
HAL Id: ensl-00450272
https://ens-lyon.hal.science/ensl-00450272

Submitted on 26 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing specified generators of structured matrix
inverses

Claude-Pierre Jeannerod, Christophe Mouilleron

To cite this version:
Claude-Pierre Jeannerod, Christophe Mouilleron. Computing specified generators of structured matrix
inverses. 35th International Symposium on Symbolic and Algebraic Computation (ISSAC 2010), Jul
2010, Münich, Germany. �10.1145/1837934.1837988�. �ensl-00450272�

https://ens-lyon.hal.science/ensl-00450272
https://hal.archives-ouvertes.fr

Computing specified generators
of structured matrix inverses

Claude-Pierre Jeannerod
LIP - ENS de Lyon

INRIA
claude-pierre.jeannerod@ens-lyon.fr

Christophe Mouilleron
LIP - ENS de Lyon
Université de Lyon

christophe.mouilleron@ens-lyon.org

ABSTRACT

The asymptotically fastest known divide-and-conquer meth-
ods for inverting dense structured matrices are essentially
variations or extensions of the Morf/Bitmead-Anderson al-
gorithm. Most of them must deal with the growth in length
of intermediate generators, and this is done by incorporat-
ing various generator compression techniques into the algo-
rithms. One exception is an algorithm by Cardinal, which
in the particular case of Cauchy-like matrices avoids such
growth by focusing on well-specified, already compressed
generators of the inverse. In this paper, we extend Car-
dinal’s method to a broader class of structured matrices in-
cluding those of Vandermonde, Hankel, and Toeplitz types.
Besides, some first experimental results illustrate the prac-
tical interest of the approach.

Categories and Subject Descriptors

I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms

General Terms

Algorithms, Theory

Keywords

Structured linear algebra, matrix inversion

1. INTRODUCTION
Since [10], a classical way of exploiting the structure of

dense matrices is via the displacement rank approach: typi-
cally, n×n matrices are represented by pairs (G,H) of n×α
matrices such that L(A) = GHT for some linear operator
L called a displacement. Classical choices for L are Stein’s
displacement ∆[M,N] : A 7→ A − MAN and Sylvester’s dis-
placement ∇[M,N] : A 7→ MA−AN. With respect to a given
displacement, (G,H) is called a generator of length α for A,
and A is considered to be structured when α is “small” (in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC ’10 Munich, Germany
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

a sense that depends on the context) compared to n. Ac-
cording to the unified treatment [19], many of the structures
encountered in practice are covered by the following opera-
tor matrices: for a field K and a positive integer n, let

M,N ∈ {D(x), Zn,ϕ, Z
T
n,ψ}, x ∈ K

n, ϕ, ψ ∈ K, (1)

with D(x) the diagonal matrix whose entry (i, i) is the ith
coefficient xi of vector x, and Zn,ϕ the n×n unit ϕ-circulant
matrix having a ϕ in position (1, n), ones in positions (i +
1, i), and zeros everywhere else.

When a structured matrix A ∈ K
n×n is invertible, its in-

verse A−1 is known to be structured too, and some asymp-
totically fast algorithms are available for computing length-α
generators for A−1 and linear system solutions, whose costs
in terms of operations in K are in O (̃α2 n) (see [19] and the
references therein) and, since more recently, in O (̃αω−1 n)
(see [2, 3]). (Here and hereafter the O˜ notation hides all
logarithmic factors.) Such algorithms are essentially varia-
tions or extensions of the Morf/Bitmead-Anderson (MBA)
divide-and-conquer approach [13, 1]. In practice, they apply
to important types of structures like those of (1). However,
most of these algorithms must deal with the growth in length
of intermediate generators, and this is done by recursively
using a generator compression stage which, given matrices
G,H ∈ K

n×β such that GHT has rank α ≤ β, computes ma-
trices Gc,Hc that satisfy GcH

T
c = GHT but now have exactly

α columns; see [17, 15, 16, 11, 12] and [19, §4.6].
One exception is a variant of MBA due to Cardinal [4, 5]:

assuming Sylvester’s displacement equation

∇[M,N](A) = GH
T (2)

and in the particular case where both M and N are diago-
nal (Cauchy-like structure), Cardinal’s algorithm completely
avoids generator compression by directly computing

Y = −A
−1

G, Z = A
−T

H. (3)

As already noted in [9] —and this is readily verified by pre-
and postmultiplying (2) with the inverse of A—, the matrix
pair (Y,Z) is a ∇[N,M]-generator of length α for A−1. Due
to its very special form, we shall call it a specified generator
for the inverse of A.

The goal of this paper is to extend Cardinal’s algorithm
beyond the Cauchy-like structure and to show that, in MBA
and for Sylvester’s displacement, generator compression can
be systematically avoided by targeting a specified generator
for the inverse, rather than just an arbitrary one of length
α. More precisely, our three main contributions can be sum-
marized as follows:

First, we propose a recursive formula that allows to factor
a specified generator of the inverse for A in terms of specified
generators for the inverse of its upper-left block A11 and for
the inverse of the Schur complement of A11 in A.

Second, we show how to reduce the computation of spec-
ified inverse generators for the structures defined in (1) to
the computation of specified inverse generators for the three
basic cases below:

(M,N) ∈
n

`

D(x),D(y)
´

,
`

D(x),ZTn,0
´

,
`

Zn,0,Z
T
n,0

´

o

. (4)

For each of those three structures, which are of the Cauchy-
like, Vandermonde-like, and Hankel-like types, respectively,
we further give and analyze explicit algorithms for comput-
ing a specified generator of the inverse. These algorithms are
compression-free and thus, in that sense, simpler to analyze
and implement than traditional MBA variants. Moreover,
although removing generator compression does not affect the
overall asymptotic costs, it yields smaller dominant terms.

Third, we report on a first set of experiments done with
our C++ implementation of MBA and of several of the new
compression-free algorithms. For the Cauchy-like structure,
for example, the speed-ups compared to MBA are by a factor
from 4.6 to 6.7. This suggests that our extension of Cardi-
nal’s compression-free approach may yield algorithms that
are not only simpler but also significantly faster in practice.

Outline of the paper. After some notation and prelimi-
naries in §2, some properties of specified generators are stud-
ied in §3. Then §4 gives a compression-free algorithm for the
case where M and NT are lower triangular. The algorithm is
specialized to the Cauchy-like and Vandermonde-like struc-
tures in §4.1 and §4.2, and then extended in §4.3 to the ir-
regular Hankel-like case (M,N) = (Zn,0,Z

T
n,0). Experiments

are reported in §5 and we conclude in §6.

2. NOTATION AND PRELIMINARIES
Here and hereafter, In is the identity matrix of order n,

en,i is the ith unit vector of K
n, and Jn is the reflexion

matrix of order n, whose (i, j) entry is 1 if i + j = n + 1,
and 0 otherwise. For A ∈ K

n×m, aij denotes its (i, j) entry
and aj its jth column. Also, for α ≤ m, we write A7→α for
the matrix [a1, . . . , aα] ∈ K

n×α.
Given positive integers n1 and n2 such that n1 + n2 = n,

we will often partition A, G, H, M, N into ni × nj blocks as

A =

»

A11 A12

A21 A22

–

, G =

»

G1

G2

–

, H =

»

H1

H2

–

,

M =

»

M11 M12

M21 M22

–

, N =

»

N11 N12

N21 N22

–

.

(5)

We shall write µ and ν for the rank of, respectively, M12 and
N21. Consequently, those two matrices can be written

M12 = U1V
T
2 , N21 = U2V

T
1 (6)

for some full column rank matrices U1 ∈ K
n1×µ, V2 ∈

K
n2×µ, U2 ∈ K

n2×ν , and V1 ∈ K
n1×ν .

The Schur complement of A11 in A is written S:

S = A22 − A21A
−1
11 A12.

Recall that S is nonsingular if A11 and A are nonsingular; if
A is strongly regular then so are A11 and S. Finally, let

E =

»

In1

−A21A
−1
11 In2

–

, F =

»

In1
−A−1

11 A12

In2

–

. (7)

From EAF = diag(A11, S), we deduce the following classical
recursive factorization of the inverse of A [19, p. 157]:

A
−1 = F

»

A−1
11

S−1

–

E. (8)

2.1 Properties of Sylvester’s displacement
The properties below show how to deduce, given a ∇[M,N]-

generator for A, a generator for various matrices related to
A. All of them appear in/follow immediately from [18, 19].

Generation of the transpose. Let A,G,H be as in (2).
By transposing the identity MA − AN = GHT , we obtain

∇[NT ,MT](AT) = −HG
T , (9)

so that the pair (−H,G) is a ∇[NT ,MT]-generator of AT .

Generation of products. One has the following classical
rule for generating matrix products [19, p. 10]:

∇[M,N](AB) = ∇[M, ∗](A)B + A∇[∗,N](B), (10)

for any matrix ∗ of conforming dimensions. Applying this
rule twice, we can straightforwardly deduce explicit formulas
for generating products of three matrices:

Lemma 1. Let A,G,H be as in (2) and, for two matrices
P1 and P2, let

eA = P1AP2. (11)

If ∇[eM,M](P1) = GP1
HTP1

and ∇[N, eN](P2) = GP2
HTP2

then

∇[eM, eN](eA) = eGeH
T ,

eG = [P1G|GP1
|P1AGP2

], eH = [PT2 H|PT2 A
T
HP1

|HP2
]. (12)

As an example, let us mention three special cases which
we will use later: assuming M,N ∈ {Zn,ϕ,Z

T
n,ϕ}, let first

(P1,P2) = (In, Jn) and (eM, eN) = (M,NT).

Then obviously ∇[eM,M](P1) is zero and, using the facts that
J
2
n = In and JnZn,ϕJn = Z

T
n,ϕ (see [19, p. 24]), we deduce

that ∇[N, eN](P2) is zero as well. Consequently, since Jn is
symmetric, applying (12) yields

∇[M,NT](A Jn) = G(JnH)T . (13a)

Similarly, exchanging the roles of P1 and P2 yields

∇[MT ,N](JnA) = (JnG)HT , (13b)

while taking P1 = P2 = Jn gives

∇[MT ,NT](JnA Jn) = (JnG)(JnH)T . (13c)

Generation of submatrices. From (2) and (6) and the
partitioning into blocks we deduce that, for i, j ∈ {1, 2},
submatrix Aij satisfies the following matrix equation

∇[Mij ,Nij](Aij) = GijH
T
ij , (14)

where, in particular (see for example [18, Proposition 4.4]),

G11 = [G1| − U1|A12U2] ∈ K
n1×(α+µ+ν), (15a)

H11 = [H1|A
T
21V2|V1] ∈ K

n1×(α+µ+ν). (15b)

Generation of Schur complements. By combining [18,
Proposition 4.5] with (6), we have the following description
of the structure of the Schur complement S of A11 in A:

∇[M22,N22](S) = GSH
T
S , (16)

with GS and HS the two matrices in K
n2×(α+µ+ν) given by

GS = [G2 − A21A
−1
11 G1|A21A

−1
11 U1| − SU2], (17a)

HS = [H2 − A
T
12A

−T
11 H1|S

T
V2|A

T
12A

−T
11 V1]. (17b)

When the operator matrices M and NT are lower triangular,
one has µ = ν = 0 and the above formulas for generating the
Schur complement can thus be simplified as follows (see [8,
Theorem 2.3], [14, Lemma 3.1], [19, §5.4]):

GS = G2 − A21A
−1
11 G1, HS = H2 − A

T
12A

−T
11 H1. (18)

2.2 Computing with basic structures
We conclude our preliminaries by reviewing three basic in-

vertible displacement operators that we shall repeatedly use
in the sequel, as well as some associated cost functions. Here
we assume that (2) holds in the rectangular case, that is, for
A ∈ K

n×m, G ∈ K
n×α, and H ∈ K

m×α; this assumption will
allow us to handle off-diagonal blocks in Section 4. Recall
also that ∇[M,N] is invertible if and only if the spectra of
M and N are disjoint [19, p. 123].

Cauchy-like structure. For x ∈ K
n and y ∈ K

m, assume

M = D(x), N = D(y), xi 6= yj for all (i, j). (19a)

Then ∇[M,N] is invertible and it is known [7] (see also [19,
p. 8] and [20, Lemma 2.1]) that (2) is equivalent to

A =
Pα
j=1 D(gj) C(x, y) D(hj), (19b)

with C(x, y) the n by m Cauchy matrix [1/(xi − yj)]i,j .

Vandermonde-like structure. For x ∈ K
n, assume now

M = D(x), N = Z
T
m,0, xi 6= 0 for all i. (20a)

Then ∇[M,N] is invertible and, in this case, A can be recov-
ered as follows (see [19, Example 4.4.6(d)]):

A =
Pα
j=1 D(x−1 · gj) V(x−1,m) U(hj), (20b)

where, for x ∈ K
n, V(x,m) is the n by m Vandermonde

matrix whose (i, j) entry equals xj−1
i , and U(hj) is the m by

m upper triangular Toeplitz matrix whose first row is hTj .

Hankel-like structure. Assume finally that

M = Zn,1, N = Z
T
m,0. (21a)

Since Zn,1 and Z
T
m,0 have disjoint spectra, ∇[M,N] is invert-

ible. In addition, we can recover A as follows:

A =
Pα
j=1 T

n×m(gj) L(hj) Jm, (21b)

where, for x ∈ K
n, T

n×m(x) is the n by m Toeplitz matrix
[x1+(i−j+m) mod n]i,j , and where L(hj) is the m by m lower
triangular Toeplitz matrix whose first column is hj . (A proof
of (21b) is given in Appendix A.)

Cost functions. Our algorithms in the next sections will
essentially require the ability to efficiently evaluate products
of the form Av and AT v, where A has one of the three basic
structures above, m is of the same order of n, and v consists
of one or several vectors.

In order to relate the costs of our algorithms in Section 4
to the costs of such products, we introduce the following
functions. For the Cauchy-like structure (19a), let MMC :
N>0 × N>0 × N>0 → R≥0 be such that, for A ∈ K

n×n given
by the right hand-side of (19b) and v ∈ K

n×β , the products
Av and AT v can be computed using at most MMC(α, n, β)
operations in K. We define the functions MMV and MMH

in a similar way for, respectively, the Vandermonde-like and
Hankel-like structures. Also, when β = α we shall simply
write MM∗(α, n), for ∗ = C,V,H.

Following [6, p. 242], we write M(n) for the cost of mul-
tiplying two polynomials of degree less than n over K[x],
and we assume that M(n) is “superlinear”, that is, M(n)/n
is nondecreasing.

It is known (see for example [19]) that C(x, y) is −C(y, x)
and that multiplying C(x, y), V(x, n), or V(x, n)T by a vector
can be done in time O(M(n) log(n)) via (transposed) multi-
point evaluation. Hence by a straightforward application of
the summation formulas (19b), (20b), and (21b), one has

MM∗(α, n, 1) ∈ O(αM(n) log(n)) for ∗ = C,V,

MMH(α, n, 1) ∈ O(αM(n)).

We shall also use the three basic properties given below:

Lemma 2. Let k, ℓ ∈ O(1). Then

MMV(α+ k, n, α) ∈ MMV(α, n) +O(αM(n) log(n)), (22a)

MMH(α+ k, n, α) ∈ MMH(α, n) +O(αM(n)), (22b)

and, for ∗ = C,V,H,

MM∗(kα, n, ℓα) ∈ kℓMM∗(α, n) +O(αn). (23)

Proof. To get (22) note that, for all ∗, MM∗(α+k, n, α)
is in MM∗(α, n, α) + MM∗(k, n, α) + O(αn). Indeed, one
can evaluate our sum of α + k products by adding the first
α terms and the last k terms separately, and then combining
the two intermediate results. Since moreover MM∗(k, n, α) ≤
αMM∗(k, n, 1), (22a) and (22b) follow from the complexities
of MMV(α, n) and MMH(α, n) mentioned above. To estab-
lish (23), notice that a sum of kα terms for ℓα vectors can
be evaluated via k sums of α terms for α vectors plus a final
sum in O(αn), repeated ℓ times.

Finally, we assume as for M(n) that the function M(·, n) is
“superlinear,” that is, MM(·, n)/n is nondecreasing. This as-
sumption will allow us to simplify the cost bounds of the al-
gorithms of Section 4 and can be easily supported by“naive”
implementations in O (̃α2n) as those used in Section 5.

3. PROPERTIES OF SPECIFIED GENERA-

TORS OF THE MATRIX INVERSE

3.1 Recovery after matrix transformations
We recalled in Section 2 some formulas for generating the

matrix eA ∈ {AT ,P1AP2} from some generators of the matrix
A. Conversely, we give in the theorem below some formulas
for recovering specified generators of the inverse of A from

specified generators of the inverse of eA.

Theorem 1. Let A ∈ K
n×n be invertible and let G,H ∈

K
n×α and Y,Z ∈ K

n×α be as in (2) and (3). Let eA ∈ K
n×n

be invertible and, for eG, eH ∈ K
n×β, β ≥ α, define

eY = −eA−1
eG, eZ = eA

−T
eH.

Then

• for eA = AT and (eG, eH) = (−H,G), one has

Y = −eZ, Z = eY;

• for eA = P1AP2 with P1,P2 ∈ K
n×n invertible, and for

eG, eH as in (12), one has

Y = P2
eY
7→α, Z = P

T
1
eZ
7→α.

Proof. In the first case, eY = −(A−T)(−H) = A−TH = Z

and eZ = (AT)−T (G) = A−1G =−Y. Now, in the case where
eA = P1AP2 Lemma 1 implies that the first α columns of eY

are eY 7→α = −(P1AP2)
−1P1G = P−1

2 Y. Similarly, the first α

columns of eZ are eZ 7→α=(P1AP2)
−TPT2 H=P−T

1 Z.

For example, when P1,P2 ∈ {In, Jn}, it follows from (12)
that β = α. Consequently, Theorem 1 yields

(Y,Z) = (JneY, eZ) if eA = A Jn, (25a)

(Y,Z) = (eY, JneZ) if eA = JnA, (25b)

(Y,Z) = (JneY, JneZ) if eA = JnA Jn. (25c)

Reduction to basic displacements. A first consequence
of Theorem 1, when it comes to computing specified inverse
generators, is that the nine possible displacements defined
in (1) can be reduced to the three basic ones shown in (4).

First, it follows from (13a) and (25a) that the case N =
Zn,ψ reduces to the case N = Z

T
n,ψ. Similarly, (13b) and (25b)

imply that the case M = Z
T
n,ϕ reduces to the case M = Zn,ϕ.

We thus are left with the four cases defined by

M ∈ {D(x),Zn,ϕ} and N ∈ {D(y),ZTn,ψ}.

Using (9) allows to further reduce the case where M = Zn,ϕ

and N = D(y) to the case where M = D(y) and N = Z
T
n,ϕ.

Due to the nature of the transformations applied to the
n × α generators (sign changes, permutations), the three
reductions done so far imply an extra cost of only O(αn)
operations in K.

To reach (4) it remains to zero out the scalars ϕ and ψ.
This can be done without transforming A, but only its dis-
placement: for example, by combining the obvious identity

Zn,ϕ = Zn,0 + ϕ en,1 e
T
n,n, (26)

with ∇[D(x),ZTn,ψ](A) = GHT and ∇[Zn,ϕ,Z
T
n,ψ](A) = GHT ,

we arrive at, respectively,

∇[D(x),ZTn,0](A) = eGeH
T (i)

with eG = [G|ψ en,1] and eH = [H|Aen,n], and

∇[Zn,0,Z
T
n,0](A) = eGeH

T (ii)

with eG = [G| −ϕ en,1|Aen,n] and eH = [H|AT en,n|ψen,1]. The

last column or row of A needed to set up the matrices eG

and eH can be computed in O(αM(n) log(n)) —case (i)— or
O(αM(n)) —case (ii)— field operations from the explicit
bilinear expressions of A given in [19, Examples 4.4.4 and

4.4.6(d)]. Due to the shape of eG, eH above, extracting the

first α columns of eY = A−1
eG and eZ = A−T

eH in time O(αn)
then yields the desired specified inverse generator (Y,Z).

Reduction to strong regularity. Theorem 1 further al-
lows to restrict to matrices that are not only invertible but
strongly regular. Strong regularity, which is needed in order
to apply Theorem 2 recursively, is classically obtained by

preconditioning A into eA = P1AP2 with two random struc-
tured matrices P1 and P2 (see [19, §5.6]). Thus, one may

generate eA as in Lemma 1, then compute an associated spec-

ified generator (eY, eZ) of its inverse, and finally recover via
Theorem 1 a specified generator (Y,Z) of the inverse of A.

Let r1 and r2 be two random vectors in K
n and whose first

entry is one. Then, applying the rules of [19, p. 167], possi-
ble preconditioners for each of the three basic displacements
of (4) are as follows (with ex,ey in K

n and such that exi 6= xi
and eyi 6= yi for all i):

M,N P1 P2

D(x), D(y) C(ex, x) D(r1) C(y,ey) D(r2)

D(x), Z
T
n,0 C(ex, x) D(r1) L(r2)

Zn,0, Z
T
n,0 U(r1) L(r2)

For all these cases, one may check that the structure of A, P1,

and P2 allows to prepare (eG, eH) in Lemma 1 and to recover
(Y,Z) in Theorem 1 in time O(αM(n)) or O(αM(n) log(n)).

3.2 Recursive factorization formula

Theorem 2. Let A ∈ K
n×n be nonsingular and generated

by G and H as in (2). Assume that A11 is nonsingular as
well, that it is generated by G11 and H11 as in (15), and let

Y11 = −A
−1
11 G11, Z11 = A

−T
11 H11.

Assume further that the Schur complement S of A11 in A is
generated by GS and HS as in (17), and let

YS = −A
−1
S GS, ZS = A

−T
S HS.

Then the matrices Y and Z in (3) satisfy

Y = F

"

Y 7→α
11

Y 7→α
S

#

, Z = E
T

"

Z 7→α
11

Z 7→α
S

#

,

where E and F are the elimination matrices defined in (7).

Proof. Using (5) and (8), we obtain

−A
−1

G = F

"

−A−1
11 G1

−S−1(G2 − A21A
−1
11 G1)

#

.

It follows from (15a) and (17a) that G1 = G 7→α
11 and that G2−

A21A
−1
11 G1 = G 7→α

S . The expression claimed for Y = −A−1G

then follows from applying the rule A(B 7→α) = (AB)7→α

twice, and from the definitions of Y11 and YS. The expres-
sion for Z can be obtained in a similar way, using (15b)
and (17b).

A first consequence of this theorem is a “compressed” ana-
logue of the classical recursive factorization formula (8):

Y Z
T = F

"

Y 7→α
11

Y 7→α
S

#"

Z7→α
11

Z 7→α
S

#T

E.

A second consequence of Theorem 2 is that, for A strongly
regular, we immediately get a recursive algorithm à la MBA
whose key steps are the computation of (G11,H11) and (GS,HS):

Given generators G,H of length α for A,

• Compute a generator (G11,H11) for A11 using (15);

• Recursively, compute (Y11,Z11) = (−A−1
11 G11,A

−T
11 H1);

• Compute a generator (GS,HS) for S using (17);

• Recursively, compute (YS,ZS) = (−S−1GS, S
−THS);

• Compute (−A−1G,−A−TH) from the first α columns
of Y11, YS, Z11, ZS, using Theorem 2.

4. ALGORITHMS FOR LOWER TRIANGU-

LAR OPERATOR MATRICES M AND N
T

In order to cover simultaneously the three displacements
in (4) to which we have previously reduced, we assume in
this section that both operator matrices M and NT are lower
triangular.

This assumption implies in particular that the blocks M12

and N21 in (6) are zero, so that their respective ranks µ and
ν satisfy µ = ν = 0. From (15) it then follows that the
submatrix A11 satisfies

∇[M11,N11](A11) = G1H
T
1 . (27)

Thus, some generators of length at most α for A11 can be
read off the first n1 rows of some generators of length at
most α for A.

Assuming that A11 is invertible, consider now the associ-
ated specified generators of A−1

11 , that is,

Y11 = −A
−1
11 G1, Z11 = A

−T
11 H1. (28)

Combining the two identities in (28) with the explicit Schur
complement generation formulas in (17) and (18) yields

∇[M22,N22](S) = (G2 + A21Y11)(H2 − A
T
12Z11)

T . (29)

In other words, the precise specification of the above gen-
erators of the inverse of A11 can be exploited to simplify
even further the generators of the Schur complement. In [4,
Proposition 1], Cardinal had already noted this formula but
only for the Cauchy-like structure (M and N diagonal).

Now, if we assume further that A is strongly regular (which,
if randomization is allowed, makes sense in view of the prob-
abilistic reductions to strong regularity shown in Section 3.1),
we obtain the following general algorithm:

GenInvLT(M,N,G,H)

Input: M,N ∈ K
n×n and G,H ∈ K

n×α such that M and
NT are lower triangular, and ∇[M,N](A) = GHT .

Assumptions: A strongly regular, mii 6= njj for all (i, j).
Output: Y = −A−1G and Z = A−TH.

if n = 1 then
Evaluate the dot product GHT ;
Deduce the scalar A;
Y := −A−1G; Z := A−TH;

else
n1 := ⌈n/2⌉; n2 := ⌊n/2⌋;
G11 := G1; H11 := H1;
(Y11,Z11) := GenInvLT(M11,N11,G11,H11);
GS := G2 + A21Y11; HS := H2 − AT12Z11;
(YS,ZS) := GenInvLT(M22,N22,GS,HS);

Y :=
h

Y11−A
−1

11
A12YS

YS

i

; Z :=
h

Z11−A
−T
11

AT
21

ZS

ZS

i

;

fi;
return (Y,Z).

Theorem 3. Algorithm GenInvLT is correct.

Proof. When n = 1, the assumption on M and N im-
plies that A is the scalar (

Pα
i=1 g1ih1i)/(m11 − n11). Cor-

rectness then follows immediately in this case. Assume now

that n > 1 and, in order to proceed by induction, assume
correctness for n′ < n. The matrix A11 is strongly regular
(since A is) and it satisfies (27), where, by assumption M11

and NT11 are both lower triangular and with disjoint diago-
nals. Since n1 < n, the induction assumption then implies
that the pair (Y11,Z11) returned by the first recursive call is
precisely (−A−1

11 G1,A
−T
11 H1). Therefore, the computed pair

(GS,HS) satisfies (29), where, by assumption, S is strongly
regular (since A is) and where M22 and NT22 are both lower
triangular and have disjoint diagonals. Since n2 < n, the in-
duction assumption implies that the pair (YS,ZS) returned
by the second recursive call is exactly (−S−1GS, S

−THS).
The conclusion then follows from Theorem 2.

To implement Algorithm GenInvLT and bound its cost, all
we need is to be able to evaluate the four matrix products

A21Y11, A
T
12Z11, A

−1
11 A12YS, A

−T
11 A

T
21ZS. (30)

In the next subsections, we study the evaluation of those
expressions for each of three basic structures of the Cauchy,
Vandermonde, and Hankel types. That requires in each case
a detailed analysis of the structure of the matrices A−1

11 , A12,
A21, and their transposes. Since in (30) there are two ways
of parenthesizing the products of three matrices, we will also
study the structure of A−1

11 A12 and (A21A
−1
11)T . The paren-

thesizations (A−1
11 A12)YS and (A21A

−1
11)TZS will be referred

to as “Cardinal’s trick” later on, as they have been initially
used in [4] for the Cauchy-like case.

4.1 Application to Cauchy-like matrices
We consider here the specialization of Algorithm GenInvLT

to the Cauchy-like structure defined in (19a). Partitioning
the two vectors x and y conformally with A yields

x =

"

x1

x2

#

, y =

"

y1

y2

#

, x1, y1 ∈ K
n1 , x2, y2 ∈ K

n2 .

Lemma 3. Let the matrices A,G,H,Y11,Z11,GS,HS be as
in Algorithm GenInvLT. Then

• ∇[D(xi),D(yj)](Aij) = GiH
T
j for 1 ≤ i, j ≤ 2,

• ∇[D(y1),D(x1)](A
−1
11) = Y11Z

T
11,

• ∇[D(y1),D(y2)](A
−1
11 A12) = −Y11H

T
S ,

• ∇[D(x2),D(x1)](A21A
−1
11) = GSZ

T
11.

Proof. Since D(x) and D(y) are diagonal, all their off-
diagonal blocks are zero, and the first identity follows from (2).
To get the second identity, it suffices to pre- and postmulti-
ply by A−1

11 both sides of the first identity for (i, j) = (1, 1),
and then to use the specification of Y11 and Z11. Using the
multiplication rule (10), we deduce further from the first
identity for (i, j) = (1, 2) and from the second one that

∇[D(y1),D(y2)](A
−1
11 A12) = Y11Z

T
11A12 + A

−1
11 G1H

T
2

= Y11(Z
T
11A12 − H

T
2),

which by definition of HS equals −Y11H
T
S . Similarly,

∇[D(x2),D(x1)](A21A
−1
11) = G2 H

T
1 A

−1
11 + A21Y11Z

T
11

= (G2 + A21Y11)Z
T
11,

which by definition of GS equals GS ZT11.

Theorem 4. Let n be a power of two and M,N ∈ K
n×n

be as in (19a). Then Algorithm GenInvLT requires at most

3 log(n)MMC(α, n) +O(αn log(n))

field operations. If, in addition, the set {x1, . . . , xn, y1, . . . , yn}
has cardinality 2n then this bound drops to

2 log(n) MMC(α, n) +O(αn log(n)).

Proof. When n = 1, A = (
Pα
i=1 g1ih1i)/(m11 − n11).

Hence A−1 can be computed using 2α + 1 operations in K,
and the cost for n = 1 is C(α, 1) := 4α + 2. Consider now
the case n ≥ 2. Using Lemma 3 together with (9), we see
that the matrices A−1

11 , A12, A21, and their transposes are
all of the Cauchy-like structure defined in (19a). Further-
more, for each of them a generator of length at most α can
deduced in time O(αn) from the quantities computed by Al-
gorithm GenInvLT. Consequently, one can compute A21Y11,
AT12Z11, A−1

11 (A12YS), and A−T
11 (AT21ZS) via six applications,

in dimension n/2, of the reconstruction formula (19b) to α

vectors in K
n/2. Finally, Algorithm GenInvLT uses 2αn ad-

ditions to deduce GS, HS, and the upper parts of Y and Z.
Overall, the cost for n ≥ 2 thus satisfies

C(α, n) ≤ 2C(α, n/2) + 6MMC(α, n/2) + k αn

for some constant k. The superlinearity of MMC(·, n) then
yields our first bound.

Assume now that the xi and yi are 2n pairwise distinct
values. From Lemma 3 the reconstruction formula (19b) can
then be applied directly to A−1

11 A12 and to the transpose of
A21A

−1
11 , in order to compute (A−1

11 A12)YS and (A21A
−1
11)TZS.

This reduces the number of reconstructions from six to four,
whence the second cost bound.

4.2 Application to Vandermonde-like matrices
Let us now focus on the cost of Algorithm GenInvLT when

M and N correspond to the Vandermonde-like structure (20a).
We assume x to be partitioned as in the previous section.

Lemma 4. Let the matrices A,G,H,Y11,Z11,GS,HS be as
in Algorithm GenInvLT. Let also w11 be the last column of
A11 and vT12 be the first row of A−1

11 A12. Then

• ∇[D(x1),Z
T
n2,0](A12) = G1H

T
2 + w11 eTn2,1,

• ∇[D(x2),Z
T
n1,0](A21) = G2H

T
1 ,

• ∇[ZTn1,0,D(x1)](A
−1
11) = Y11Z

T
11,

• ∇[D(x2),D(x1)](A21A
−1
11) = GSZ

T
11,

• ∇[ZTn1,1,Z
T
n2,0](A

−1
11 A12) = −Y11H

T
S

+ en1,n1
(en2,1 + v12)

T .

Proof. In this case, the upper-right block of N satis-
fies N12 = en1,n1

eTn2,1. Hence we deduce from (2) that

∇[D(x1),Z
T
n2,0](A12) = G1H

T
2 + A11en1,n1

eTn2,1 and the first
identity follows from the definition of vector w11. The sec-
ond to fourth identities are obtained in the same way as in
the proof of Lemma 3. Let us now verify the last identity,
which displays the structure of the product A−1

11 A12. First,
applying the techniques of Lemma 3, we deduce that

∇[ZTn1,0,Z
T
n2,0](A

−1
11 A12) = −Y11H

T
S + en1,n1

e
T
n2,1.

Then, using (26) with (ϕ, n) = (1, n1) together with the
definition of v12 yields the announced expression.

Theorem 5. Let n be a power of two and M,N ∈ K
n×n

be as in (20a). Then Algorithm GenInvLT requires at most

3 log(n)MMV(α, n) +O(αM(n) log2(n))

field operations. If, in addition, the set {x1, . . . , xn} has
cardinality n then this bound drops to

2 log(n)MMV(α, n) +O(αM(n) log2(n)).

Proof. When n = 1, A−1 = x1/(
Pα
i=1 g1ih1i), so that

the cost is C(α, 1) := 4α + 1. Assume now that n ≥ 2.
Lemma 4 implies that A12, A21, and A−T

11 share the same
Vandermonde-like structure (20a) as A and A11. However,
A12 has displacement rank bounded by α + 1 and comput-
ing its generator can be done at cost O(αM(n) log(n)) by
applying (20b) to A11. Hence, for n ≥ 2,

C(α, n) ≤ 2C(α, n/2) + 4MMV(α, n/2)

+2MMV(α+ 1, n/2, α) + k αM(n) log(n),

for some constant k. From (22a) and the superlinearity of
M(n) and MMV(., n), we then deduce the first cost bound.

If all the xi are distinct then, for A21A
−1
11 , we proceed as

for the Cauchy-like case. For A−1
11 A12, note that Jn1

A−1
11 A12

is Hankel-like in the sense of (21a). Hence, one may first
generate the latter matrix in time O(αM(n) log(n)) by ob-
taining the vector v12 after two applications of (20b), then
multiply by YS using (21b), and re-apply a reflexion. Thus,

C(α, n) ≤ 2C(α, n/2) + MMV(α, n/2) + MMV(α+ 1, n/2, α)

+ MMC(α, n/2) + MMH(α+ 1, n/2, α)

+k αM(n) log(n),

for some constant k, and the conclusion follows as before.

Note that unlike for the Cauchy-like case, if α is small enough
then in the cost bounds of Theorem 5 both summands have
the same order of magnitude.

4.3 Extension to Hankel-like matrices
Finally, let us consider the Hankel-like structure defined

by M = Zn,0 and N = Z
T
n,0. Although M and NT are lower

triangular, Algorithm GenInvLT cannot be used directly in
this case as the operator ∇[Zn,0,Z

T
n,0] is not invertible. Cov-

ering such a structure, however, is interesting in particular
as it yields an immediate extension to some Toeplitz-like
matrices (see [19, Remark 5.4.4] and our Section 3.1).

To cope with the singularity of the displacement operator,
some additional data, called irregularity set in [19, p. 136],
are needed, which typically consist in “a few” entries of A.
An irregularity set for ∇[Zn,0,Z

T
m,0] is given by the last row

of A. Indeed, for uT = eTn,nA we see that (2) and (26) imply

∇[Zn,1,Z
T
n,0](A) = [G | en,1] [H | u]T , (31)

so that the matrix A is Hankel-like in the sense of (21a), with
displacement rank α + 1. Consequently, the reconstruction
formula (21b) can be used.

We need to exhibit an irregularity set for ∇[ZTn,0,Zn,0]
too, because we shall multiply with inverses of Hankel-like
matrices. A suitable choice here is vT = eTn,1A

−1, the first

row of the inverse of A: indeed, if ∇[ZTn,0,Zn,0](A
−1) = YZT

then, recalling (13c), we may check that JnA−1
Jn satisfies

an identity similar to (31); it is thus fully determined by, up
to reflexions, Y, Z, and its last row vT Jn.

The resulting adaptation of Algorithm GenInvLT to Hankel-
like operator ∇[Zn,0,Z

T
n,0] is as follows:

GenInvHL(G,H, u)

Input: G,H ∈ K
n×α such that ∇[Zn,0,Z

T
n,0](A) = GHT ,

and u = AT en,n (the last row of A).
Assumption: A strongly regular.
Output: Y = −A−1G, Z = A−TH, and v = A−T en,1

(the first row of A−1).

if n = 1 then
Y := −u−1G; Z := u−1H; v := u−1;

else
n1 := ⌈n/2⌉; n2 := ⌊n/2⌋;
[u11
u12] := AT en,n1

; [u21
u22] := u;

(Y11,Z11, v11) := GenInvHL(G1,H1, u11);
GS := G2 + A21Y11; HS := H2 − AT12Z11;
uS := u22 − AT12A

−T
11 u21;

(YS,ZS, vS) := GenInvHL(GS,HS, uS);

Y :=
h

Y11−A
−1

11
A12YS

YS

i

; Z :=
h

Z11−A
−T
11

AT
21

ZS

ZS

i

;

w := −S−TAT12v11; v :=
h

v11−A
−T
11

AT
21

w
w

i

;

fi;
return (Y,Z, v).

Theorem 6. Algorithm GenInvHL is correct.

Proof. When n = 1, both A and v are reduced to the
scalar a1,1 and correctness is then straightforward. Assume
now that n > 1 and, in order to proceed by induction, as-
sume correctness for n′ < n. The vector u is split into u21 ∈
K
n1 and u22 ∈ K

n2 . Similarly, the vector of coefficients of
row n1 of A is split into u11 ∈ K

n1 and u12 ∈ K
n2 . Hence u11

equals AT11en1,n1
(that is, the vector of coefficients of the last

row of A11), u22 = AT22en2,n2
, and u21 = AT21en2,n2

. Recall-
ing that S = A22−A21A

−1
11 A12, we deduce that the vector uS

computed by Algorithm GenInvHL satisfies uS = ST en2,n2

and thus is the vector of coefficients of the last row of S.
Since the computation of Y and Z is unchanged in compar-
ison to Algorithm GenInvLT, we still have Y = −A−1G and
Z = A−TH. All that remains is to prove that v is actually
the vector of coefficients of the first row of A−1. By induc-
tion, v11 and vS correspond to the first rows of A−1

11 and S−1,
respectively. Using the factorization of A−1 seen in (8) and
letting wT = −vT11A12S

−1, we get:

e
T
n,1A

−1 =
h

eTn1,1 −eTn2,1A
−1
11 A12

i

"

A−1
11

S−1

#

E

=
h

vT11 wT
i

E

=
h

vT11 − wTA21A
−1
11 wT

i

,

which is exactly the way vector v is computed.

Lemma 5. Let A,G,H,Y11,Z11,GS,HS, u11 be as in Algo-
rithm GenInvHL. Recall that u11 is the last row of the matrix
A11 and let w11 be its last column. Then

• ∇[Zn1,0,Z
T
n2,0](A12) = G1H

T
2 + w11 eTn2,1,

• ∇[Zn2,0,Z
T
n1,0](A21) = G2H

T
1 − en2,1 uT11,

• ∇[ZTn1,0,Zn1,0](A
−1
11) = Y11Z

T
11,

• ∇[ZTn1,0,Z
T
n2,0](A

−1
11 A12) = −Y11H

T
S + en1,n1

eTn2,1,

• ∇[Zn2,0,Zn1,0](A21A
−1
11) = GSZ

T
11 − en2,1 eTn1,n1

.

Proof. Proceed as for Lemma 3 and Lemma 4.

Theorem 7. Let n be a power of two and M,N ∈ K
n×n

be as in (21a). Then Algorithm GenInvHL requires at most

2 log(n)MMH(α, n) +O(αM(n) log(n)).

field operations.

Proof. When n = 1, u is a scalar and the algorithm has
cost C(α, 1) := 2α + 2. Assume now n ≥ 2. Given G, H,
and u, one has (31) and thus (21b) yields [uT11, u

T
12] in time

O(αM(n)). From Lemma 5, all the blocks involved have the
same structure as A, up to transposition and row/column
reflexion, and with sometimes a displacement rank α+1 in-
stead of α. Generating theses blocks requires the knowledge
of the vectors u11 (already computed) and w11 (computable
as u11), which has cost O(αM(n)). Now, one may check
that the irregularity sets of A12, A21, JnA−1

11 Jn1
, Jn1

A−1
11 A12,

A21A
−1
11 Jn1

, Jn2
S−1

Jn2
are, respectively, u12, u21, v11, vT11A12,

u21A
−1
11 Jn1

,vS. The vector u12 has already been computed,
u21 is part of the input, v11 and vS are computed recur-
sively, and the two remaining vectors can be recovered in
time O(αM(n)) from u21 and the generators of A−1

11 and
A12. Consequently, all the products that appear in Algo-
rithm GenInvHL can be produced by applications of (21b).
Finally, Algorithm GenInvHL still uses O(αn) additions, so
that the total cost bound is given by

C(α, n) ≤ 2C(α, n/2) + 4MMH(α+ 1, n/2, α) + k αM(n),

for some constant k. The conclusion follows from (22b) and
the superlinearity assumptions.

5. EXPERIMENTAL RESULTS
We have implemented the two variants of GenInvLT (with

and without Cardinal’s trick) as well as the MBA algorithm
for Sylvester’s displacement. Moreover, we have developed
some code to handle Cauchy-like and Hankel-like structures.

For our experiments, we take K = Fp with p = 999999937,
which lets us measure the algebraic costs. Basic operations
in K are provided by NTL,1 and we also use some code for
fast polynomial arithmetic.2 All the computations are car-
ried out on a desktop machine with an IntelR©CoreTM 2 Duo
processor at 2.66 GHz. Finally, generators (G,H) are picked
randomly, while operator matrices D(x), D(y) are chosen in
order to satisfy all the assumptions made on the algorithms.

Figure 1 shows computing times for inverting Cauchy-like
matrices of displacement rank α = 10 when n is increas-
ing. It appears that the computing time is quasi-linear with
respect to n for each method, and that the compression
steps in MBA have negligible cost. Thus, the main differ-
ence explaining the various performances lies in the num-
ber of products “Cauchy-like matrix × vectors.” We have
already seen in Theorem 4 that the choice in the paren-
thesizations leads to one variant in 3 log(n)MMC(α, n) and,
up to stronger conditions on the input, to another variant
in 2 log(n)MMC(α, n). Let us now estimate this cost for
our implementation of the MBA algorithm. Generators for
the Schur complement and the inverse of A before the com-
pression steps are computed using (10) according to the fol-
lowing parenthesization: X1 = A−1

11 A12, S = A22 − A21X1,
1
http://www.shoup.net/ntl/

2
http://www.math.uvsq.fr/~lecerf/software/tellegen/

Figure 1: Cost (in seconds) of Cauchy-like matrix
inversion for increasing values of n and α = 10.

X2 = A21A
−1
11 , and

A
−1 =

h

A
−1

11
+(X1S−1)X2 −X1S−1

−S−1X2 S−1

i

.

Counting the costs of all these products using (23) and the
superlinearity of MMC(·, n) leads to a bound of 14MMC(α, n)
in the recurrence equation for the cost of MBA, which gives
a total cost dominated by 14 log(n)MMC(α, n). In Figure 1,
we observe a speed-up around 4.6 ≈ 14/3 between MBA
and our first variant (GenInvLT), and around 6.7 ≈ 14/2
between MBA and the second variant (GenInvLT + Cardi-
nal’s trick), which is in agreement with our analysis above.

Moreover, we experimented with Hankel-like matrices in
order to estimate the cost of row reconstruction and the
additional time due to subblocks having displacement rank
α+ 1 instead of α like in the Cauchy-like case. Timings are
summarized in Table 1, where it appears that these costs
become negligible when α is large enough. Indeed, they are
linear in α as expected (see (22b) and Theorem 5) while the
total cost seems quadratic in α.

α 10 30 50 70 90

Total cost 4.7 34.7 92.1 177.0 290.3

Irregularity related cost 0.8 2.5 3.9 5.3 7.1

Rank increase related cost 0.5 1.6 2.6 3.5 4.6

Table 1: Cost (in seconds) of Hankel-like matrix in-
version for n = 200 and increasing values of α.

6. CONCLUSIONS
In this paper, we have extended Cardinal’s compression-

free algorithm to a broader class of structured matrices, in-
cluding not only the Cauchy-like type but also the Vander-
monde, Hankel, and Toeplitz-like types. Our main conclu-
sion is that this approach yields variants of the MBA algo-
rithm that are simpler to analyze and implement, and, ac-
cording to our first experiments, significantly faster in prac-
tice. However, this study calls for a number of extensions:

On the practical side, we should first study the impact
of stopping recursive calls (and reconstructing A−1 explic-
itly via fast dense linear algebra) when n ≈ α. It would
also be interesting to measure the memory gains brought by
Cardinal’s extended approach over MBA.

On the algorithmic side, although we have focused only
on O (̃α2 n) versions of MBA, it would be interesting to

incorporate the matrix multiplication techniques of [3]. We
should also study the impact of multiplicities in x and y on
the cost bounds and adapt our work to structures like those
of the Toeplitz+Hankel-like type.

7. ACKNOWLEDGMENTS
We thank Benôıt Lacelle for providing a framework for

structured matrices and the generator-compression subrou-
tine used in our implementation of MBA, and Éric Schost
for pointing out the code used for multipoint evaluation.

8. REFERENCES
[1] R. R. Bitmead and B. D. O. Anderson. Asymptotically fast

solution of Toeplitz and related systems of linear equations.
Linear Algebra Appl., 34:103–116, 1980.

[2] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving
Toeplitz- and Vandermonde-like linear systems with large
displacement rank. In ISSAC ’07, pages 33–40. ACM, 2007.

[3] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving
structured linear systems with large displacement rank.
Theoretical Computer Science, 407(1:3):155–181, 2008.

[4] J.-P. Cardinal. On a property of Cauchy-like matrices. C.
R. Acad. Sci. Paris - Série I - Analyse
numérique/Numerical Analysis, 328:1089–1093, 1999.

[5] J.-P. Cardinal. A divide and conquer method to solve
Cauchy-like systems. Technical report, The FRISCO
Consortium, 2000.

[6] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, second edition, 2003.

[7] I. Gohberg and V. Olshevsky. Complexity of multiplication
with vectors for structured matrices. Linear Algebra Appl.,
202:163–192, 1994.

[8] I. Gohberg and V. Olshevsky. Fast state space algorithms
for matrix Nehari and Nehari-Takagi interpolation
problems. Integral Equations and Operator Theory,
20:44–83, 1994.

[9] G. Heinig. Inversion of generalized Cauchy matrices and
other classes of structured matrices. Linear Algebra for
Signal Processing, 69:95–114, 1995.

[10] T. Kailath, S. Y. Kung, and M. Morf. Displacement ranks
of matrices and linear equations. J. Math. Anal. Appl.,
68(2):395–407, 1979.

[11] E. Kaltofen. Asymptotically fast solution of Toeplitz-like
singular linear systems. In ISSAC’94, pages 297–304. ACM,
1994.

[12] E. Kaltofen. Analysis of Coppersmith’s block Wiedemann
algorithm for the parallel solution of sparse linear systems.
Mathematics of Computation, 64(210):777–806, 1995.

[13] M. Morf. Doubling algorithms for Toeplitz and related
equations. IEEE Conference on Acoustics, Speech, and
Signal Processing, pages 954–959, 1980.

[14] V. Olshevsky and V. Pan. A unified superfast algorithm for
boundary rational tangential interpolation problems and
for inversion and factorization of dense structured matrices.
In Proc. 39th IEEE FOCS, pages 192–201, 1998.

[15] V. Pan. Parallel solution of Toeplitz-like linear systems.
Journal of Complexity, 8(1):1–21, 1992.

[16] V. Pan. Decreasing the displacement rank of a matrix.
SIAM J. Matrix Anal. Appl., 14(1):118–121, 1993.

[17] V. Y. Pan. Parametrization of Newton’s iteration for
computations with structured matrices and applications.
Computers Math. Applic., 24(3):61–75, 1992.

[18] V. Y. Pan. Nearly optimal computations with structured
matrices. In SODA, pages 953–962, 2000.

[19] V. Y. Pan. Structured Matrices and Polynomials.
Birkhäuser Boston Inc., 2001.

[20] V. Y. Pan and A. Zheng. Superfast algorithms for
Cauchy-like matrix computations and extensions. Linear
Algebra Appl., 310:83–108, 2000.

APPENDIX

A. RECONSTRUCTION OF RECTANGULAR

HANKEL-LIKE MATRICES

Theorem 8. Equation (21b) is correct.

Proof. The Hankel-like matrix A ∈ K
n×m satisfies

Zn,1A − AZ
T
m,0 = GH

T .

By left-multiplying with Z
T
n,1, we deduce the following re-

currence formula:

A = Z
T
n,1AZ

T
m,0 + Z

T
n,1GH

T .

We can now apply Theorem 4.3.6 from [19] to obtain that,
for all integer k,

A = (ZTn,1)
k
A(ZTm,0)

k +

k−1
X

l=0

(ZTn,1)
l+1

GH
T (ZTm,0)

l.

As (ZTm,0)
l is the null matrix as soon as l ≥ m, we can

simplify the above equation:

A =

m−1
X

l=0

(ZTn,1)
l+1

GH
T (ZTm,0)

l

=

m−1
X

l=0

(ZTn,1)
l+1

α
X

j=1

gjh
T
j

!

(ZTm,0)
l

=

α
X

j=1

m−1
X

l=0

(ZTn,1)
l+1

gjh
T
j (ZTm,0)

l.

The inner sum is a sum of m outer products. This can
be rewritten as a product of two matrices B ∈ K

n×m and
C ∈ K

m×m by taking (ZTn,1)
l+1gj for column m− l of B and

hTj (ZTm,0)
l for row m − l of C. Thus, the ith row of C is

exactly [0 ... 0 hj,1 ... hj,i] so that C = L(hj)Jm.

Finally, the last column of B is [gj,2 ... gj,n gj,1]T and we
can deduce its column l by applying Z

T
n,1 to its column

l + 1, that is by moving the elements of column l + 1 one
location up (except for the first element which goes at bot-
tom). This defines a Toeplitz matrix whose coefficient (k, l)
is gj,1+(k−l+m) mod n, which is T

n×m(gj) by definition.

