification of Y_{11} and Z_{11}. Using the multiplication rule (10), we deduce further from the first identity for (i, j) = (1, 2) and from the second one that
\[\nabla [D(y_1), D(y_2)] (A_{11}^{-1} A_{12}) = Y_{11} Z_{11}^T A_{12} + A_{11}^{-1} G_5 H_5^T = Y_{11} (Z_{11} A_{12} - H_5^T), \]
which by definition of H_5 equals -Y_{11} H_5^T. Similarly,
\[\nabla [D(x_2), D(x_1)] (A_{21}^{-1}) = G_5 H_5^T A_{11}^{-1} + A_{21} Y_{11} Z_{11}^T = (G_5 + A_{21} Y_{11}) Z_{11}^T, \]
which by definition of G_5 equals G_5 Z_{11}^T. □
Theorem 4. Let n be a power of two and $M, N \in \mathbb{K}^{n \times n}$ be as in (19a). Then Algorithm GenInvLT requires at most
$$3 \log(n) \|MM_c(\alpha, n) + O(\alpha n \log(n))$$
field operations. If, in addition, the set $\{x_1, \ldots, x_{n}, y_1, \ldots, y_{n}\}$ has cardinality $2n$ then this bound drops to
$$2 \log(n) \|MM_c(\alpha, n) + O(\alpha n \log(n))$$
Proof. When $n = 1$, $A = \left(\sum_{i=1}^{n} g_i h_i\right)/(n_1 - n_1)$. Hence A^{-1} can be computed using $2a + 1$ operations in \mathbb{K}, and the cost for $n = 1$ is $C(\alpha, n) := 4\alpha + 2$. Consider now the case $n \geq 2$. Using Lemma 3 together with (9), we see that the matrices A_1^{-1}, A_2, A_2, and their transposes are all of the Cauchy-like structure defined in (19a). Furthermore, for each of them a generator of length at most α can deduced in time $O(\alpha n)$ from the quantities computed by Algorithm GenLT. Consequently, one can compute $A_2 Y_{11}$, $A_2^T Z_{11}$, $A_1^{-1}(A_2 Y_{12})$, and $A_1^{-1}(A_2^T Z_{12})$ via six applications, in dimension $n/2$, of the reconstruction formula (19b) to n vectors in $\mathbb{K}^{n/2}$. Finally, Algorithm GenLT uses $2 \alpha n$ additions to deduce G_3, H_3, and the upper part of Y and Z. Overall, the cost for $n \geq 2$ thus satisfies
$$C(\alpha, n) \leq 2 C(\alpha, n/2) + 6 \|MM_c(\alpha, n/2) + k \alpha n$$
for some constant k. The superlinearity of $\|MM_c(\cdot, n)$ then yields our first bound.

Assume now that the x_i and y_i are $2n$ pairwise distinct values. From Lemma 3 the reconstruction formula (19b) can then be applied directly to $A_1^{-1} A_2$ and to the transpose of $A_2 A_1^{-1}$, in order to compute $(A_1^{-1} A_2) Y_{12}$ and $(A_2 A_1^{-1})^T Z_{12}$. This reduces the number of reconstructions from six to four, whence the second bound cost. □

4.2 Application to Vandermonde-like matrices
Let us now focus on the cost of Algorithm GenLT when M and N correspond to the Vandermonde-like structure (20a). We assume x to be partitioned as in the previous section.

Lemma 4. Let the matrices $A, G, H, Y_{11}, Z_{11}, G_3, H_3$ be as in Algorithm GenLT. Let also w_{11} be the last column of A_{11} and v_{12} be the first row of $A_{11} A_{12}$. Then
- $\nabla[D(x_1), Z_{11,0}^T](A_{12}) = G_{1, H_{1,1}}^T + w_{11} e_{n_2,1}^T$,
- $\nabla[D(x_1), Z_{11,0}^T](A_{21}) = G_{2, H_{1,1}}^T$,
- $\nabla[Z_{11,0}^T, D(x_1)](A_{11}^{-1}) = Y_{11} Z_{11,1}^T$,
- $\nabla[D(x_1), D(x_2)](A_2 A_2)^{-1} = G_2 Z_{11,1}^T$,
- $\nabla[Z_{11,1}^T, Z_{12,0}^T](A_2 A_2)^{-1} = Z_{11,0}^T + H_{1,1} e_{n_2,1}^T + v_{12}^T$.

Proof. In this case, the upper-right block of N satisfies $N_{12} = e_{n_1, n_1} e_{n_2,1}^T$. Hence we deduce from (2) that $\nabla[D(x_1), Z_{11,0}^T](A_{12}) = G_{1} H_{1,1} + A_1 e_{n_1, n_1} e_{n_2,1}^T$ and the first identity follows from the definition of vector w_{11}. The second to fourth identities are obtained in the same way as in the proof of Lemma 3. Let us now verify the last identity, which displays the structure of the product $A_1^{-1} A_2$. First, applying the techniques of Lemma 3, we deduce that
$$\nabla[Z_{11,1}^T, Z_{12,0}^T](A_2 A_2)^{-1} = -Y_{11} H_{1,1}^T + e_{n_1, n_1} e_{n_2,1}^T.$$Then, using (26) with $(\varphi, n) = (1, n_1)$ together with the definition of v_{12} yields the announced expression. □

Theorem 5. Let n be a power of two and $M, N \in \mathbb{K}^{n \times n}$ be as in (20a). Then Algorithm GenLT requires at most
$$3 \log(n) \|MM_c(\alpha, n) + O(\alpha M(n) \log^2(n))$$
field operations. If, in addition, the set $\{x_1, \ldots, x_{n}\}$ has cardinality n then this bound drops to
$$2 \log(n) \|MM_c(\alpha, n) + O(\alpha M(n) \log^2(n))$$
Proof. When $n = 1$, $A^{-1} = x_1/(\sum_{i=1}^{n} g_i h_i)$, so that the cost is $C(\alpha, n) := 4\alpha + 1$. Assume now that $n \geq 2$. Lemma 4 implies that $A_{12}, A_{21},$ and A_{11}^{-1} share the same Vandermonde-like structure (20a) as A and A_{11}. However, A_{12} has displacement rank bounded by $\alpha + 1$ and computing its generator can be done at cost $O(\alpha M(n) \log(n))$ by applying (20b) to A_{11}. Hence, for $n \geq 2$.
$$C(\alpha, n) \leq 2 C(\alpha, n/2) + \|MM_c(\alpha, n/2) + 2 M(\alpha + 1, n/2, \alpha) + k \alpha M(n) \log(n)$$
for some constant k. From (22a) and the superlinearity of $M(n)$ and $M(\cdot, n)$, we then deduce the first cost bound. If all the x_i are distinct then, for $A_2 A_1^{-1}$, we proceed as for the Cauchy-like case. For $A_1^{-1} A_2$, note that $Z_{n, A_1^{-1} A_2}$ is Hankel-like in the sense of (21a). Hence, one may first generate the latter matrix in time $O(\alpha M(n) \log(n))$ by obtaining the vector v_{12} after two applications of (20b), then multiply by Y_{12} using (21b), and re-apply a reflexion. Thus,
$$C(\alpha, n) \leq 2 C(\alpha, n/2) + \|MM_c(\alpha, n/2) + M(\alpha + 1, n/2, \alpha) + \|MM_c(\alpha, n/2) + M(\alpha + 1, n/2, \alpha) + k \alpha M(n) \log(n)$$
for some constant k, and the conclusion follows as before. □

Note that unlike for the Cauchy-like case, if α is small enough then in the cost bounds of Theorem 5 both summmands have the same order of magnitude.

4.3 Extension to Hankel-like matrices
Finally, let us consider the Hankel-like structure defined by $M = Z_{n,0}, N = Z_{n,0}^T$. Although M and N are lower triangular, Algorithm GenLT cannot be used directly in this case as the operator $\nabla[Z_{n,0}, Z_{n,0}^T]$ is not invertible. Covering such a structure, however, is interesting in particular as it yields an immediate extension to some Toeplitz-like matrices (see [19, Remark 5.4.4] and our Section 3.1).

To cope with the singularity of the displacement operator, some additional data, called irregularity set in [19, p. 136], are needed, which typically consist in “a few” entries of A. An irregular set for $\nabla[Z_{n,0}, Z_{n,0}^T]$ is given by the last row of A. Indeed, for $u^T = e_{n,1}^T A$ we see that (2) and (26) imply
$$\nabla[Z_{n,1}, Z_{n,0}^T](A) = [G \vert e_{n,1}^T] [H \vert u]^T, \quad (31)$$
so that the matrix A is Hankel-like in the sense of (21a), with displacement rank $\alpha + 1$. Consequently, the reconstruction formula (21b) can be used.

We need to exhibit an irregularity set for $\nabla[Z_{n,0}, Z_{n,0}^T]$ too, because we shall multiply with inverses of Hankel-like matrices. A suitable choice here is $v^T = e_{n,1}^T A^{-1}$, the first row of the inverse of A; indeed, if $\nabla[Z_{n,0}, Z_{n,0}^T](A^{-1}) = Y Z^T$ then, recalling (13c), we may check that $Z_{n,0}^{-1} A^{-1}$ satisfies an identity similar to (31); it is thus fully determined by, up to reflexions, Y, Z, and its last row V^T.\[\]
The resulting adaptation of Algorithm GenInvLT to Hankel-like operator $\nabla^T[Z_{n,0}, Z_{n,0}^T]$ is as follows:

Theorem 6. Algorithm GenInvHL is correct.

Proof. When $n = 1$, both A and v are reduced to the scalar a_{11} and correctness is then straightforward. Assume now that $n > 1$ and, in order to prove by induction, assume correctness for $n' < n$. The vector u is split into $u_{21} \in \mathbb{K}^{n_1}$ and $u_{22} \in \mathbb{K}^{n_2}$. Similarly, the vector of coefficients of row n_2 of A is split into $u_{12} \in \mathbb{K}^{n_1}$ and $u_{13} \in \mathbb{K}^{n_2}$. Hence, u_{11} equals $A_{11}^T e_{n_1,n_1}$ (that is, the vector of coefficients of the last row of A_{11}), $u_{21} = A_{21}^T e_{n_1,n_2}$ and $u_{22} = A_{22}^T e_{n_2,n_2}$. Recalling that $S = A_{22} - A_{21} A_{11}^{-1} A_{12}$, we deduce that the vector v_5 computed by Algorithm GenInvHL satisfies $v_5 = S^T e_{n_2,n_2}$ and thus is the vector of coefficients of the last row of S. Since the computation of Y is unchanged in comparison to Algorithm GenInvLT, we still have $Y = -A^{-1} G$ and $Z = A^{-1} H$. All that remains is to prove that v is actually the vector of coefficients of the first row of A^{-1}. By induction, v_{11} and v_5 correspond to the first rows of A_{11}^{-1} and S^{-1}, respectively. Using Lemma 5 seen in (8) and letting $w_i = -v_{11} A_{11}^{-1} S^{-1}$, we get:

\[
\begin{aligned}
\left[e_{n_1,n_1}^T A^{-1} \right] &= \left[e_{n_1,1}^T \right. - e_{n_2,1}^T A_{11}^{-1} A_{12} \left. \right] \left[A_{11}^{-1} \right. \left. \left[S^{-1} \right. \right. \right. \\
&= \left[v_{11}^T \right. w_i^T \left. \right] E \\
&= \left[v_{11}^T \right. - w_i^T A_{21} A_{11}^{-1} \left. \right. \right. \left. \right. \left. \right. w_i^T \right],
\end{aligned}
\]

which is exactly the way vector v is computed.

Lemma 5. Let $A, G, H, Y_{11}, Z_{11}, G_S, H_S, u_{11}$ be as in Algorithm GenInvHL. Recall that u_{11} is the last row of the matrix A_{11} and let w_{11} be its last column. Then:

- $\nabla[Z_{n_1,0}, Z_{n_2,0}^T](A_{12}) = G_1 H_{12}^T + w_{11} e_{n_2,1}^T$,
- $\nabla[Z_{n_1,0}, Z_{n_2,0}^T](A_{21}) = G_2 H_{21}^T - u_{n_2}^T u_{11}^T$,
- $\nabla[Z_{11}^T, Z_{n,0}^T](A_{11}^{-1}) = Y_{11} Z_{11}^T$,
- $\nabla[Z_{n_1,0}, Z_{n_2,0}^T](A_{11}^{-1}) = -Y_{11} H_{11}^T + e_{n_1,n_1} e_{n_2,1}^T$,
- $\nabla[Z_{n_2,0}^T, Z_{n,0}^T](A_{21}^{-1}) = G_S Z_{11}^T - e_{n_2,1} e_{n_1,n_1}^T$.

Proof. Proceed as for Lemma 3 and Lemma 4.

Theorem 7. Let n be a power of two and $M, G \in \mathbb{K}^{n \times n}$ be as in (21a). Then Algorithm GenInvHL requires at most $2(\log(n)) M M a(o, n) + O(\alpha M(n) \log(n))$, field operations.

Proof. When $n = 1$, u is a scalar and the algorithm has cost $C(o, 1) = 2a + 2$. Assume now $n \geq 2$. Given $G, H,$ and u, one has (31) and thus (21b) yields $u_{11}^T u_{12}^T$ in time $O(a M(n))$. From Lemma 5, all the blocks involved have the same structure as A, up to transposition and row/column reflexion, and with sometimes a displacement rank $\alpha + 1$ instead of α. Generating these blocks requires the knowledge of the vectors u_{11} (already computed) and w_{11} (computable as u_{11}), which has cost $O(a M(n))$. Now, one may check that the irregularity sets of $A_{12}, A_{21}, J_{n_1} A_{11}^{-1} J_{n_1}, J_{n_1} A_{11}^T A_{12}, A_{21} A_{11}^T J_{n_1}, J_{n_2} S^{-1} J_{n_2}$ are, respectively, $u_{12}, u_{21}, v_{11}, v_{12}, u_{21} A_{11}^T J_{n_2}, u_{22} A_{11}^T J_{n_2}$. The vector u_{12} has already been computed, $u_{21} = w_{11}$ is part of the input, w_{12} and $v_{2} = u_{12}$ are computed recursively, and the two remaining vectors can be recovered in time $O(a M(n))$ from u_{21} and the generators of A_{11} and A_{12}. Consequently, all the products that appear in Algorithm GenInvHL can be produced by applications of (21b). Finally, Algorithm GenInvHL still uses $O(\alpha n)$ additions, so that the total cost bound is given by $C(o, n) \leq 2(C(o, n/2) + 4 M M a(o + 1, n/2, 2) + k a M(n))$, for some constant k. The conclusion follows from (22b) and the superlinearity assumptions.

5. EXPERIMENTAL RESULTS.

We have implemented the two variants of GenInvLT (with and without Cardinal’s trick) as well as the MBA algorithm for Sylvester’s displacement. Moreover, we have developed some code to handle Cauchy-like and Hankel-like structures.

For our experiments, we take $\mathbb{K} = \mathbb{F}_2$ with $p = 999999937$, which lets us measure the algebraic costs. Basic operations in \mathbb{K} are provided by NTL, and we also use some code for fast polynomial arithmetic. All the computations are carried out on a desktop machine with an Intel® Core™ TM 2 Duo processor at 2.66 GHz. Finally, generators (G, H) are picked randomly, while operator matrices $D(x), D(y)$ are chosen in order to satisfy all the assumptions made on the algorithms.

Figure 1 shows computing times for inverting Cauchy-like matrices of displacement rank $\alpha = 10$ when n is increasing. It appears that the computing time is quasi-linear with respect to n for each method, and that the compression steps in MBA have negligible cost. Thus, the main difference explaining the various performances lies in the number of products “Cauchy-like matrix × vectors.” We have already seen in Theorem 4 that the choice in the parenthesizations leads to one variant in $3 \log(n) M M a(\alpha, n)$ and, up to stronger conditions on the input, to another variant in $2 \log(n) M M a(\alpha, n)$. Let us now estimate this cost for our implementation of the MBA algorithm. Generators for the Schur complement and the inverse of A before the compression steps are computed using (10) according to the following parenthesization: $X_1 = A_{11}^T A_{12}, S = A_{22} - A_{21} X_1$.

1. http://www.shoup.net/ntl/
additional time due to subblocks having displacement rank order to estimate the cost of row reconstruction and the final’s trick), which is in agreement with our analysis above. Moreover, we experimented with Hankel-like matrices in order to estimate the cost of row reconstruction and the additional time due to subblocks having displacement rank \(\alpha + 1 \) instead of \(\alpha \) like in the Cauchy-like case. Timings are summarized in Table 1, where it appears that these costs become negligible when \(\alpha \) is large enough. Indeed, they are linear in \(\alpha \) as expected (see (22b) and Theorem 5) while the total cost seems quadratic in \(\alpha \).

Counting the costs of all these products using (23) and the superlinearity of \(MM_{\alpha}(\cdot, \alpha) \) leads to a bound of \(14 MM_{\alpha}(\alpha, n) \) in the recurrence equation for the cost of MBA, which gives a total cost dominated by \(14 \log(n) MM_{\alpha}(\alpha, n) \). In Figure 1, we observe a speed-up around \(4.6 \approx 14/3 \) between MBA and our first variant (GenInvLT), and around \(6.7 \approx 14/2 \) between MBA and the second variant (GenInvLT + Cardinal’s trick), which is in agreement with our analysis above.

Moreover, we considered inversion of Hankel-like matrices and our first variant (GenInvLT), and around \(6 \approx 14/2 \) for the parallel solution of sparse linear systems. In Table 1, we observe a speed-up around \(4.6 \approx 14/3 \) between MBA and our first variant (GenInvLT), and around \(6.7 \approx 14/2 \) between MBA and the second variant (GenInvLT + Cardinal’s trick), which is in agreement with our analysis above.

Table 1: Cost (in seconds) of Hankel-like matrix inversion for \(n = 200 \) and increasing values of \(\alpha \)

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>10</th>
<th>30</th>
<th>50</th>
<th>70</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cost</td>
<td>47</td>
<td>34.7</td>
<td>92.1</td>
<td>177.0</td>
<td>290.3</td>
</tr>
<tr>
<td>Irregularity related cost</td>
<td>0.8</td>
<td>2.5</td>
<td>3.9</td>
<td>5.3</td>
<td>7.1</td>
</tr>
<tr>
<td>Rank increase related cost</td>
<td>0.5</td>
<td>1.6</td>
<td>2.6</td>
<td>3.5</td>
<td>4.6</td>
</tr>
</tbody>
</table>

6. CONCLUSIONS

In this paper, we have extended Cardinal’s compression-free algorithm to a broader class of structured matrices, including not only the Cauchy-like type but also the Vandermonde, Hankel, and Toeplitz-like types. Our main conclusion is that this approach yields variants of the MBA algorithm that are simpler to analyze and implement, and, according to our first experiments, significantly faster in practice. However, this study calls for a number of extensions: On the practical side, we should first study the impact of stopping recursive calls (and reconstructing \(A^{-1} \) explicitly via fast dense linear algebra) when \(n \approx \alpha \). It would also be interesting to measure the memory gains brought by Cardinal’s extended approach over MBA.

On the algorithmic side, although we have focused only on \(O(\alpha^2 n) \) versions of MBA, it would be interesting to incorporate the matrix multiplication techniques of [3]. We should also study the impact of multiplicities in \(x \) and \(y \) on the cost bounds and adapt our work to structures like those of the Toeplitz-Hankel-like type.

7. ACKNOWLEDGMENTS

We thank Benoît Lacelle for providing a framework for structured matrices and the generator-compression subroutine used in our implementation of MBA, and Éric Schost for pointing out the code used for multipoint evaluation.

8. REFERENCES

APPENDIX

A. RECONSTRUCTION OF RECTANGULAR HANKEL-LIKE MATRICES

Theorem 8. Equation (21b) is correct.

Proof. The Hankel-like matrix $A \in \mathbb{K}^{n \times m}$ satisfies

$$Z_{n,1}A - AZ_{m,0}^T = GH^T.$$

By left-multiplying with $Z_{n,1}^T$, we deduce the following recurrence formula:

$$A = Z_{n,1}^T A Z_{m,0} + Z_{n,1}^T G H^T.$$

We can now apply Theorem 4.3.6 from [19] to obtain that, for all integer k,

$$A = (Z_{n,1}^T)^k A (Z_{m,0}^T)^k + \sum_{l=0}^{k-1} (Z_{n,1}^T)^l G H^T (Z_{m,0}^T)^l.$$

As $(Z_{m,0}^T)^l$ is the null matrix as soon as $l \geq m$, we can simplify the above equation:

$$A = \sum_{l=0}^{m-1} (Z_{n,1}^T)^l G H^T (Z_{m,0}^T)^l + \sum_{l=0}^{k-1} (Z_{n,1}^T)^l G h_j^T (Z_{m,0}^T)^l.$$

The inner sum is a sum of m outer products. This can be rewritten as a product of two matrices $B \in \mathbb{K}^{n \times m}$ and $C \in \mathbb{K}^{m \times m}$ by taking $(Z_{n,1}^T)^l g_j$ for column $m - l$ of B and $h_j^T (Z_{m,0}^T)^l$ for row $m - l$ of C. Thus, the ith row of C is exactly $[0 \ldots 0 h_j, 1 \ldots h_j]_0$ so that $C = \mathcal{L}(h_j)_m$.

Finally, the last column of B is $[g_j, 2 \ldots g_j, n]_0$ and we can deduce its column l by applying $Z_{n,1}^T$ to its column $l + 1$, that is by moving the elements of column $l + 1$ one location up (except for the first element which goes at bottom). This defines a Toeplitz matrix whose coefficient (k, l) is $g_j, l + (k - l + m) \mod n$, which is $T_{m \times m}(g_j)$ by definition. \square