
HAL Id: ensl-00456961
https://ens-lyon.hal.science/ensl-00456961v1

Preprint submitted on 16 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling Connectors in Hierarchical Component Models
Julien Bigot, Christian Pérez

To cite this version:
Julien Bigot, Christian Pérez. Enabling Connectors in Hierarchical Component Models. 2010. �ensl-
00456961�

https://ens-lyon.hal.science/ensl-00456961v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Enabling Connectors in Hierarchical

Component Models

Julien Bigot ,

Christian Pérez
Febuary 2010

Research Report NoRRLIP2010-9

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Enabling Connectors in Hierarchical Component Models

Julien Bigot Christian Pérez

Febuary 2010

Abstract

The continual growth of computing and storage capabilities enable numerical
applications to integrate more and more phenomena in their computations at
the price of increased complexity. Hierarchical component models appear as
an interesting approach to handle such complexity. However defining and im-
plementing efficient interactions between hierarchical components is a difficult
task, especially in the case of parallel and distributed applications. Connec-
tors from Architecture Description Languages (ADL) are a promising solution
to this problem. However, they have only been introduced in flat component
models.
This paper describes Hlcm, a model supporting both connectors and compo-
nent hierarchy. This is achieved by describing potential interaction of compo-
nents using the new concept of open connections. Complex interactions such
as data sharing and parallel interactions are successfully supported by Hlcm.
An implementation, based on model transformation and on Ccm, illustrates
its feasibility and benefits.

Keywords: Software Components, Connectors, Hierarchy, Parallel/Distributed Computing,
Model-Driven Engineering

Résumé

La croissance continue des capacités de calcul et de stockage permet aux appli-
cations numériques d’intégrer un nombre croissant de phénomènes dans leurs
calculs au prix d’une complexité accrue. Les modèles de composants hiérar-
chiques apparaissent comme une approche intéressante pour gérer cette com-
plexité. Cependant, définir et implémenter des interactions efficaces entre com-
posants hiérarchiques est une tâche difficile, d’autant plus dans le cas d’applica-
tions parallèles et distribuées. Les connecteurs issus des langages de description
d’architecture (ADL) offrent une solution prometteuse à ce problème. Ils n’ont
cependant été introduits que dans des modèles de composants à plat.
Ce papier décrit Hlcm, un modèle de composants qui supporte à la fois les
connecteurs et la hiérarchie. Ce résultat est obtenu en décrivant les interac-
tions potentielles des composants à l’aide du concept de connexion ouverte.
Les interactions complexes telles que le partage de données ou les interactions
parallèles sont gérées avec succès par Hlcm. Une mise en œuvre basée sur une
transformation de modèle et sur Ccm illustre sa faisabilité et ses bénéfices.

Mots-clés: Composants logiciels, Connecteurs, Hiérarchie, Calcul parallèle et distribué,
Ingénierie dirigée par les modèles

Enabling Connectors in Hierarchical Component Models 1

1 Introduction

Component based software engineering [14] is an interesting approach to simplify the development
of complex applications such as scientific simulations as it improves code modularity and re-use
as well as a better identification of code interactions and dependencies. In this paradigm, pieces
of code are embedded into a component whose interactions with the environment are identified
by a set of ports specifying both the services used and offered. Component-based applications are
described by an assembly of component instances interconnected through their ports.

Scientific applications usually require a large amount of computing power and/or storage,
typically delivered by complex hardware resource architectures, such as parallel and distributed
infrastructures. They are therefore making use of algorithms thought to express parallel constructs.
Component models only providing standard use/provide interactions are not satisfactory as they
imply a strong binding between assemblies and hardware resources. An approach to solve this
problem is to let these interactions be described at a higher level of abstraction, such as parallel-
to-parallel component interactions, and to let their implementation be chosen when resources are
known.

Supporting new kinds of interactions in component models that have not been designed for this
purpose is a difficult task. An interesting concept enabling this support is brought by connectors
from Architecture Description Languages (ADLs). They provide a generic mechanism to describe
interactions between components. Though their introduction in software component models has
been studied, it has been limited to flat component models.

This paper aims at studying the possibilities and the benefits in using connectors within hi-
erarchical component models so as to efficiently support interactions between components. The
difficult issue is to define a mechanism to let connectors cross composite definition. This paper
proposes a generic hierarchical component model, named Hlcm, which support connectors. It
relies on the concept of open connections to specify interactions amongst components. Moreover,
Hlcm provides bundle ports and connection transformers to enable complex interactions. An
implementation, restricted to static application, shows the feasibility of the model.

The remainder of this paper is organized as follow. Section 2 deals with the context while
Section 3 presents Hlcm. Examples using this model are described and discussed in Section 4. A
proof-of-concept implementation is presented in Section 5. Section 6 draws some conclusions and
presents some perspectives.

2 Context

This section presents an overview of related work on component models with support for hierar-
chy, HPC dedicated features and connectors. It discusses the advantages and limitations of each
approach by focusing on two motivating examples: parallel code coupling through shared memory
or (parallel) method calls. Finally, it studies the problems arising when combining hierarchy and
connectors in a unique model.

Hierarchy in component models. Several component models support component hierarchy,
such as Fractal [9] and Sca [12]. They support the concept of composite: a component whose
implementation is an assembly of component instances interacting together. Ports exposed by
composites are implemented by these internal instances. In Sca, this is achieved by the mean of
promotion: ports of composites are defined as aliases of compatible internal instances ports. In
Fractal, the concept of component membrane offering two views is used for this purpose. The
first view describes the set of ports exposed by the composite while the second one is connected
to its internal instances to provide its implementation.

Hierarchy is required to use component at multiple level of granularity. For example, it enables
the description of a parallel component as an assembly of sequential components whose communi-
cations are handled by the model and whose placement can be handled by a dedicated mechanism.
The efficient mapping of logical interactions onto physical ones is however highly dependent on

Enabling Connectors in Hierarchical Component Models 2

the placement of components on hardware resources. Therefore, such a mapping should not be
embedded into an application assembly by application developper.

Dedicated HPC interactions. To deal with high performance computing, some interactions
have thus been proposed as extensions to component models. M ×N method calls from, to and
between parallel (SPMD) components are for example available in Cca [2], Gcm [5] (based on
Fractal), and GridCcm [13] (an extension to Ccm). Data sharing between components has also
been proposed as an extension to Cca and Ccm [3], and MPI-like collective communications as an
extension to Ccm [6]. Finally, some interactions are supported as part of more generic extensions
such as the master/workers paradigm [8], and more generally (parallel) algorithmic skeletons [1].

The existence of these extensions demonstrates a clear need for HPC dedicated interactions,
whose number is not known. Moreoever, their implementation is complex and typically results in
incompatible component models. This is due to the fact that component models were not designed
with the support for additional types of interactions. Models based on Fractal such as Gcm can
partially support this by intercepting connections in the membrane to modify their behavior. This
is however limited to the local mapping of new interactions on existing ones preventing optimized
implementations relying on a global knowledge of the participants to the connection.

Component models with connectors. The concept of connector originates from ADLs. Con-
nectors are first class entities similarly to components used to describe their interactions [11]. They
have already been introduced in component models, for example in the Sofa component model [4]
or in [10]. In these models, connectors contain roles (or plugs) fulfilled by ports of component
instances to form a connection. Unlike components, connectors are intrinsically generic and their
implementation can vary in function of the quantity, type and locality of the ports taking part in
the connection.

Connectors make it possible to efficiently support complex interactions such as M ×N method
calls as there is a global knowledge of the participants when generating their implementation.
Connectors have however only been introduced in flat component models until now. As explained
before, hierarchy is a strong requirement to support multiple levels of granularity. A model sup-
porting both features would be valuable.

Analysis. In order to understand the implications of the interactions between hierarchy and
connectors, let us study the implementation of two motivating examples in an hypothetical model
with both features. As discussed earlier, the parallel components would be composites containing
instances of sequential components. Interactions between those instances could easily be supported
by connectors providing MPI-like interactions for example. A first example is the connection of
two parallel components with shared memory. It might require access to the shared memory by all
the internal instances. The composite can either expose the memory sharing ports of its internal
instances as a set of independent ports or group them in an internal connection. While the first
solution fails to express the fact that the ports are part of a single interaction, the second one
prevents interactions with instances outside the composite.

Similarly for the second example, in the case of a connection by method call, the composite can
either expose the ports of its internal instances or group them so as to expose a single port making a
sequential call. The fisrt solution fails again to express that the ports are part of a single interaction
and the second one implies a bottleneck in the case of parallel to parallel connection. Additionally,
it should be possible for parallel components to be connected to sequential components. Relying on
a distinct connector implementation for each case implies a quadratic number of implementations.

To summarize, a component model supporting both connectors and hierarchy should make it
possible for connections to logically cross composite definitions. In addition, it should be possible
to define a new type of ports without having to implement too many new connectors.

Enabling Connectors in Hierarchical Component Models 3

connector UP {

role user;

role provider;

}

Figure 1: Example of declaration
of a connector UP that supports
Use/Provide interactions.

component MyComponent exposes {

UP { user PT; } aC;

} ...

Figure 2: Example of a component exposing a connection
named aC whose role user is filled by a port of type PT

in the component implementation (not shown). The role
provider is not filled.

component MyCcmComponent {

provides A a;

uses B b;

}

component MyHlcmPrimitive exposes {

UP { provider CcmFacet<A>; } a;

UP { user CcmReceptacle;} b;

} ccm (‘‘MyCcmComponent’’)

Figure 3: Example of a Ccm component described in CORBA IDL3 (left) and its corresponding
Hlcm component (right). CcmFacet and CcmReceptacle are two generic port types natively
supported in Hlcm/ccm.

3 HLCM: a High Level Component Model

This section introduces Hlcm, a generic component model with support for hierarchy and con-
nectors. Hlcm relies on an underlying execution model for the definition of some of its concepts
(i.e. primitive components and connectors). For example Hlcm/ccm uses Ccm as its underlying
execution model; its implementation is described in Section 5. First, the structural elements of
Hlcm are described and then its behavior is illustrated with an algorithm mapping an Hlcm
application to a primitive one.

3.1 Structural Elements of HLCM

The basis of Hlcm is a standard hierarchical component model. Components expose a set of named
interaction points and have an implementation. This implementation can be either primitive or
composite. Primitive implementations are provided by the underlying execution model. Composite
implementations are provided by an assembly of component instances and connections. Hlcm
supports genericity [7]; examples make use of a notation similar to Java generics.

As in other component models supporting connectors, interactions between components are
described by connections that are instances of connectors. Connectors are first class entities that
define a type of interaction. They contain a set of roles. Roles are named and have a multiplicity:
either single (default) or unbounded. An examples of connector is shown in Figure 1. Roles in
connections are filled by ports, roles of unbounded multiplicity can be filled by multiple ports.

A specificity of Hlcm is that the interaction points of components are not ports but connec-
tions. These connections have some of their roles internally fulfilled by the implementation of the
component but not necessarily all. Some roles will be fulfilled externally when connecting the
component as will be explained hereafter. Connections allowing external role fulfillment are called
open connections. An example of component exposing an open connection is shown in Figure 2.
Ports can be either primitive ports or bundle ports. Bundle ports contain a set of named open
connections.

Primitive Components. The definition of primitive component implementations depends on
the targeted model. In Hlcm/ccm, primitive components are implemented by Ccm components.
Ccm components expose ports whereas their Hlcm/ccm counterparts expose connections. Ports
of Ccm components are thus wrapped inHlcm connections of the same name as shown in Figure 3.

Composite Components. A composite component is described by an assembly of component
instances and connections. A composite exposes a connection by making an alias to one of its

Enabling Connectors in Hierarchical Component Models 4

component MyComposite exposes {

UP { provider CcmFacet<A>; } a;

} composite {

// Two internal component instances

MyHlcmPrimitive c1;

MyHlcmPrimitive c2;

...

...

// Exposition of c1.a as a

A: this.a = c1.a;

// Interaction between c1.b and c2.a

X: UP cnab;

Y: cnab |= c1.b; cnab |= c2.a;

}

Figure 4: Example of a composite implementation containing two internal component instances c1
and c2. It exposes the connection c1.a as a using the alias operator =. It lets c1 and c2 interact
through a connection cnab using the merge operator |=.

generator UPLog<interface UI, interface PI> with {

UI super PI; // constraints

} implements UP {

provider CcmFacet<PI>;

user CcmReceptacle<UI>;

} {

LoggerProxy<UI> proxy

UP up1; up1.user += this.user; up1 |= proxy.clientSide;

UP up2; up2.provider += this.provider; up2 |= proxy.serverSide;

}

Figure 5: Example of composite generator inserting a proxy component, which constraints the
user type to be a parent of the provider interface type. The += operator fulfills a role with a port.
For example, the role user of the connection up1 is fulfilled with the port user of the considered
connection.

internal connections (line A in Figure 4). An interactions between component instances is set by
creating a connection (line X in Figure 4) and by binding it to the open connections by which
these instance are to be connected (Lines Y in Figure 4). This creates a logical connection whose
roles fulfillment are the union of those of the bound open connections.

Generators. Generators are implementations of connectors. A connector can be implemented
by several generators. A generator implements a specialization of a connector, that is to say a
connector with constraints on the number, the type and the locality of the ports fulfilling its roles.

There are two kinds of generators: primitive and composite. Primitive generators specify the
interactions directly supported by the underlying execution model. Composite generators generate
an assembly in which the ports fulfilling the roles of the connector are made part of the connections
as illustrated in Figure 5. This assembly can be parametrized by the number, type and locality of
the ports fulfilling the roles of the connector.

Connection Transformers Connection transformers provide a functionality similar to inheri-
tance in object oriented models. They make it possible to use a connection of a given type where
another type was expected. The definition of a connection transformer is an assembly that uses
the available connection and exposes a connection of the expected type instead as illustrated in
Figure 6.

3.2 Behavior of HLCM Elements

The behavior of an Hlcm application is defined through an equivalence with a primitive appli-
cation, i.e. an application described in the underlying execution model. This means that it is
fully defined by the combination of the definition of the behavior of applications in the underlying
execution model and a mapping algorithm. Let us now further discuss this mapping algorithm.

An Hlcm application is defined by the set of Hlcm elements it contains: components, con-
nectors, generators, port types and connection transformers and by the component used as the

Enabling Connectors in Hierarchical Component Models 5

Algorithm 1 Transforming an abstract Hlcm application into a concrete one.

Input:

• An Hlcm application
Output:

• A primitive application or an error

while composite component instances or unimplemented connections remain do

Replace the composite component instances by the content of their assembly and merge their
exposed connections to those they are bound to;
Choose a set of connection transformers and generators whose constraints can be fulfilled to
implement the connections or rollback or return an error;
Replace the composite connections by the content of their assembly;

end while

root of the application. To map it into a primitive application, it should be transformed into an
assembly which only contains primitive components, primitive ports, and primtive connections.

Such a transformation can be achieved by applying Algorithm 1 that replaces composite in-
stances by the content of their assembly and chooses the generators to use for the implementation
of connections. It is non deterministic as it does not specify how the choice of connection imple-
mentations is made. If no valid choice can be made at a given point, either a rollback is done or
an error is returned. Any assembly obtained by applying this algorithm is defined as providing a
valid behavior of the application.

The difficult part when implementing this algorithm lies in the choice of connection implemen-
tations. The identification of the valid combinations of connection transformers and generators
that might be used to implement a given connection is a complex problem. As the amount of gen-
erators and connection transformers applicable to a given connector is expected to remain rather
small, a naive implementation trying all combinations seems however acceptable.

It must be noted however that the choice of the implementation is not a self contained problem.
Locality constraints introduce dependencies between these choices. For example in a situation
where two component instances are connected by two distinct connections, their locality constraints
must be compatible. In the general case, this is expected to be NP-hard as most planning problems.

4 Evaluation of HLCM to Support HPC Interactions

This section evaluates the use of Hlcm/ccm to implement the two motivating examples introduced
in Section 2: interactions through shared memory and (parallel) method calls between parallel
components.

transformer PushPull

supports UP { user CcmReceptacle<DataPush>; } input

as UP { provider CcmFacet<DataPull>; } output

{

CacheComponent c;

UP cnx;

cnx |= input;

cnx |= c.pushSide;

output = c.pullSide;

}

Input Output

=
merge

Figure 6: Example of connection transformer describing how a UP connection (input) whose user
role is filled with a CcmReceptacle<DataPush> port can be seen as a UP connection (output) whose
provider role is filled with a CcmFacet<DataPull> port. It does so by inserting a component
instance acting as a cache.

Enabling Connectors in Hierarchical Component Models 6

connector SharedMem {

role access[];

}

Figure 7: The SharedMem connector
declaration with an unbounded role
access.

interface CDataAccess {

CPointer get_data();

long get_size();

...

}

Figure 8: IDL declaration of the CDataAccess interface.

generator LocalSharedMem<Integer N> implements SharedMem {

for (Integer i in [1..N]) { access[i] CcmFacet<CDataAccess>; }

} with { // locality constraints

for (Integer i in [1..N-1]){access[i].process == access[i+1].process;}

} composite {

LocalMemoryStore store;

for (Integer i in [1..N]) {

UP cnx[i]; cnx[i].user += access[i]; cnx[i] |= store.access;

} }

Figure 9: Definition of the LocalSharedMem generator supporting local SharedMem connections.
Its implementation relies on an instance of a LocalMemoryStore component that embeds the data
accessed by all components.

Shared memory interaction. In order to support memory sharing inspired by [3], let us define
a SharedMem connector whose declaration is given in Figure 7. It contains a single role access of
unbounded multiplicity.

From the point of view of primitive components, the access to a SharedMem connection is
done through a CDataAccess interface whose IDL description is given in Figure 8. CPointer is a
valuetype holding a native reference to the actual data. It can then be only used between instances
located in a same process.

Figure 9 presents a generator for SharedMem connections based on a local centralized imple-
mentation. The N ports fulfilling its access role are of type CcmFacet<CDataAccess>.

Figure 10 describes another generator for SharedMem connections based on a distributed im-
plementation. For each accessor, it instantiates a local DsmNodeComponent component which is
interconnected with all other (distributed) DsmNodeComponent instances. Each DsmNodeComponent

is constrained to be colocated to the same process as its associated accessor, because of the use of

generator DistributedSharedMem<Integer N> implements SharedMem {

for (Integer i in [1..N]) { access[i] CcmFacet<CDataAccess>; }

} composite {

for (Integer i in [1..N]) {

DsmNodeComponent node[i];

LocalUP cnx[i]; cnx[i].user += access[i]; cnx[i] |= node[i].access;

}

for (Integer i in [1..N]) { for (Integer j in [1..N]) {

UP in[i,j]; in[i,j] |= node[i].from; in[i,j] |= node[j].to;

} }

}

Figure 10: Definition of the DistributedSharedMem generator supporting SharedMem amongst
distributed component instances. It is made of a set of DsmNodeComponent instances, one for each
accessor. Each instances is connected to all of them through two dedicated UP connections, one in
each direction.

Enabling Connectors in Hierarchical Component Models 7

A1

A2

A3

A4

Dsm
Node

Dsm
Node

Dsm
Node

Dsm
Node

Figure 11: A SharedMem connection
with four accessors (A1 to A4) imple-
mented by the DistributedSharedMem
generator.

U1

U2

P1

P2

UDist
PDist

UDist

PDist
U3 UDist

Figure 12: A parallel UP connection implemented by the
MxN generator. A proxy instance is inserted for each par-
ticipant. Each proxy instance is connected to all those
of the opposite side.

bundle ParallelCcmFacet<Integer N, interface I> {

for (Integer i in [1..N]) { UP { provider CcmFacet<I>; } part[i]; }

}

Figure 13: Definition of the ParallelCcmFacet bundle port type. It contains N UP connections
called part whose provider role if fulfilled by a CcmFacet<I> port.

the LocalUP connector. An example of a connection implemented by this generator is presented
in Figure 11.

Parallel method call interaction. Unlike shared memory, the support for parallel method
calls [13] does not require the introduction of a new connector, the UP connector already supports
method calls. It only requires the support of new type of ports fulfilling its roles: the ParallelC-
cmFacet whose definition is presented in Figure 13 and the symmetrical ParallelCcmReceptacle.

A MxN generator needs to implement UP connections whose roles are fulfilled by these two
ports. It is quite similar to the DistributedSharedMem generator. An example of connection
implemented by the MxN generator is presented in Figure 12. This enables an efficient support of
M ×N connections with data redistribution on the user side, the provider side or even both.

The support for UP connections with only one of the role filled by a parallel port is implemented
thanks to two transformers. The Scatter transformer whose definition is presented in Figure 14
supports a connection whose user role is filled by a ParallelCcmReceptacle as if they was filled by
a sequential CcmReceptacle. It contains a component in charge of distributing the data connected
to all the part sub-connections of the bundle and exposing an open connection with a sequential
CcmReceptacle used as result of the transformer. A Gather transformer supports the symmetrical
case.

Discussion. As can be seen with these two examples, Hlcm easily and efficiently supports the
implementation of both shared memory and parallel method calls as connectors without having to
modify either the model or its implementation. Efficiency is obtained because generated concrete

transformer Scatter<Integer N>

supports UP { user ParallelCcmReceptacle<N, MatrixPart> } input

as UP { user CcmReceptacle<Matrix>; } output

{

Distributor<N> dist;

for (Integer i in [1 .. N])

{ UP cnx[i]; cnx[i] |= input.user.part[i]; cnx[i] |= dist.in[i]; }

output = dist.out;

}

Figure 14: Definition of the Scatter transformer.

Enabling Connectors in Hierarchical Component Models 8

applications are the same as with the dedicated shared data and parallel extensions. In addition,
the concept of open connections makes it possible for connections to logically cross the definition
of composites, thus enabling support for hierarchy.

Another interesting point are transformers that make it possible for parallel ports to be used
as their sequential counterpart. This enables the support of future implementations such as a load
balanced facet designed to support the master/worker paradigm for example.

A current limitation of Hlcm/ccm is the lack of genericity in Ccm itself. As a result, primitive
components and generators using them are limited to specific data types. Using a generic model
as backend would solve this.

It would be also interesting for components to be allowed to have multiple implementations,
similarly to generators for connectors. This would however make the transformation algorithm
more complex as the choices of implementations for components and connectors would be com-
pletely dependent of each other.

5 A Proof-of-Concept Implementation of HLCM

We have developed a proof-of-concept implementation of Hlcm/ccm based on a Model Driven
Engineering (MDE) approach. It transforms anHlcm/ccm application into a plain Ccm assembly
in three steps. First the Hlcm/ccm files are parsed to create a model instance, then this model
instance is transformed according to Algorithm 1, and finally the result of this transformation is
dumped into a Ccm cad file. This implementation relies on the tools provided as part of the
Eclipse Modeling Framework (EMF).

A meta-model of Hlcm/ccm has been written in the Ecore language. It contains about 100
meta-classes amongst which about 10 are specific to Ccm. A parser creating instances of this
model from Hlcm/ccm files has been implemented based on the Xtext framework.

The implementation of Algorithm 1 required around 1200 lines in Java. It works on instances
of a second model describing instantiated Hlcm/ccm assemblies adding 15 Ecore classes to the
first model. After the transformation, the assembly contains only primitive component instances
and connections and can be dumped to its Ccm cad counterpart in 100 lines of Java.

This proof of concept implementation has been successfully used to transform the two examples
described in Section 4. A typical transformation takes less than five seconds on a standard laptop
amongst which more than three seconds are spent in initialization and parsing.

The choice of connection implementations is still a random choice amongst the set of genera-
tor requiring the minimal number of connection transformations. Smarter choices would require
performance information on components and connectors as well as heuristics to take them into
account.

Locality constraints expressible in generators are currently limited to process collocation. This
simplifies the problem of placement since these constraints can not lead to any contradictions.
Moreover, they can be expressed in the output Ccm cad file. Fully supporting locality constraints
would require a resource model as well as the use of a constraint solver in the transformation
algorithm.

Another limitation of this implementation is that it is restricted to static applications. The
choice of a compilation prevents the support of dynamic modifications of the assembly. Such
support would require a deeper integration between the transformation algorithm and the target
component model.

6 Conclusion

Component models appear very interesting for complex numerical scientific applications targeted
to be run on complex parallel and distributed infrastructures. While advanced component models
are proposed to ease the description of applications, the implementation of such models as well as
the possibility to optimize an application to a particular infrastructure are still difficult tasks.

Enabling Connectors in Hierarchical Component Models 9

This paper has studied the feasibility and the benefit of using connectors in hierarchical com-
ponent models. It first shows that it is feasible based on the definition of Hlcm as well as a
proof-of-concept implementation based on model transformation. Moreover, it shows that simple
and efficient implementations of parallel interactions (shared data and parallel method calls) can
be defined.

There are two main perspectives. First, though Hlcm supports dynamicity, an efficient im-
plementation supporting it remains to be done. Second, the optimization of an Hlcm application
with respect to available resources can be improved, with the support of both multiple component
implementations and performance information on primitive components and connections.

References

[1] M. Aldinucci, H. L. Bouziane, M. Danelutto, and C. Pérez. STKM on SCA: a unified frame-
work with components, workflows and algorthmic skeletons. In 15th Intl European Conference
on Parallel and Distributed Computing (Euro-Par 2009), volume 5704 of LNCS, pages 678 –
690, Delft, Netherlands, August 2009. Springer.

[2] B. A. Allan et al. A Component Architecture for High-Performance Scientific Computing.
International. Journal of High Performance Computing Applications, 20(2):163–202, 2006.

[3] G. Antoniu, H. L. Bouziane, L. Breuil, M. Jan, and C. Pérez. Enabling transparent data
sharing in component models. In 6th IEEE International Symposium on Cluster Computing
and the Grid (CCGRID), pages 430–433, Singapore, May 2006.

[4] D. Bálek and F. Plasil. Software connectors and their role in component deployment. In
Proceedings of the IFIP TC6 / WG6.1 Third International Working Conference on New
Developments in Distributed Applications and Interoperable Systems, pages 69–84, Deventer,
The Netherlands, The Netherlands, 2001. Kluwer, B.V.

[5] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and C. Pérez. Gcm:
A grid extension to fractal for autonomous distributed components. Special Issue of Annals
of Telecommunications: Software Components – The Fractal Initiative, 64(1):5–24, 2009.

[6] J. Bigot and C. Pérez. Enabling collective communications between components. In
CompFrame ’07: Proceedings of the 2007 Symposium on Component and Framework Tech-
nology in High-Performance and Scientific Computing, pages 121–130, New York, NY, USA,
2007. ACM Press.

[7] J. Bigot and C. Pérez. Increasing reuse in component models through genericity. In Proceed-
ings of the 11th International Conference on Software Reuse, ICSR ’09, LNCS, pages 21–30,
Berlin, Heidelberg, oct 2009. Springer-Verlag.

[8] H. L. Bouziane, C. Pérez, and T. Priol. Extending software component mod-
els with the master-worker paradigm. Parallel Computing, In Press, 2010. DOI:
10.1016/j.parco.2009.12.012.

[9] E. Bruneton, T. Coupaye, and J-B. Stefani. The Fractal Component Model, version 2.0.3
draft. The ObjectWeb Consortium, Feb. 2004.

[10] S. Matougui and A. Beugnard. Two ways of implementing software connections among dis-
tributed components. In OTM Conferences (2), pages 997–1014, 2005.

[11] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software connectors.
In Proceedings of the 22nd international conference on Software engineering, pages 178–187,
New York, NY, USA, 2000. ACM.

Enabling Connectors in Hierarchical Component Models 10

[12] Open Service Oriented Architecture. SCA Service Component Architecture: Assembly Model
Specification Version 1.00, Mar. 2007.

[13] C. Pérez, T. Priol, and A. Ribes. A parallel corba component model for numerical code
coupling. In M. Parashar, editor, Proc. 3rd International Workshop on Grid Computing,
volume 17 of Lect. Notes in Comp. Science, pages 88–99, Baltimore, Maryland, Nov. 2002.
Springer-Verlag. Special issue Best Applications Papers from the 3rd Intl. Workshop on Grid
Computing.

[14] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

	1 Introduction
	2 Context
	3 HLCM: a High Level Component Model
	3.1 Structural Elements of HLCM
	3.2 Behavior of HLCM Elements

	4 Evaluation of HLCM to Support HPC Interactions
	5 A Proof-of-Concept Implementation of HLCM
	6 Conclusion

