
HAL Id: ensl-00459394
https://ens-lyon.hal.science/ensl-00459394v1

Preprint submitted on 23 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelization for the Deployment of a Hierarchical
Middleware on a Homogeneous Platform

Eddy Caron, Benjamin Depardon, Frédéric Desprez

To cite this version:
Eddy Caron, Benjamin Depardon, Frédéric Desprez. Modelization for the Deployment of a Hierarchical
Middleware on a Homogeneous Platform. 2010. �ensl-00459394�

https://ens-lyon.hal.science/ensl-00459394v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon

Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Modelization for the Deployment of a

Hierarchical Middleware on a

Homogeneous Platform

Eddy Caron ,
Benjamin Depardon ,
Frédéric Desprez

University of Lyon. LIP Laboratory. UMR

CNRS - ENS Lyon - INRIA - UCBL 5668.

France.

February 2010

Research Report No RRLIP2010-10

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Modelization for the Deployment of a Hierarchical

Middleware on a Homogeneous Platform

Eddy Caron , Benjamin Depardon , Frédéric Desprez

University of Lyon. LIP Laboratory. UMR CNRS - ENS Lyon - INRIA - UCBL 5668. France.

February 2010

Abstract

Accessing the power of distributed resources can nowadays easily be done using
a middleware based on a client/server approach. Several architectures exist for
those middlewares. The most scalable ones rely on a hierarchical design. De-
termining the best shape for the hierarchy, the one giving the best throughput
of services, is not an easy task.
We first propose a computation and communication model for such hierarchical
middleware. Our model takes into account the deployment of several services
in the hierarchy. Then, based on this model, we propose an algorithm for
automatically constructing a hierarchy. This algorithm aims at offering the
users the best obtained to requested throughput ratio, while providing fairness
on this ratio for the different kind of services, and using as few resources as
possible. Finally, we compare our model with experimental results on a real
middleware called Diet.

Keywords: Hierarchical middleware, Deployment, Modelization, Grid.

Résumé

De nos jours, l’accès à des ressources distribuées peut être réalisé aisément en
utilisant un intergiciel se basant sur une approche client/serveur. Différentes
architectures existent pour de tels intergiciels. Ceux passant le mieux à l’échelle
utilisent une hiérarchie d’agents. Déterminer quelle est la meilleure hiérarchie,
c’est à dire celle qui fournira le meilleur débit au niveau des services, n’est pas
une tâche aisée.
Nous proposons tout d’abord un modèle de calcul et de communication pour de
tels intergiciels hiérarchiques. Notre modèle prend en compte le déploiement de
plusieurs services au sein de la hiérarchie. Puis, en nous basant sur le modèle,
nous proposons un algorithme pour construire automatiquement la hiérarchie.
L’algorithme vise à offrir aux utilisateurs le meilleur ratio entre le débit de-
mandé, et le débit fourni, tout en utilisant le moins de ressources possible.
Enfin, nous comparons notre modèle à des résultats expérimentaux obtenus
avec l’intergiciel de grille Diet.

Mots-clés: Intergiciel hiérarchique, Déploiement, Modélisation, Grille.

Hierarchical Middleware on a Homogeneous Platform 1

1 Introduction

Using distributed resources to solve large problems ranging from numerical simulations to life
science is nowadays a common practice [3, 15]. Several approaches exist for porting these appli-
cations to a distributed environment; examples include classic message-passing, batch processing,
web portals and GridRPC systems [18]. In this last approach, clients submit computation requests
to a meta-scheduler (also called agent) that is in charge of finding suitable servers for executing
the requests within the distributed resources. Scheduling is applied to balance the work among
the servers. A list of available servers is sent back to the client; which is then able to send the
data and the request to one of the suggested servers to solve its problem.

There exists several grid middlewares [6] to tackle the problem of finding services available
on distributed resources, choosing a suitable server, then executing the requests, and managing
the data. Several environments, called Network Enabled Servers (NES) environments, have been
proposed. Most of them share a common characteristic which is that they are built with broadly
three main components: clients which are applications that use the NES infrastructure, agents
which are in charge of handling the clients’ requests (scheduling them) and of finding suitable
servers, and finally computational servers which provide computational power to solve the requests.
Some of the middlewares only rely on basic hierarchies of elements, a star graph, such as Ninf-
G [19] and NetSolve [2, 10, 21]. Others, in order to divide the load at the agents level, can have a
more complicated hierarchy shape: WebCom-G [17] and Diet [1, 9]. In this latter case, a problem
arises: what is the best shape for the hierarchy?

Modelization of middlewares behavior, and more specifically their needs in terms of computa-
tions and communications at the agents and servers levels can be of a great help when deploying
the middleware on a computing platform. Indeed, the administrator needs to choose how many
nodes must be allocated to the servers, and how many agents have to be present to support the
load required by the clients. Using as many nodes as possible, may not be the best solution:
firstly it may lead to using more resources than necessary; and secondly this can degrade the
overall performances. The literature do not provide much papers on the modelization and evalua-
tion of distributed middleware. In [20], Tanaka et al. present a performance evaluation of Ninf-G,
however, no theoretical model is given. In [7, 12, 11] the authors present a model for hierarchical
middlewares, and algorithms to deploy a hierarchy of schedulers on clusters and grid environments.
They also compare the model with the Diet middleware. However, a severe limitation in these
latter works is that only one kind of service could be deployed in the hierarchy. Such a constraint
is of course not desirable, as nowadays many applications rely on workflows of services. Hence,
the need to extend the previous models and algorithms to cope with hierarchies supporting several
services.

In this paper, we will mainly focus on one particular hierarchical NES: Diet (Distributed
Interactive Engineering Toolbox). The Diet component architecture is structured hierarchically
as a tree to obtain an improved scalability. Such an architecture is flexible and can be adapted
to diverse environments, including arbitrary heterogeneous computing platforms. Diet comprises
several components. Clients that use Diet infrastructure to solve problems using a remote pro-
cedure call (RPC) approach. SeDs, or server daemons, act as service providers, exporting func-
tionalities via a standardized computational service interface; a single SeD can offer any number
of computational services. Finally, agents facilitate the service location and invocation interac-
tions of clients and SeDs. Collectively, a hierarchy of agents provides higher-level services such as
scheduling and data management. These services are made scalable by distributing them across
a hierarchy of agents composed of a single Master Agent (MA) (the root of the hierarchy) and
several Local Agents (LA) (internal nodes).

Deploying applications on a distributed environment is a problem that has already been ad-
dressed. We can find in the literature a few deployment software: DeployWare [14], Adage [16],
TUNe [5], and GoDiet [8]. Their field of action ranges from single deployment to autonomic
management of applications. However, none include intelligent deployment mapping algorithms.
Either the mapping has to be done by the user, or the proposed algorithm is random or round-
robin. Some algorithms have been proposed in [7, 12] to deploy a hierarchy of schedulers on clusters

2 E. Caron, B. Depardon and F. Desprez

and grid environments. However, a severe limitation in these works is that only one kind of service
could be deployed in the hierarchy. Such a constraint is of course not desirable, as nowadays many
applications rely on workflows of services. Hence, the need to extend the previous models and
algorithms to cope with hierarchies supporting several services.

The contribution of this paper is twofold. We first present a model for predicting the perfor-
mance of a hierarchical NES on a homogeneous platform. As we will see this model can easily be
applied to a computation heterogeneous platform. Secondly, we present an algorithm for automat-
ically determining the best shape for the hierarchy, i.e., the number of servers for each services,
and the shape of the hierarchy supporting these servers.

We first present in Section 2 the hypotheses for our model, then the model itself in Section 3 for
both agents and servers. Then, we explain our approach to automatically build a suitable hierarchy
in Section 4. We then compare the behavior of the Diet middleware with the model in Section 5.
Then, we present, in Sections 6 and 7 the platform and Diet elements benchmarks necessary for
the experiments. Finally, we compare the theoretical results with experimental results in Section 8,
before concluding.

2 Model assumptions

Request definition. Clients use a 2-phases process to interact with a deployed hierarchy: they
submit a scheduling request to the agents to find a suitable server in the hierarchy (the scheduling
phase), and then submit a service request (job) directly to the server (the service phase). A
completed request is one that has completed both the scheduling and service request phases and
for which a response has been returned to the client. We consider that a set R of services have
to be available in the hierarchy. And that for each service i ∈ R, the clients aim at attaining a
throughput ρ∗i of completed requests per seconds.

Resource architecture. In this paper we will focus on the simple case of deploying the middle-
ware on a fully homogeneous, fully connected platform G = (V,E, w, B), i.e., all nodes’ processing
power are the same: w in Mflops/s, and all links have the same bandwidth: B in Mb/s (see
Figure 1. We do not take into account contentions in the network.

w w

w

ww

w B

Figure 1: Homogeneous platform

Deployment assumptions. We consider that at the time of deployment we do not know the
clients locations or the characteristics of the clients resources. Thus, clients are not considered
in the deployment process and, in particular, we assume that the set of computational resources
used by clients is disjoint from V . A valid deployment will always include at least the root-level
agent and one server per service i ∈ R. Each node v ∈ V can be assigned either as a server for
any kind of service i ∈ R, or as an agent, or left idle. Thus with |A| agents, |S| servers, and |V |
total resources, |A|+ |S| ≤ |V |.

Hierarchical Middleware on a Homogeneous Platform 3

Objective. As we have multiple services in the hierarchy, our goal cannot be to maximize the
global throughput of completed requests regardless of the kind of services, this would lead to
favor services requiring only small amount of power for scheduling and solving, and with few
communications. Hence, our goal is to obtain for each service i ∈ R a throughput ρi such that
all services receive almost the same obtained throughput to requested throughput ratio: ρi

ρ∗
i

, while

having as few agents in the hierarchy as possible, so as not to use more resources than necessary.

3 Hierarchy model

3.1 Overall throughput

For each service i ∈ R, we define ρschedi
to be the scheduling throughput for requests of type i

offered by the platform, i.e., the rate at which requests of type i are processed by the scheduling
phase. We define as well ρservi

to be the service throughput.

Lemma 3.1 The completed request throughput ρi of type i of a deployment is given by the mini-
mum of the scheduling and the service request throughput ρschedi

and ρservi
.

ρi = min {ρschedi
, ρservi

}

Proof: A completed request has, by definition, completed both the scheduling and the service
request phases, whatever the kind of request i ∈ R.

Case 1: ρschedi
≥ ρservi

. In this case, requests are sent to the servers at least as fast as they
can be processed by the servers, so the overall rate is limited by ρservi

.

Case 2: ρschedi
< ρservi

. In this case, the servers process the requests faster than they arrive.
The overall throughput is thus limited by ρschedi

. �

Lemma 3.2 The service request throughput ρservi
for service i increases as the number of servers

included in a deployment and allocated to service i increases.

3.2 Hierarchy elements model

We now precise the model of each element of the hierarchy. We consider that a request of type
i is sent down a branch of the hierarchy, if and only if service i is present in this branch, i.e., if
at least a server of type i is present in this branch of the hierarchy. Thus a server of type i will
never receive a request of type j 6= i. Agents will not receive a request i if no server of type i is
present in its underlying hierarchy, nor will it receive any reply for such a type of request. This is
the model used by Diet.

3.2.1 Server model

We define the following variables for the servers. wprei
is the amount of computation in MFlops

needed by a server of type i to predict its own performance when it receives a request of type
i from its parent. Note that a server of type i will never have to predict its performance for a
request of type j 6= i as it will never receive such requests. wappi

is the amount of computation in
MFlops needed by a server to execute a service. mreqi

is the size in Mb of the messages forwarded
down the agent hierarchy for a scheduling request, and mrespi

the size of the messages replied by
the servers and sent back up the hierarchy. Since we assume that only the best server is selected
at each level of the hierarchy, the size of the reply messages does not change as they move up the
tree.

4 E. Caron, B. Depardon and F. Desprez

Server computation model. Let’s consider that we have ni servers of type i, and that ni

requests of type i are sent. On the whole, the ni servers of type i require
ni.wprei

+wappi

w
time

unit to serve the ni requests: each server has to compute the performance prediction ni times,
and serve one request. Hence, on average, the time to compute one request of type i is given by
Equation 1.

T server
compi

=
wprei

+
wappi

ni

w
(1)

Thus, the service throughput for requests of type i is given by the following formula, note that
ρcomp

servi
is the service throughput without taking into account communications:

ρcomp
servi

=
w

wprei
+

wappi

ni

(2)

Lemma 3.3 ρcomp
servi

tends to w
wprei

as ni grows larger.

Server communication model. A server of type i needs, for each request, to receive the
request, and then to reply. Hence Equations 3 and 4 represent respectively the time to receive one
request of type i, and the time to send the reply to its parent.

T server
recvi

=
mreqi

B
(3) T server

sendi
=

mrespi

B
(4)

Service throughput. Concerning the machines model, and their ability to compute and com-
municate, we consider the following models:

• Send or receive or compute, single port: a node cannot do anything simultaneously.

ρservi
=

1

T server
recvi

+ T server
sendi

+ T server
compi

(5)

• Send or receive, and compute, single port: a node can simultaneously send or receive a
message, and compute.

ρservi
= min

{

1

T server
recvi

+ T server
sendi

,
1

T server
compi

}

(6)

• Send, receive, and compute, single port: a node can simultaneously send and receive a
message, and compute.

ρservi
= min

{

1

T server
recvi

,
1

T server
sendi

,
1

T server
compi

}

(7)

3.2.2 Agent model

We define the following variables for the agents. wreqi
is the amount of computation in MFlops

needed by an agent to process an incoming request of type i. For a given agent Aj ∈ A, let Chldj
i

be the set of children of Aj having service i in their underlying hierarchy. Also, let δj
i be a Boolean

variable equal to 1 if and only if Aj has at least one children having service i in its underlying

hierarchy. wrespi

(∣

∣

∣
Chldj

i

∣

∣

∣

)

is the amount of computation in MFlops needed to merge the replies

of type i from its
∣

∣

∣
Chldj

i

∣

∣

∣
children. This amount grows linearly with the number of children.

Our agent model relies on the underlying servers throughput. Hence, in order to compute the
computation and communication times taken by an agent Aj , we need to know both the servers
throughput ρservi

for each i ∈ R, and the children of Aj .

Hierarchical Middleware on a Homogeneous Platform 5

Agent computation model. The time for an agent Aj to schedule a request it receives and
forwards is given by Equation 8.

T agentj
comp =

∑

i∈R ρservi
.δj

i .wreqi
+

∑

i∈R ρservi
.wrespi

(∣

∣

∣Chldj
i

∣

∣

∣

)

w
(8)

Agent communication model. Agent Aj needs, for each request of type i, to receive the
request and forwards it to the relevant children, then to receive the replies and forward the aggre-
gated result back up to its parent. Hence Equations 9 and 10 present the time to receive and send
all messages when the servers provide a throughput ρservi

for each i ∈ R.

T agentj
recv =

∑

i∈R ρservi
.δj

i .mreqi
+

∑

i∈R ρservi
.
∣

∣

∣
Chldj

i

∣

∣

∣
.mrespi

B
(9)

T
agentj

send =

∑

i∈R ρservi
.δj

i .mrespi
+

∑

i∈R ρservi
.
∣

∣

∣
Chldj

i

∣

∣

∣
.mreqi

B
(10)

We combine (8), (9), and (10) according to the chosen communication / computation model
(Equations (5), (6), and (7)).

Lemma 3.4 The highest throughput a hierarchy of agents is able to serve is limited by the through-
put an agent having only one child of each kind of service can support.

Proof: The bottleneck of such a hierarchy is clearly its root. Whatever the shape of the hierarchy,
at its top, the root will have to support at least one child of each type of service (all messages
have to go through the root). As the time required for an agent grows linearly with the number of
children (see (8), (9) and (10)), having only one child of each type of service is the configuration
that induces the lowest load on an agent. �

4 Automatic planning

Given the models presented in the previous section, we propose a heuristic for automatic deploy-
ment planning. The heuristic comprises two phases. The first step consists in dividing N nodes
between the services, so as to support the servers. The second step consists in trying to build
a hierarchy, with the |V | − N remaining nodes, which is able to support the throughput gener-
ated by the servers. In this section, we present our automatic planning algorithm in three parts.
In Section 4.1 we present how the servers are allocated nodes, then in Section 4.2 we present a
bottom-up approach to build a hierarchy of agents, and finally in Section4.3 we present the whole
algorithm.

4.1 Servers repartition

Our goal is to obtain for all services i ∈ R the same ratio
ρservi

ρ∗
i

. Algorithm 1 presents a simple

way of dividing the available nodes to the different services. We iteratively increase the number
of assigned nodes per services, starting by giving nodes to the service with the lowest

ρservi

ρ∗
i

ratio.

4.2 Agents hierarchy

Given the servers repartition, and thus, the services throughput ρservi
, for all i ∈ R, we need to

build a hierarchy of agents that is able to support the throughput offered by the servers. Our
approach is based on a bottom-up construction: we first distribute some nodes to the servers, then
with the remaining nodes we iteratively build levels of agents. Each level of agents has to be able
to support the load incurred by the underlying level. The construction stops when only one agent

6 E. Caron, B. Depardon and F. Desprez

Algorithm 1 Servers repartition

Require: N : number of available nodes
Ensure: n: number of nodes allocated to the servers
1: S ← list of services in R
2: n← 0
3: repeat

4: i← first service in S
5: Assign one more node to i, and compute the new ρservi

6: n← n + 1
7: if ρservi

≥ ρ∗i then

8: ρservi
← ρ∗i

9: S ← S − {i}
10: S ← Sort services by increasing

ρservi

ρ∗
i

11: until n = N or S = ∅
12: return n

is enough to support all the children of the previous level. In order to build each level, we make
use of a mixed integer linear program (MILP): (L1).

We first need to define a few more variables. Let k be the current level: k = 0 corresponds
to the server level. For i ∈ R let ni(k) be the number of elements (servers or agents) obtained
at step k, which know service i. For k ≥ 1, we recursively define new sets of agents. We define
by Mk the number of available resources at step k: Mk = M1 −

∑k−1

l=1
ni(l). For 1 ≤ j ≤ Mk we

define aj(k) ∈ {0, 1} to be a boolean variable stating whether or not node j is an agent in step k.

aj(k) = 1 if and only if node j is an agent in step k. For 1 ≤ j ≤Mk,∀i ∈ R, δj
i (k) ∈ {0, 1} defines

whether of not node j has service i in its underlying hierarchy in step k. For the servers, k = 0,
1 ≤ j ≤ M0,∀i ∈ R, δj

i (0) = 1 if and only if server j is of type i, otherwise δj
i (0) = 0. Hence, we

have the following relation: ∀i ∈ R, ni(k) =
∑Mk

j=1
δj
i (k). For 1 ≤ j ≤Mk,∀i ∈ R,

∣

∣

∣
Chldj

i (k)
∣

∣

∣
∈ N

is as previously the number of children of node j that know service i. Finally, for 1 ≤ j ≤Mk, 1 ≤
l ≤ Mk−1 let cj

l (k) ∈ {0, 1} be a boolean variable stating that node l in step k − 1 is a child of

node j in step k. cj
l (k) = 1 if and only if node l in step k − 1 is a child of node j in step k.

Using linear program (L1), we can recursively define the hierarchy of agents, starting from the
bottom of the hierarchy.

Let’s have a closer look at (L1). Lines (1), (2) and (3) only define the variables. Line (4) states
that any element in level k − 1 has to have exactly 1 parent in level k. Line (5) counts, for each
element at level k, its number of children that know service i. Line (6) states that the number
of children of j of type i cannot be greater than the number of elements in level k − 1 that know
service i, and has to be 0 if δj

i (k) = 0. The following two lines, (7) and (8), enforce the state of
node j: if a node has at least a child, then it has to be an agent (line (7) enforces aj(k) = 1 in this
case), and conversely, if it has no children, then it has to be unused (line (8) enforces aj(k) = 0 in
this case). Line (9) states that at least one agent has to be present in the hierarchy. Line (10) is
the transposition of the agent model in the send or receive or compute, single port model. Note
that the other models can easily replace this model in MILP (L1). This line states that the time
required to deal with all requests going through an agent has to be lower than or equal to one
second.

Finally, our objective function is the minimization of the number of agents: the equal share of
obtained throughput to requested throughput ratio has already been cared of when allocating the
nodes to the servers, hence our second objective that is the minimization of the number of agents
in the hierarchy has to be taken into account.

Remark 4.1 In order to improve the converge time to an optimal solution for linear program (L1),
we can add the following constraint:

a1(k) ≥ a2(k) · · · ≥ aMk
(k) (11)

Hierarchical Middleware on a Homogeneous Platform 7

Minimize

Mk
∑

j=1

aj(k)

Subject to

(1) 1 ≤ j ≤Mk aj(k) ∈ {0, 1}

(2) 1 ≤ j ≤Mk,∀i ∈ R δj
i (k) ∈ {0, 1} and

∣

∣

∣
Chldj

i (k)
∣

∣

∣
∈ N

(3) 1 ≤ j ≤Mk,

1 ≤ l ≤Mk−1 cj
l (k) ∈ {0, 1}

(4) 1 ≤ l ≤Mk−1

Mk
∑

j=1

cj
l (k) = 1

(5) 1 ≤ j ≤Mk,∀i ∈ R
∣

∣

∣
Chldj

i (k)
∣

∣

∣
=

Mk−1
∑

l=1

cj
l (k).δl

i(k − 1)

(6) 1 ≤ j ≤Mk,∀i ∈ R
∣

∣

∣Chldj
i (k)

∣

∣

∣ ≤ δj
i (k).ni(k − 1)

(7) 1 ≤ j ≤Mk, i ∈ R δj
i (k) ≤ aj(k)

(8) 1 ≤ j ≤Mk aj(k) ≤
∑

i∈R

δj
i (k)

(9)

Mk
∑

j=1

aj(k) ≥ 1

(10) 1 ≤ j ≤Mk

∑

i∈R ρservi
×

δj
i (k).wreqi

+ wrespi

(∣

∣

∣Chldj
i (k)

∣

∣

∣

)

w
+

δj
i (k).mreqi

+
∣

∣

∣
Chldj

i (k)
∣

∣

∣
.mrespi

B
+

δj
i (k).mrespi

+
∣

∣

∣Chldj
i (k)

∣

∣

∣ .mreqi

B

 ≤ 1

(L1)

This states that only the first nodes can be agents. This prevents the solver from trying all swapping
possibilities when searching a solution. We can safely add this constraint, as we suppose that we
have a homogeneous platform.

4.3 Building the whole hierarchy

So far, we did not talk about the repartition of the available nodes between agents and servers.
We will now present the whole algorithm for building the hierarchy.

Maximum attainable throughput per service. Whatever the expected throughput for each
service is, there is a limit on the maximum attainable throughput. Given Equations (8), (9) and
(10), and the fact that a hierarchy must end at the very top by only one agent, the maximum
throughput attainable by an agent serving all kinds of services (which is the case of the root of the
hierarchy), is attained when the agent has only one child of each service (see Lemma 3.4). Hence,
the maximum attainable throughput for each service, when all service receive the same served to
required throughput ratio, from the agents’ point of view is given by linear program (L2) which
computes ρmax

servi
for i ∈ R, the maximum attainable throughput for each service i that an agent

8 E. Caron, B. Depardon and F. Desprez

can offer under the assumption that all services receive an equal share.

Maximize µ
Subject to

(1) ∀i ∈ R µ ≤
ρmax

servi

ρ∗i
and µ ∈ [0, 1], ρmax

servi
∈ [0, ρ∗i]

(2) ∀i, i′ ∈ R
ρmax

servi

ρ∗i
=

ρmax
servi′

ρ∗i′
(3) 1 ≤ j ≤Mk

∑

i∈R ρmax
servi
×

(

wreqi
+ wrespi

w
+

2.mreqi
+ 2.mrespi

B

)

≤ 1

(L2)

When building the hierarchy, there is no point in allocating nodes to a service i if ρservi
gets

higher than ρmax
servi

. Hence, whenever a service has a throughput higher than ρmax
servi

, then we
consider that its value is ρmax

servi
when building the hierarchy. Thus, lines 7 and 8 in Algorithm 1

become:

7: if ρcomp
servi

≥ min
{

ρ∗i , ρ
max
servi

}

then

8: ρservi
← min

{

ρ∗i , ρ
max
servi

}

Building the hierarchy. Algorithm 2 presents how to build a hierarchy, it proceeds as follows.
We first try to give as many nodes as possible to the servers (line 4 to 7), and we try to build a
hierarchy on top of those servers with the remaining nodes (line 8 to 24). Whenever building a
hierarchy fails, we reduce the number of nodes available for the servers (line 24, note that we can
use a binary search to reduce the complexity, instead of decreasing by one the number of available
nodes). Hierarchy construction may fail for several reasons: no more nodes are available for the
agents (line 10), (L1) has no solution (line 12), or only chains of agents have been built, i.e., each
new agent has only one child (line 20). If a level contains agents with only one child, those nodes
are set as available for the next level, as having chains of agents in a hierarchy is useless (line 23).
Finally, either we return a hierarchy if we found one, or we return a hierarchy with only one child
of each type i ∈ R, as this means that the limiting factor is the hierarchy of agents. Thus, only
one server of each type of service is enough, and we cannot do better than having only one agent.

Correcting the throughput. Once the hierarchy has been computed, we need to correct the
throughput for services that were limited by the agents. Indeed, the throughput computed using
(L2) may be too restrictive for some services. The values obtained implied that we had effectively
an equal ratio between obtained throughput over requested throughput for all services, which may
not be the case if a service requiring lots of computation is deployed alongside a service requiring
very few computation. Hence, once the hierarchy is created, we need to compute what is really
the throughput that can be obtained for each service on the hierarchy. To do so, we simply use
our agent model, with fixed values for ρservi

for all i ∈ R such that the throughput of i is not
limited by the agents, and we try to maximize the values of ρservi

for all services that are limited
by the agents. We use linear program L3 and Algorithm 3 for this purpose.

Hierarchical Middleware on a Homogeneous Platform 9

Algorithm 2 Build hierarchy

1: N ← |V | − 1 // One node for an agent, |V | − 1 for the servers
2: Done← false

3: while N ≥ |R| and not Done do

4: Use Algorithm 1 to find the server repartition with N nodes
5: nbUsed← number of nodes used by Algorithm 1
6: M0 ← nbUsed
7: Set all variables: ni(0), aj(0), δj

i (0), Chldj
i (0) and cj

l (0)
8: k ← 1
9: Mk ← |V | − nbUsed

10: while Mk > 0 and not Done do

11: Compute level k using linear program (L1)
12: if level k could not be built (i.e., (L1) failed) then

13: break

14: nbChains← count number of agents having only 1 child
15: availNodes←Mk

16: Mk ←
∑Mk

j=1
aj(k) // Get the real number of agents

17: if Mk == 1 then

18: Done← true // We attained the root of the hierarchy
19: break

20: if nbChains == Mk−1 then

21: break// This means we added 1 agent over each element at level k − 1
22: k ← k + 1
23: Mk ← availNodes−Mk−1 + nbChains
24: N ← nbUsed− 1
25: if Done then

26: return the hierarchy built with (L1) without chains of agents
27: else

28: return a star graph with one agent and one server of each type i ∈ R

Algorithm 3 Correct Throughput

1: RagLim ← i ∈ R such that service i is “agent limited”
2: Ag ← set of agents per level
3: while RagLim 6= ∅ do

4: µ, {ρmax
i } ← Solve linear program (L3)

5: Find i ∈ RagLim such that µ =
ρmax

i

ρ∗
i

6: ρservi
← ρmax

i

7: RagLim ← RagLim − {i}

10 E. Caron, B. Depardon and F. Desprez

Maximize µ
Subject to

(1) ∀i ∈ RagLim µ ∈ [0, 1], µ ≤
ρmax

i

ρ∗i
and 0 ≤ ρmax

i ≤ ρservi

(2) ∀k,∀j ∈ Ag[k]
∑

i∈R−RagLim

ρservi
.
δj
i (k).wreqi

+ wrespi

(∣

∣

∣Chldj
i (k)

∣

∣

∣

)

w
+

∑

i∈RagLim

ρmax
i .

δj
i (k).wreqi

+ wrespi

(∣

∣

∣Chldj
i (k)

∣

∣

∣

)

w
+

∑

i∈R−RagLim

ρservi
.
δj
i (k).mreqi

+
∣

∣

∣
Chldj

i (k)
∣

∣

∣
.mrespi

B
+

∑

i∈RagLim

ρmax
i .

δj
i (k).mreqi

+
∣

∣

∣
Chldj

i (k)
∣

∣

∣
.mrespi

B
+

∑

i∈R−RagLim

ρservi
.
δj
i (k).mrespi

+
∣

∣

∣
Chldj

i (k)
∣

∣

∣
.mreqi

B
+

∑

i∈RagLim

ρmax
i .

δj
i (k).mrespi

+
∣

∣

∣
Chldj

i (k)
∣

∣

∣
.mreqi

B
≤ 1

(L3)

In (L3), Equation (1) states that µ is the minimum of all ratios, (2) states that value of ρmax
i

cannot be greater than the throughput that is offered at the server level. The following equations
ensure that bandwidth and computing power aren’t violated.

4.4 A few discussion about this model

Reducing complexity The problem of using an MILP representation for our problem, is that
the time required to compute the solution may grow exponentially with the number of nodes.
Hence, if dealing with large number of nodes, we can reduce the time spent in searching the
hierarchy of agents by first constructing a few homogeneous sub-hierarchies, i.e., hierarchies within
which only one service is present, using d-ary trees (maybe not complete d-ary trees, but only
some of the lower levels, and keeping only nodes that are fully loaded, i.e., where the degree d is
attained). Doing so will reduce the number of levels we will need to build using MILP, and should
give a good solution.

Messages without a fixed size In this model, we supposed that the size of the reply messages
was fixed, i.e., that whatever the number of servers, the hierarchy always returns only one choice
to the client. We could also modify our model in the case where the size of return messages in
the hierarchy grows linearly with the number of servers found so far. The middleware could also
return to the client the full list of servers. Hence, at each level of the hierarchy the reply message
would grow. This can easily be taken into account in our model. Let Cptji (k) be the number of

servers of type i in the hierarchy under element j at level k. For level k = 0 we set Cptji (0) = 1 if

node j is a server of type i, otherwise we set Cptji (0) = 0. For k > 0, i ∈ R, 1 ≤ j ≤ Mk we have

Cptji (k) =
∑Mk−1

l=1
Cptli(k − 1)× cj

l (k).
Then, we would need to change the equations for the sending and receiving time at the agent

level with the following ones:

∑

i∈R ρservi
.δj

i (k).mreqi
+

∑

i∈R ρservi
.mrespi

.
∑Mk−1

l=1
cj
l (k).Cptli(k − 1)

B
(12)

Hierarchical Middleware on a Homogeneous Platform 11

∑

i∈R ρservi
.mrespi

.
∑Mk−1

l=1
cj
l (k).Cptli(k − 1) +

∑

i∈R ρservi
.
∣

∣

∣
Chldj

i (k)
∣

∣

∣
.mreqi

B
(13)

Extending the model to heterogeneous machines. The model and the algorithms can
easily be extended to support the case where each machine has a different computing power wj ,
but are still connected with the same bandwidth B. Indeed, we only need to replace w by wj

in all the previous agents equations, replace equation (1) by
wappi

+|Si|.wprei
P

j∈Si
wj

(with Si the set of

servers of type i), and modify Algorithm 1 so as to take into account the power of the nodes (for
example by sorting the nodes by increasing power) to be able to deal with heterogeneous machines
interconnected with a homogeneous network. Note that in this model Remark 4.1 is no longer
relevant.

5 Comparing the model with the behavior of Diet

Diet follows the model presented in Section 3: whenever a requests arrives at an agent, it is
forwarded only to its underlying children that declared having this service in their underlying
hierarchy. We ran some experiments to assess the fact that an agent forwards only to the rightful
children a request.

We deployed two kinds of hierarchies, and used TAU [?] to retreive the number of instructions
executed per request per LA. The first one has 1 MA, 2 LA and under each LA n SeD, but only 1
service is present under each LA, see Figure 2. The second hierachy has 1 MA, 1 LA and n SeD

per service (we used 2 services), note that in this case, the LA’s degree is twice as large as the
degree of each LA in the first case, see Figure 3. We then made 10 requests per service.

LA0

SeD1 SeD1

LA1

SeD2

MA

... ...SeD2

Figure 2: Platform 1: 1 MA, 2 LA, n SeD, 2 services

LA0

SeD1 SeD1 SeD2

MA

... ...SeD2

Figure 3: Platform 2: 1 MA, 1 LA, 2n SeD, 2 services

12 E. Caron, B. Depardon and F. Desprez

Figures 4 and 5 respectively show the total number of instructions per request for each LA,
and the total number of cycles per request for each LA. As can be seen, the work required to deal

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 5 10 15 20 25 30 35
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

N
um

be
r

of
 in

st
ru

ct
io

ns

Number of SeD

1 MA, 1 or 2 LA and 2*n SeD (2 services)

Total instructions per request LA, LA 0 (1 MA, 2 LA)
Total instructions per request LA, LA 1 (1 MA, 2 LA)

Total instructions per request LA (1 MA, 1 LA)

Figure 4: Total number of instructions per request for each LA

with one request is almost the same for each LA, whatever the platform used. If Diet was not
following the model depicted in Section 3.2, but instead would forward the requests to all children,
the work required for the LA of the second hierarchy should have been twice as much as for the
LA of the first hierarchy (as the degree is twice as large).

In platform 1, each LA received only 10 requests, whereas in platform 2, the LA received 20
requests.

6 Benchmarking the platform

6.1 Platform

We used a 79-nodes cluster present in the Grid’5000 experimental platform [4]: the cluster Sagit-
taire from the Lyon site. Each node has an AMD Opteron 250 CPU at 2.4GHz, with 1MB of cache
and 2GB of memory. All those nodes are connected on a Gigabit Ethernet network supported by
an Extreme Networks Blackdiamond 8810. Hence, for this platform our fully homogeneous, fully
connected platform assumption holds (we ran bandwidth tests using iPerf1 to confirm that there
really was a Gigabit network between any two machines).

We measured the computing capacity of the nodes with HPL2 (along with the Altas3 version
of BLAS) we found a mean value of 3.249 Gflops.

1http://sourceforge.net/projects/iperf/
2http://www.netlib.org/benchmark/hpl/
3http://math-atlas.sourceforge.net/

http://sourceforge.net/projects/iperf/
http://www.netlib.org/benchmark/hpl/
http://math-atlas.sourceforge.net/

Hierarchical Middleware on a Homogeneous Platform 13

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 5 10 15 20 25 30 35
 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

N
um

be
r

of
 c

yc
le

s

Number of SeD

1 MA, 1 or 2 LA and 2*n SeD (2 services)

Total cycles per request LA, LA 0 (1 MA, 2 LA)
Total cycles per request LA, LA 1 (1 MA, 2 LA)

Total cycles per request LA (1 MA, 1 LA)

Figure 5: Total number of cycles per request for each LA

6.2 Impact of the bandwidth on the model

The bandwidth the message receive is not necessarily the maximum bandwidth attainable on the
cluster. Indeed, in order to have the full links capacity, one has to transmit large messages. In our
case messages in the hierarchy are quite small (a few kilobits), hence we need to determine the
bandwidth received by the messages. We used NWS4 to determine the bandwidth when sending
messages of different size. Figures 6, 7 and 8 show the impact of the bandwidth on the model: the
red and green line present respectively the theoretical dgemm and Fibonacci throughput, and the
red and green points represent respectively the experimental throughput for dgemm and Fibonacci
during the experiment.

Figure 6 presents the results obtained when using a bandwidth of 1033Mb.s−1 in the model:
maximum bandwidth measured on the cluster. Figure 7 presents the results for a bandwidth of
53Mb.s−1 bandwidth measured with NWS for 1kb messages. And finally, Figure 8 presents the
results for a bandwidth of 186.7Mb.s−1: bandwidth measured with NWS for 8kb messages, i.e.,
the buffer size just above the messages size (around 5kb), the minimum buffer size of the system
is 4kb, hence when using messages of about 5kb, the system buffer increases up to 8kb. As can be
seen, the results with 186.7Mb.s−1 are the most accurate.

4http://nws.cs.ucsb.edu/ewiki/

http://nws.cs.ucsb.edu/ewiki/

14 E. Caron, B. Depardon and F. Desprez

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09

’30_BW_1033/DGEMM.throughput’
’30_BW_1033/FIBO.throughput’

DGEMM theo
FIBO theo

Figure 6: Throughputs obtained when modeling with 1033Mb.s−1

Hierarchical Middleware on a Homogeneous Platform 15

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09

’30_BW_53/DGEMM.throughput’
’30_BW_53/FIBO.throughput’

DGEMM theo
FIBO theo

Figure 7: Throughputs obtained when modeling with 53Mb.s−1

16 E. Caron, B. Depardon and F. Desprez

 0

 500

 1000

 1500

 2000

 2500

 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09 1.2544e+09

’30_BW_190/DGEMM.throughput’
’30_BW_190/FIBO.throughput’

DGEMM theo
FIBO theo

Figure 8: Throughputs obtained when modeling with 186.7Mb.s−1

Hierarchical Middleware on a Homogeneous Platform 17

7 Benchmarking the Diet elements

Throughout the rest of the paper, we will denote by dgemm x the fact of calling the dgemm service
on a x × x matrix, and Fibonacci x the fact of calling the Fibonacci service for computing the
Fibonacci number for n = x.

7.1 Computation/communication models versus experiments

Figures 9 and 10 present the comparison between the theoretical model of communication/computation
and the experimental results. As can be seen, the serial model, i.e., send or receive or compute,
single port is the one that best matches the experimental results.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Number of nodes

DGEMM throughput: experimental, and different computation/communication models

Experimental
Serial

Comp/comm parallel
Parallel

Figure 9: dgemm experimental, and theoretical throughput with the different models.

7.2 Messages

We used tcpdump and wireshark to analyze the messages sent between the agent and the SeD.
Figures 11 and 12 present the messages exchanged when requesting a service (respectively for
DGEMM and Fibonacci). Table 1 presents the messages size for both dgemm and Fibonacci
services.

Service mreqi
mrespi

dgemm 5.136× 10−3 5.456× 10−3

Fibonacci 4.176× 10−3 5.456× 10−3

Table 1: Messages size in Mb for dgemm and Fibonacci services.

18 E. Caron, B. Depardon and F. Desprez

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Number of nodes

Fibonacci throughput: experimental, and different computation/communication models

Experimental
Serial

Comp/comm parallel
Parallel

Figure 10: Fibonacci experimental, and theoretical throughput with the different models.

MA LA SeD

ping (146)

getRequest (402)

noException (94)

ping (146)

getRequest (402)

noException (94)

getResponse (458)

getResponse (458)

printList (134)
printList (134)

noException (90)
noException (90)

Figure 11: Messages exchanged during a request for service dgemm on a hierarchy composed of 1
MA, 1 LA and 1 SeD. Numbers in brackets represent the size of the message in bytes.

Hierarchical Middleware on a Homogeneous Platform 19

MA LA SeD

ping (146)

getRequest (282)

noException (94)

ping (146)

getRequest (282)

noException (94)

getResponse (458)

getResponse (458)

printList (134)
printList (134)

noException (90)
noException (90)

Figure 12: Messages exchanged during a request for service Fibonacci on a hierarchy composed of
1 MA, 1 LA and 1 SeD. Numbers in brackets represent the size of the message in bytes.

7.3 SeD

In order to benchmark the SeDs, we used a two steps approach. The first step consisted in finding
what was the required number of clients to load a SeD (i.e., obtaining the maximum throughput,
without having too much variations on the throughput value). Then, we deploy a new platform,
and launch the number of clients found in the previous step, and determine using Diet statistics,
the model parameters model.

We deploy a platform composed of 1 MA, 1 LA and 1 SeD. Then, we run threaded clients to
load the platform. A threaded client launches a new thread every second until attaining its total
number of allowed thread. We launch a client, then wait for it to run all its thread, and wait 20
seconds more for the throughput to stabilize, then we run a new client on another node. We run
enough clients to fully load the platform. Once all the clients are run, we let the system work for
60 seconds before cleaning the platform. The number of threads per client depends on the type
of service (for a dgemm on a large matrix, a client cannot have too many threads, otherwise it will
start to swap).

7.3.1 Determining the necessary number of clients for dgemm

dgemm 10 we ran 5 clients, each having 40 threads. Figure 13 presents the throughput. The
maximum throughput is attained at about 90s. Hence, the maximum number of threads we need
is 70 spread on two nodes.

dgemm 100 we ran 10 clients, each having 20 threads. Figure 14 presents the throughput. The
maximum throughput is attained at about 80s. Hence, the maximum number of threads we need
is 40 spread on two nodes.

dgemm 500 we ran 40 clients, each having 5 threads. Figure 15 presents the throughput. The
maximum throughput is attained at about 70s. Hence, the maximum number of threads we need
is 15 spread on 3 nodes.

20 E. Caron, B. Depardon and F. Desprez

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
/s

)

Time (s)

DGEMM 10 throughput

Figure 13: dgemm 10 throughput

7.3.2 Determining the necessary number of clients for Fibonacci

FIBO 20 we ran 4 clients, each having 50 threads. Figure 16 presents the throughput. The
maximum throughput is attained at about 220s. Hence, the maximum number of threads we need
is 170 spread on 5 nodes.

FIBO 30 we ran 4 clients, each having 50 threads. Figure 17 presents the throughput. The
maximum throughput is attained at about 50s. Hence, the maximum number of threads we need
is 50 on 2 nodes.

FIBO 40 we ran 4 clients, each having 50 threads. Figure 18 presents the throughput. The
maximum throughput is attained at about 10s. Hence, the maximum number of threads we need
is 10 on 1 nodes.

7.3.3 Benchmarking

We then ran the previously found number of clients for each kind of service, and let them send
requests for 60 seconds. During this time, we collected statistics on the time required by the SeD

to process a request, and to solve a request. Table 2 and 3 present the mean time for getRequest
(the time to process a request) and solve (the time to solve a request), respectively for dgemm and
Fibonacci services.

Hence, the values in MFlops presented in tables 4 and 5.

Hierarchical Middleware on a Homogeneous Platform 21

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
/s

)

Time (s)

DGEMM 100 throughput

Figure 14: dgemm 100 throughput

Nb requests getRequest solve

dgemm 10 286050 0.000415694734846 0.00319375696017
dgemm 100 16633 0.000314177963958 0.0585402570871
dgemm 500 536 0.000297451642022 0.656850664473

Table 2: dgemm mean getRequest and solve times (in s).

Nb requests getRequest solve

FIBO 20 305711 0.000401932459236 0.00507951654684
FIBO 30 14477 0.000253283154893 0.165682609844
FIBO 40 115 2.28923300038e−5 4.77842594437

Table 3: FIBO mean getRequest and solve times (in s).

getRequest solve

dgemm 10 0.0784808320277 0.602963382785
dgemm 100 0.0625602101851 11.6567398347
dgemm 500 0.164611652527 363.505383958

Table 4: dgemm mean getRequest and solve required computing power (in MFlops).

22 E. Caron, B. Depardon and F. Desprez

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
/s

)

Time (s)

DGEMM 500 throughput

Figure 15: dgemm 500 throughput

getRequest solve

FIBO 20 0.0467540134516 0.590864906532
FIBO 30 0.0205522633808 13.4440548822
FIBO 40 0.00812040104002 1695.01029392

Table 5: FIBO mean getRequest and solve required computing power (in MFlops).

7.4 Agent

We deploy a platform composed of 1 MA, 1 LA and n SeD. Then we run threaded clients to load
the platform. We launch all clients, then wait 10s for the clients to finish to run their threads, then
we conduct the measurements for 60s. As we aim at loading the agent, we need lots of requests.
Hence, we run only small services at the SeD level: the client call a dgemm on a 10× 10 matrix, or
request to solve the Fibonacci number for x = 20. The number of threads per client depends on
the type of service, and is set to 170 threads on 5 nodes for FIBO 20, and 70 threads on 2 nodes
for dgemm 10.

Service wreqi
wrespi

dgemm 0.398057810949015 0.2370227507159
FIBO 0.376124815390629 0.235280539487372

Table 6: Agents parameters

Hierarchical Middleware on a Homogeneous Platform 23

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
/s

)

Time (s)

FIBO 20 throughput

Figure 16: FIBO 20 throughput

Service wreqi
wrespi

dgemm 0.230450419663851 0.0694153594307296
FIBO 0.235280539487372 0.0676731482022025

Table 7: Agents parameters when removing the communication time

24 E. Caron, B. Depardon and F. Desprez

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
/s

)

Time (s)

FIBO 30 throughput

Figure 17: FIBO 30 throughput

Hierarchical Middleware on a Homogeneous Platform 25

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
/s

)

Time (s)

FIBO 40 throughput

Figure 18: FIBO 40 throughput

26 E. Caron, B. Depardon and F. Desprez

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 2 4 6 8 10 12 14 16

T
im

e
(s

)

Number of children

Time taken to process a request at the agent level (DGEMM)

Experimental minus communication time
Raw experimental values

Linear fit minus communication time
Linear fit on raw values

Figure 19: Agent’s time to process a dgemm request.

Hierarchical Middleware on a Homogeneous Platform 27

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 2 4 6 8 10 12 14 16

T
im

e
(s

)

Number of children

Time taken to process a request at the agent level (Fibonacci)

Experimental minus communication time
Raw experimental values

Linear fit minus communication time
Linear fit on raw values

Figure 20: Agent’s time to process a FIBO request.

28 E. Caron, B. Depardon and F. Desprez

8 Experimental Results

In order to validate our model, we conducted experiments with Diet on the French experimen-
tal testbed Grid’5000 [4]. After a phase of benchmarking for the Diet elements, the services
(dgemm [13] and computation of the Fibonacci number using a naive algorithm), and the platform;
we generated hierarchies for a number of nodes ranging from 3 to 50 (even though the algorithm
is based on an MILP, it took only a few seconds to generate all the hierarchies).

Our goal here is to stress Diet, so we use relatively small services. We compared the throughput
measured and predicted for various services combinations:

• dgemm 100× 100 and Fibonacci 30 (medium size services)

• dgemm 10× 10 and Fibonacci 20 (small size services)

• dgemm 10× 10 and Fibonacci 40 (small size dgemm, large size Fibonacci)

• dgemm 500× 500 and Fibonacci 20 (large size dgemm, small size Fibonacci)

• dgemm 500× 500 and Fibonacci 40 (large size dgemm, large size Fibonacci)

8.1 Results dgemm 100 Fibonacci 30

 210

 220

 230

 240

 250

 260

 270

 280

 290

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 100, FIBO 30, 3 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 21: Throughputs for services dgemm 100 and Fibonacci 30, on 3 nodes.

Figures 21 to 24 present the results when requesting concurrently services dgemm 100 and
Fibonacci 30. Table 8 sums up the results. The results are quite close to the expected throughput,
even when the hierarchy as two levels of agents: for 20 nodes, the agent hierarchy contained 1 MA
and 3 LA. Over 20 nodes, the algorithm returned the same hierarchy as with 20 nodes. Figure 25
presents graphically the results of Table 8.

Hierarchical Middleware on a Homogeneous Platform 29

 440

 460

 480

 500

 520

 540

 560

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 100, FIBO 30, 5 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 22: Throughputs for services dgemm 100 and Fibonacci 30, on 5 nodes.

No. nodes Client Theoretical Mean Median Std Dev Relative Error

3
dgemm 272.924 278.0 278 4.4 1.87%
Fibonacci 238.317 242.5 242 11.2 1.76%

5
dgemm 534.758 543.2 544 6.1 1.58%
Fibonacci 470.144 476.1 477 10.7 1.26%

10
dgemm 1027.75 984.9 995 49.5 4.17%
Fibonacci 915.364 912.9 922 52.1 0.26%

20
dgemm 1699.05 1624.4 1666 114.7 4.39%
Fibonacci 1738.56 1699.0 1735 114.0 2.28%

Table 8: Comparison between theoretical and experimental throughputs, for dgemm 100 Fibonacci

30. Relative error: |Theoretical−Mean|
Theoretical

.

30 E. Caron, B. Depardon and F. Desprez

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 100, FIBO 30, 10 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 23: Throughputs for services dgemm 100 and Fibonacci 30, on 10 nodes.

Hierarchical Middleware on a Homogeneous Platform 31

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 100, FIBO 30, 20 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 24: Throughputs for services dgemm 100 and Fibonacci 30, on 20 nodes.

32 E. Caron, B. Depardon and F. Desprez

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

3 5 10 20

T
hr

ou
gh

pu
t

Number of nodes

DGEMM 100 FIBO 30

DGEMM theoretical
FIBO theoretical

DGEMM experimental
FIBO experimental

Figure 25: Comparison theoretical/experimental results, for dgemm 100 Fibonacci 30.

Hierarchical Middleware on a Homogeneous Platform 33

8.2 Results dgemm 10 Fibonacci 20

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 10, FIBO 20, 3 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 26: Throughputs for services dgemm 10 and Fibonacci 20, on 3 nodes.

No. nodes Client Theoretical Mean Median Std Dev Relative Error

3
dgemm 2486.33 3166.5 3157 319.7 27.4%
Fibonacci 2486.33 3164.2 3191 231.3 27.3%

Table 9: Comparison between theoretical and experimental throughputs, for dgemm 10 Fibonacci

20. Relative error: |Theoretical−Mean|
Theoretical

.

Figure 26 presents the results when requesting concurrently services dgemm 10 and Fibonacci
20. Table 8 sums up the results. For really small services such as presented here, the error increases
greatly. Clearly here the problem lies in a bad estimation of the costs incurred by this kind of
requests, i.e., really small requests in terms of required computation at the server level are harder
to benchmark correctly. The limiting factor is the agent, hence, over 3 nodes the hierarchy always
contained only 3 nodes: 1 MA and 1 SeD for each service.

34 E. Caron, B. Depardon and F. Desprez

8.3 Results dgemm 10 Fibonacci 40

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 10, FIBO 40, 3 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 27: Throughputs for services dgemm 10 and Fibonacci 40, on 3 nodes.

No. nodes Client Theoretical Mean Median Std Dev Relative Error

3
dgemm 3752.54 4773.5 5853 325.5 27.2%
Fibonacci 1.92 2.2 2 2.33 14.6%

5
dgemm 3752.54 4842.7 4856 212.2 29.1%
Fibonacci 5.75 6.35 6 2.4 10.4%

10
dgemm 3752.54 4805.9 4854 292.5 28.1%
Fibonacci 15.32 16.8 18 7.3 9.7%

20
dgemm 3752.54 4828.9 4859 279.4 28.7%
Fibonacci 34.44 37.2 37 3.0 8.0%

30
dgemm 3752.54 4811.2 4882 358.2 28.2%
Fibonacci 53.51 57.1 58 2.9 6.7%

40
dgemm 3752.54 4613.4 4739 386.2 22.9%
Fibonacci 72.55 71.5 72 4.9 1.4%

50
dgemm 3258.15 4037.0 4072 433.9 23.9%
Fibonacci 91.54 93.6 95 8.8 2.3%

Table 10: Comparison between theoretical and experimental throughputs, for dgemm 10 Fibonacci

40. Relative error: |Theoretical−Mean|
Theoretical

.

Figures 27 to 33 present the results when requesting concurrently services dgemm 10 and Fi-
bonacci 40. Table 10 sums up the results. The Fibonacci service closely follows the model, whereas

Hierarchical Middleware on a Homogeneous Platform 35

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 10, FIBO 40, 5 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 28: Throughputs for services dgemm 10 and Fibonacci 40, on 5 nodes.

the DGEMM service parts from it due to benchmarking problems. Figure 34 presents graphically
the results of Table 10.

36 E. Caron, B. Depardon and F. Desprez

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 10, FIBO 40, 10 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 29: Throughputs for services dgemm 10 and Fibonacci 40, on 10 nodes.

Hierarchical Middleware on a Homogeneous Platform 37

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 10, FIBO 40, 20 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 30: Throughputs for services dgemm 10 and Fibonacci 40, on 20 nodes.

38 E. Caron, B. Depardon and F. Desprez

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 10, FIBO 40, 30 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 31: Throughputs for services dgemm 10 and Fibonacci 40, on 30 nodes.

Hierarchical Middleware on a Homogeneous Platform 39

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 10, FIBO 40, 40 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 32: Throughputs for services dgemm 10 and Fibonacci 40, on 40 nodes.

40 E. Caron, B. Depardon and F. Desprez

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 10, FIBO 40, 50 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 33: Throughputs for services dgemm 10 and Fibonacci 40, on 50 nodes.

Hierarchical Middleware on a Homogeneous Platform 41

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

3 5 10 20 30 40 50
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
G

E
M

M
 th

ro
ug

hp
ut

F
IB

O
 th

ro
ug

hp
ut

Number of nodes

DGEMM 10 FIBO 40

DGEMM theoretical
FIBO theoretical

DGEMM experimental
FIBO experimental

Figure 34: Comparison theoretical/experimental results, for dgemm 10 Fibonacci 40.

42 E. Caron, B. Depardon and F. Desprez

8.4 Results dgemm 500 Fibonacci 20

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 20, 3 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 35: Throughputs for services dgemm 500 and Fibonacci 20, on 3 nodes.

No. nodes Client Theoretical Mean Median Std Dev Relative Error

3
dgemm 8.9 8.8 9 3.3 1.1%
Fibonacci 4034.6 5318.1 5366 372.4 31.8%

5
dgemm 26.7 26.5 27 3.6 0.7%
Fibonacci 4034.6 5351.8 5328 206.9 32.6%

10
dgemm 70.95 68.8 69 4.8 3.0%
Fibonacci 4034.6 5221.0 5258 264.4 26.4%

20
dgemm 158.1 153.3 153 10.9 3.0%
Fibonacci 3856.3 4851.8 4865 339.1 25.8%

30
dgemm 235.2 224.0 228 23.8 4.7%
Fibonacci 4034.6 4845.85 4946 289.3 20.1%

40
dgemm 311.0 281.35 291 55.6 9.5%
Fibonacci 2539.3 2391.6 2466 473.8 5.8%

50
dgemm 385.5 311.7 328 63.2 19.1%
Fibonacci 2694.3 2973.3 2960 352.1 10.4%

Table 11: Comparison between theoretical and experimental throughputs, for dgemm 500 Fibonacci

20. Relative error: |Theoretical−Mean|
Theoretical

.

Figures 35 to 41 present the results when requesting concurrently services dgemm 500 and Fi-
bonacci 20. Table 11 sums up the results. Here the small service also suffers from the benchmarking

Hierarchical Middleware on a Homogeneous Platform 43

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 20, 5 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 36: Throughputs for services dgemm 500 and Fibonacci 20, on 5 nodes.

problems. dgemm results diverges a bit from the theoretical predictions. This is certainly due to
the fact that our model does not explicitly take into account the client/server communications
(they are implicitly taken into account in the “time” required by the server to serve a request).
Figure 42 presents graphically the results of Table 11.

44 E. Caron, B. Depardon and F. Desprez

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 20, 10 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 37: Throughputs for services dgemm 500 and Fibonacci 20, on 10 nodes.

Hierarchical Middleware on a Homogeneous Platform 45

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 20, 20 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 38: Throughputs for services dgemm 500 and Fibonacci 20, on 20 nodes.

46 E. Caron, B. Depardon and F. Desprez

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 20, 30 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 39: Throughputs for services dgemm 500 and Fibonacci 20, on 30 nodes.

Hierarchical Middleware on a Homogeneous Platform 47

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 20, 40 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 40: Throughputs for services dgemm 500 and Fibonacci 20, on 40 nodes.

48 E. Caron, B. Depardon and F. Desprez

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 20, 50 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 41: Throughputs for services dgemm 500 and Fibonacci 20, on 50 nodes.

Hierarchical Middleware on a Homogeneous Platform 49

 0

 50

 100

 150

 200

 250

 300

 350

3 5 10 20 30 40 50
 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

D
G

E
M

M
 th

ro
ug

hp
ut

F
IB

O
 th

ro
ug

hp
ut

Number of nodes

DGEMM 500 FIBO 20

DGEMM theoretical
FIBO theoretical

DGEMM experimental
FIBO experimental

Figure 42: Comparison theoretical/experimental results, for dgemm 500 Fibonacci 20.

50 E. Caron, B. Depardon and F. Desprez

8.5 Results dgemm 500 Fibonacci 40

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 40, 3 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 43: Throughputs for services dgemm 500 and Fibonacci 40, on 3 nodes.

No. nodes Client Theoretical Mean Median Std Dev Relative Error

3
dgemm 8.9 8.7 8 3.3 2.2%
Fibonacci 1.9 2.1 1 2.7 10.5%

5
dgemm 8.9 8.2 8 3.8 7.9%
Fibonacci 5.7 6.3 7 3.2 10.5%

10
dgemm 17.8 17.1 17 4.6 3.9%
Fibonacci 13.4 14.5 15 4.2 8.2%

20
dgemm 35.6 34.6 36 6.0 2.8%
Fibonacci 28.7 31.2 31 4.4 8.7%

30
dgemm 44.5 44.5 45 4.7 0.0%
Fibonacci 45.9 48.5 48 3.4 5.7%

40
dgemm 62.1 61.8 62 6.3 0.5%
Fibonacci 61.1 63.9 64 3.6 4.6%

50
dgemm 79.7 79.5 80 5.1 0.3%
Fibonacci 76.4 76.6 77 3.9 0.3%

Table 12: Comparison between theoretical and experimental throughputs, for dgemm 500 Fibonacci

40. Relative error: |Theoretical−Mean|
Theoretical

.

Figures 43 to 49 present the results when requesting concurrently services dgemm 500 and
Fibonacci 40. Table 12 sums up the results. In these experiments, the experimental results closely

Hierarchical Middleware on a Homogeneous Platform 51

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 40, 5 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 44: Throughputs for services dgemm 500 and Fibonacci 40, on 5 nodes.

follows the model, with sometimes less than 0.5% of relative error. Figure 50 presents graphically
the results of Table 12.

52 E. Caron, B. Depardon and F. Desprez

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 40, 10 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 45: Throughputs for services dgemm 500 and Fibonacci 40, on 10 nodes.

Hierarchical Middleware on a Homogeneous Platform 53

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 40, 20 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 46: Throughputs for services dgemm 500 and Fibonacci 40, on 20 nodes.

54 E. Caron, B. Depardon and F. Desprez

 25

 30

 35

 40

 45

 50

 55

 60

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 40, 30 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 47: Throughputs for services dgemm 500 and Fibonacci 40, on 30 nodes.

Hierarchical Middleware on a Homogeneous Platform 55

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 40, 40 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 48: Throughputs for services dgemm 500 and Fibonacci 40, on 40 nodes.

56 E. Caron, B. Depardon and F. Desprez

 60

 65

 70

 75

 80

 85

 90

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 500, FIBO 40, 50 nodes

DGEMM
FIBO

DGEMM(x)
FIBO(x)

Figure 49: Throughputs for services dgemm 500 and Fibonacci 40, on 50 nodes.

Hierarchical Middleware on a Homogeneous Platform 57

 0

 10

 20

 30

 40

 50

 60

 70

 80

3 5 10 20 30 40 50

T
hr

ou
gh

pu
t

Number of nodes

DGEMM 500 FIBO 40

DGEMM theoretical
FIBO theoretical

DGEMM experimental
FIBO experimental

Figure 50: Comparison theoretical/experimental results, for dgemm 500 Fibonacci 40.

58 E. Caron, B. Depardon and F. Desprez

8.6 Clients parameters used for the experiments

In this section, we list the parameters used for the clients for each of the previously presented
experiments. Table 13 presents the number of multithreaded clients used for each experiment: one
client was launched on a physical node, and each client had a certain number of threads. Each
thread continuously sent requests to the Diet hierarchy.

Experiment Client 3 5 10 20 30 40 50

dgemm 100, Fibonacci 30
dgemm 2/20 4/20 4/40 6/32 - - -
Fibonacci 2/25 4/25 4/50 4/50 - - -

dgemm 10, Fibonacci 20
dgemm 3/29 - - - - - -
Fibonacci 2/29 - - - - - -

dgemm 10, Fibonacci 40
dgemm 2/35 2/35 2/35 2/35 2/35 2/35 2/35
Fibonacci 1/10 1/30 1/80 1/80 1/80 1/10 1/10

dgemm 500, Fibonacci 20
dgemm 5/9 8/9 10/9 28/7 40/8 70/7 64/8
Fibonacci 5/34 5/34 5/34 3/30 2/30 2/30 2/30

dgemm 500, Fibonacci 40
dgemm 5/9 8/9 10/9 10/10 10/10 10/12 10/12
Fibonacci 1/10 1/30 4/20 4/20 4/20 5/20 5/20

Table 13: Number of nodes and threads per node used for the experiments. Format is the following:
nodes/threads, ’-’ means that the experiment wasn’t conducted as the hierarchy was the same as
with fewer nodes.

8.7 Relevancy of creating new agent levels

In order to validate the relevancy of our algorithm to create the hierarchies, we compared the
throughput obtained with our hierarchies, and the ones obtained with a star graph having exactly
the same repartition of servers obtained with our algorithm. Thus, we aim at validating the fact
that our algorithm sometimes creates several levels of agents whenever required. In fact in the
previous experiments, this happens only for the following deployments:

• dgemm 100 Fibonacci 30 on 20 nodes: 1 MA and 3 LA

• dgemm 500 Fibonacci 20 on 30, 40 and 50 nodes: 1 MA and 2 LA

It is clear that with more nodes, the number of levels would increase.
Here are the results we obtained with such star graphs. We present the gains/losses obtained

by the star graph deployments compared to the results obtained with the hierarchies our algorithm
computed:

• dgemm 100 Fibonacci 30 on 20 nodes: we obtained a throughput of 911.95 for dgemm and
779.07 for Fibonacci. Hence a loss respectively of 43.8% and 54.1%.

• dgemm 500 Fibonacci 20 on 30 nodes: we obtained a throughput of 211.65 for dgemm and
3490.58 for Fibonacci. Hence a loss respectively of 5.5%, and 28%.

• dgemm 500 Fibonacci 20 on 40 nodes: we obtained a throughput of 238.1 for dgemm and
2476.9 for Fibonacci. Hence a loss of 15.4% for dgemm, and a gain of 3.6% for Fibonacci.

• dgemm 500 Fibonacci 20 on 50 nodes: we obtained a throughput of 184.68 for dgemm and
2494.0 for Fibonacci. Hence a loss respectively of 40.7% and 16.1%.

We can see from the above results that our algorithm creates new levels of agents whenever
required: without the new agent levels the obtained throughput can be much lower. This is due
to the fact that the MA becomes overloaded, and thus do not have enough time to schedule all
requests.

Hierarchical Middleware on a Homogeneous Platform 59

8.8 Relevancy of the servers repartition

We also compared the throughputs obtained by our algorithm, and the ones by a balanced star
graph (i.e., a star graph where all services received the same number of servers). A balanced star
graph is the naive approach that is generally used when the same throughput is requested for all
services, which is what we aimed at in our experiments. Figures 51 to 55 present the comparison
between the throughput obtained with both methods. As can be seen our algorithm gives better
results: the throughput is better on all but one experiment (dgemm 500 in the dgemm 500 Fibonacci
40 experiment), no more resources than necessary are used (in Figure 51, no more than 20 nodes
are required to obtain the best throughput, and in Figure 52 only 3 nodes). Our algorithm also
tries to balance the ρi

ρ∗
i

ratio without degrading the performances, whereas with the balanced star

graph adding more nodes can degrade the performances of both services.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

3 5 10 20 30 40 50
 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

d
g
e
m
m

 th
ro

ug
hp

ut

F
ib

on
ac

ci
 th

ro
ug

hp
ut

Number of nodes

dgemm 100 Fibonacci 30

dgemm our algorithm
Fibonacci our algorithm
dgemm balanced star

Fibonacci balanced star

Figure 51: Comparison: our algorithm and balanced star for dgemm 100, Fibonacci 30.

60 E. Caron, B. Depardon and F. Desprez

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

3 5 10 20 30 40 50
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

d
g
e
m
m

 th
ro

ug
hp

ut

F
ib

on
ac

ci
 th

ro
ug

hp
ut

Number of nodes

dgemm 10 Fibonacci 20

dgemm our algorithm
Fibonacci our algorithm
dgemm balanced star

Fibonacci balanced star

Figure 52: Comparison: our algorithm and balanced star for dgemm 10, Fibonacci 20.

Hierarchical Middleware on a Homogeneous Platform 61

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3 5 10 20 30 40 50
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

d
g
e
m
m

 th
ro

ug
hp

ut

F
ib

on
ac

ci
 th

ro
ug

hp
ut

Number of nodes

dgemm 10 Fibonacci 40

dgemm our algorithm
Fibonacci our algorithm
dgemm balanced star

Fibonacci balanced star

Figure 53: Comparison: our algorithm and balanced star for dgemm 10, Fibonacci 40.

62 E. Caron, B. Depardon and F. Desprez

 0

 50

 100

 150

 200

 250

 300

 350

3 5 10 20 30 40 50
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

d
g
e
m
m

 th
ro

ug
hp

ut

F
ib

on
ac

ci
 th

ro
ug

hp
ut

Number of nodes

dgemm 500 Fibonacci 20

dgemm our algorithm
Fibonacci our algorithm
dgemm balanced star

Fibonacci balanced star

Figure 54: Comparison: our algorithm and balanced star for dgemm 500, Fibonacci 20.

Hierarchical Middleware on a Homogeneous Platform 63

 0

 20

 40

 60

 80

 100

 120

3 5 10 20 30 40 50
 0

 10

 20

 30

 40

 50

 60

 70

 80

d
g
e
m
m

 th
ro

ug
hp

ut

F
ib

on
ac

ci
 th

ro
ug

hp
ut

Number of nodes

dgemm 500 Fibonacci 40

dgemm our algorithm
Fibonacci our algorithm
dgemm balanced star

Fibonacci balanced star

Figure 55: Comparison: our algorithm and balanced star for dgemm 500, Fibonacci 40.

64 E. Caron, B. Depardon and F. Desprez

8.9 Elements influencing the throughput

It isn’t straightforward to obtain the best throughput out of a given hierarchy. Several parameters
have to be taken into account in order to obtain the best throughput. We give here a list of some
of the problems we encountered while trying to obtain the best throughput.

Bad scheduling The basic scheduling implemented within Diet relies on the time of the last
request a SeD has solved: when a request is sent down the hierarchy, each SeD replies the time
since last solve, i.e., the time elapsed since the SeD has solved a request. Hence, when multiple
requests are sent in the hierarchy, the SeD can reply the same value of time since last solve for
multiple requests, and thus the same SeD is likely to be chosen for a lot of requests. This of course,
may overload some SeD and do not give any load to the other SeD. Hence, in order to cope with
this, we need to activate an option of Diet which allows a client to make its own scheduling: the
client keeps a local list of available SeD for the service, and choose the server in a round robin
fashion (which is what is implied by our model, as all servers are meant to have the same amount
of load). Figures 56 and 57 presents the throughput obtained on a mixed hierarchy containing
both Fibonacci and dgemm services, when using or not the scheduling at the client level. Exactly
the same number of clients have been used for both experiments, and the same hierarchy has been
used as well. We can see that the throughput is better when using the scheduling at the client
level in two ways: first it is higher, and secondly it is less perturbed.

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 100 throughput with and without client scheduling

DGEMM with client scheduling
DGEMM without client scheduling

Figure 56: Throughput for dgemm 100 with and without client scheduling.

Logging Turning on or off the logging in Diet greatly influences the obtained throughput.
Figure 58 presents the throughput obtained when turning on the logging on a platform on 30
nodes. Figure 59 presents the throughput obtained on the same platform, with the same number

Hierarchical Middleware on a Homogeneous Platform 65

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

FIBO 30 throughput with and without client scheduling

FIBO with client scheduling
FIBO without client scheduling

Figure 57: Throughput for Fibonacci 30 with and without client scheduling.

of clients, but when turning off the logging. As can be seen the throughput is greatly influenced by
the logging facility. Indeed, several log messages are sent by each element of the hierarchy whenever
a request is sent and solved. We observe a peak between 40 and 50 seconds on Figure 58, this
behavior is typical from configurations with logging on, on some other experiments we obtained
such peaks several times.

Number of clients The number of clients involved in the system also influences the throughput.
The first point is of course the fact that too few clients won’t send enough requests in the system
to fully load it. Conversely, too many clients will overload the system as no queuing is done at
the SeD level. Hence, in order to find the best throughput we need to find the correct number
of clients. One more point has to be taken into account, is that having lots of clients with each
sending a request at a time is more expensive than having less clients, but threaded clients that are
able to send several requests in parallel. Figure 60 presents the throughput obtained for services
dgemm 100 and Fibonacci 30 with 150 clients per service, all clients being deployed on 40 nodes.
Figure 61 presents the throughput obtained on the same platform, but with threaded clients: 10
dgemm clients with 15 threads each, and 2 Fibonacci clients with 75 threads each, a node is used
for each client. Each thread can send a single request in the system at a given time (i.e., a new
request can only be sent when the previous one has been solved). Hence, the two configurations
are equivalent in terms of number of “clients”, i.e., the number of requests that can be sent to
the hierarchy at a given time. What can be seen is that with threaded clients, the throughput is
higher, and more stable.

omniORB configuration omniORB has by default some limits on the number of threads
CORBA clients and servers can use at the same time. This can limit the throughput of the

66 E. Caron, B. Depardon and F. Desprez

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 100, FIBO 30 throughput with logging

DGEMM
FIBO

Figure 58: Throughput for dgemm 100, Fibonacci 30. With logging on.

platform, especially if “large” data transfers have to take place (this is the case for example with
dgemm 500). Thus, in order to improve the throughput, we need to increase the number of threads
clients and servers can use. This is done respectively with maxGIOPConnectionPerServer (default
value: 5), and maxServerThreadPoolSize (default value: 100). We set those values respectively
to 100 and 1000. With these values, we gained around 17% - 18% on the number of requests per
seconds.

Hierarchical Middleware on a Homogeneous Platform 67

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 100, FIBO 30 throughput without logging

DGEMM
FIBO

Figure 59: Throughput for dgemm 100, Fibonacci 30. With logging off.

68 E. Caron, B. Depardon and F. Desprez

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 100, FIBO 30 throughput with ’normal’ clients

DGEMM
FIBO

Figure 60: Throughput for dgemm 100, Fibonacci 30. 150 dgemm and FIBO “normal” clients on 40
different nodes.

Hierarchical Middleware on a Homogeneous Platform 69

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Time (s)

DGEMM 100, FIBO 30 throughput with threaded clients

DGEMM
FIBO

Figure 61: Throughput for dgemm 100, Fibonacci 30. 10 dgemm threaded clients (15 threads each),
and 2 Fibonacci threaded clients (75 threads each). Each client is on a separate node.

70 E. Caron, B. Depardon and F. Desprez

9 Conclusion

In this paper we presented a computation and communication model for hierarchical middleware,
when several services are available in the middleware. We proposed an algorithm to find a hi-
erarchy that gives the best obtained throughput to requested throughput ratio for all services.
The algorithm uses a bottom-up approach, and is based on an MILP to successively determine
levels of the hierarchy. Our experiments on a real middleware, Diet, show that the obtained
throughput closely follows what our model predicts and that our bottom-up algorithm provides
excellent performances. We clearly showed that it adds new levels of agents whenever required,
and that it outperforms the classical approach of deploying the middleware as a balanced star
graph. Finally, the experiments allowed us to determine several elements that have a great impact
on the throughput.

As future works, we intend to run experiments on larger platforms, with “bigger” services.
Deployment on homogeneous machines is only the first step that allowed us to validate our model,
we intend to extend our model and algorithms to fully heterogeneous platforms.

10 Acknowledgment

Experiments presented in this paper were carried out using the Grid’5000 experimental testbed,
being developed under the INRIA ALADDIN development action with support from CNRS, RE-
NATER and several Universities as well as other funding bodies (see https://www.grid5000.fr).

References

[1] Abelkader Amar, Raphaël Bolze, Yves Caniou, Eddy Caron, Benjamin Depardon, Jean-
Sébastien Gay, Gaël Le Mahec, and David Loureiro. Tunable scheduling in a GridRPC
framework. Concurrency and Computation: Practice and Experience, 20(9):1051–1069, 2008.

[2] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi, Z. Shi,
and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1. Innovative Computing Dept. Technical
Report ICL-UT-02-05, University of Tennessee, Knoxville, TN, June 2002.

[3] Fran Berman, Geoffrey Fox, and Anthony J. G. Hey. Grid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[4] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frederic Desprez, Emmanuel
Jeannot, Yvon Jégou, Stéphane Lanteri, Julien Leduc, Noredine Melab, Guillaume Mornet,
Raymond Namyst, Pascale Primet, Benjamin Quetier, Olivier Richard, El-Ghazali Talbi,
and Touché Irena. Grid’5000: a large scale and highly reconfigurable experimental grid
testbed. International Journal of High Performance Computing Applications, 20(4):481–494,
November 2006.

[5] Laurent Broto, Daniel Hagimont, Patricia Stolf, Noel Depalma, and Suzy Temate. Auto-
nomic management policy specification in tune. In SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, pages 1658–1663, New York, NY, USA, 2008. ACM.

[6] Yves Caniou, Eddy Caron, FrÃ c©dÃ c©ric Desprez, Hidemoto Nakada, Keith Seymour, and
Yoshio Tanaka. Recent Developments in Grid Technology and Applications, chapter High
performance GridRPC middleware. Nova Science Publishers, April 2009. To appear.

[7] E. Caron, P.K. Chouhan, and A. Legrand. Automatic deployment for hierarchical network
enabled servers. In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th
International, pages 109–, April 2004.

https://www.grid5000.fr

Hierarchical Middleware on a Homogeneous Platform 71

[8] Eddy Caron, Pushpinder Kaur Chouhan, and Holly Dail. GoDiet : A deployment tool
for distributed middleware on grid’5000. In IEEE, editor, EXPGRID workshop. Experimen-
tal Grid Testbeds for the Assessment of Large-Scale Distributed Apllications and Tools. In
conjunction with HPDC-15., pages 1–8, Paris, France, June 19th 2006.

[9] Eddy Caron and Frédéric Desprez. DIET: A scalable toolbox to build network enabled servers
on the grid. International Journal of High Performance Computing Applications, 20(3):335–
352, 2006.

[10] Henri Casanova and Jack Dongarra. Netsolve: a network server for solving computational
science problems. In Supercomputing ’96: Proceedings of the 1996 ACM/IEEE conference on
Supercomputing (CDROM), page 40, Washington, DC, USA, 1996. IEEE Computer Society.

[11] P.K. Chouhan. Automatic Deployment for Application Service Provider Environments. PhD
thesis, PhD thesis, Ecole Normale Supérieure de Lyon, 2006.

[12] Pushpinder Kaur Chouhan, Holly Dail, Eddy Caron, and Frédéric Vivien. Automatic middle-
ware deployment planning on clusters. Int. J. High Perform. Comput. Appl., 20(4):517–530,
2006.

[13] J. Dongarra et al. Basic linear algebra subprograms technical forum standard. International
Journal of High Performance Applications and Supercomputing, 16(1):1–111, 2002.

[14] Areski Flissi and Philippe Merle. A generic deployment framework for grid computing and
distributed applications. In Proceedings of the 2nd International OTM Symposium on Grid
computing, high-performAnce and Distributed Applications (GADA’06), volume 4279 of Lec-
ture Notes in Computer Science, pages 1402–1411, Montpellier, France, nov 2006. Springer-
Verlag.

[15] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[16] Sébastien Lacour, Christian Pérez, and Thierry Priol. Generic application description model:
Toward automatic deployment of applications on computational grids. In 6th IEEE/ACM
International Workshop on Grid Computing (Grid2005), Seattle, WA, USA, November 2005.
Springer-Verlag.

[17] J. P. Morrison, B. Clayton, D. A. Power, and A. Patil. Webcom-G: grid enabled metacom-
puting. Neural, Parallel Sci. Comput., 12(3):419–438, 2004.

[18] Keith Seymour, Craig Lee, Frédéric Desprez, Hidemoto Nakada, and Yoshio Tanaka. The
end-user and middleware apis for GridRPC. In Workshop on Grid Application Programming
Interfaces, In conjunction with GGF12, Brussels, Belgium, 2004.

[19] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-g: A reference
implementation of RPC-based programming middleware for grid computing. Journal of Grid
Computing, 1(1):41–51, 03 2003.

[20] Yoshio Tanaka, Hiroshi Takemiya, Hidemoto Nakada, and Satoshi Sekiguchi. Design, imple-
mentation and performance evaluation of gridrpc programming middleware for a large-scale
computational grid. In GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, pages 298–305, Washington, DC, USA, 2004. IEEE Computer Society.

[21] Asim YarKhan, Jack Dongarra, and Keith Seymour. Gridsolve: The evolution of a network
enabled solver. Grid-Based Problem Solving Environments, pages 215–224, 2007.

	1 Introduction
	2 Model assumptions
	3 Hierarchy model
	3.1 Overall throughput
	3.2 Hierarchy elements model
	3.2.1 Server model
	3.2.2 Agent model

	4 Automatic planning
	4.1 Servers repartition
	4.2 Agents hierarchy
	4.3 Building the whole hierarchy
	4.4 A few discussion about this model

	5 Comparing the model with the behavior of Diet
	6 Benchmarking the platform
	6.1 Platform
	6.2 Impact of the bandwidth on the model

	7 Benchmarking the Diet elements
	7.1 Computation/communication models versus experiments
	7.2 Messages
	7.3 SeD
	7.3.1 Determining the necessary number of clients for dgemm
	7.3.2 Determining the necessary number of clients for Fibonacci
	7.3.3 Benchmarking

	7.4 Agent

	8 Experimental Results
	8.1 Results dgemm 100 Fibonacci 30
	8.2 Results dgemm 10 Fibonacci 20
	8.3 Results dgemm 10 Fibonacci 40
	8.4 Results dgemm 500 Fibonacci 20
	8.5 Results dgemm 500 Fibonacci 40
	8.6 Clients parameters used for the experiments
	8.7 Relevancy of creating new agent levels
	8.8 Relevancy of the servers repartition
	8.9 Elements influencing the throughput

	9 Conclusion
	10 Acknowledgment

