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Abstract

In this paper, we study the impact of tasks reallocation onto a grid
platform. More precisely, we target a multi-cluster environment where
clusters can be homogeneous or heterogeneous, and use different policies
for their local resources management.
In this context, we propose a reallocation mechanism that migrates jobs
in waiting state from one cluster to another one. We perform simulations
using real traces of jobs to study the benefit of reallocation. We compare
two different algorithms providing the reallocation mechanism, each with
several heuristics to schedule jobs.
Results show that in some cases it is possible to obtain a substantial gain
on the average job response time (almost up to a factor of four). In the
other cases, the reallocation mechanism is beneficial most of the time for
the jobs of the users. It is thus interesting to implement a reallocation
mechanism in a Grid framework.

Keywords: Reallocation, batch schedulers, metascheduler, computation grids

Résumé

Dans ce rapport, nous étudions l’impact de la réallocation de tâches
dans un environnement de grille. Plus précisément, la plate-forme cible
qui nous intéresse est un environnement multi-grappes où les grappes
peuvent être homogènes ou hétérogènes et utilisent différentes politiques
d’ordonnancement local.
Dans ce contexte, nous proposons un mécanisme de réallocation qui
migre des tâches qui n’ont pas encore commencé leur exécution, d’une
grappe à une autre. Nous réalisons des simulations utilisant des traces
provenant de plates-formes réelles pour étudier l’impact de la réalloca-
tion. Nous comparons deux algorithmes de réallocation, chacun utilisant
différentes heuristiques pour sélectionner l’ordre dans lequel ordonnancer
les tâches.
Les résultats montrent que dans certains cas il est possible d’avoir un
gain important sur le temps moyen de réponse des tâches (allant jusqu’à
presque un facteur quatre). Dans la majorité des autres cas, la réallo-
cation apporte un bénéfice pour les tâches des utilisateurs. Il est donc
intéressant d’implanter un tel mécanisme dans un intergiciel de grille.

Mots-clés: Réallocation, batch schedulers, métaordonnanceur, grilles de calcul
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1 Introduction

In order to meet the evergrowing needs in computing capabilities of scientists of all horizons,
new computing paradigms have been explored. Supercomputers were developed to perform
massive parallel computations but their cost (acquisition and maintenance) is still prohibitive.
Another approach was developed later and was called the Grid. The Grid is the aggregation
of heterogeneous computing resources connected through high speed wide area networks.
Computing resources can be sequential or parallel architectures (clusters of workstations or
parallel machines), the later being generally managed by a local resources manager, also called
batch scheduler. In such a case, the submission of a job necessitates a number of processors
and a walltime. The walltime is the expected execution time for this job. Usually, it is given
by the user or computed using data mining techniques.

In most local resources management systems, when the walltime is reached, the job is
killed, so users tend to over-evaluate the walltime to be sure that their job finishes its exe-
cution. Furthermore, in [23] authors show that resources management systems are not able
to put up with burst of submissions. A paper by Beltrán and Guzmán [2] presents the im-
pact of the workload variability on the local resources management system and show that the
variability leads to bad scheduling decisions.

In this paper, we place ourselves in a multi-cluster Grid connected through a high band-
width network. We propose a reallocation mechanism that should better take into account the
errors on walltime and the load bursts in the local resource management systems by moving
waiting jobs from one cluster to another. The mechanism we propose is at the middleware
level and thus it can be used to connect different clusters together while each cluster keeps
its local scheduling or resource allocation policies. Each job submitted onto the platform
will be executed on a cluster chosen by the middleware without intervention from the person
submitting the job.

We propose two reallocations algorithms using six different heuristics each. We evaluate
them by comparing them on different metrics to an execution where reallocation is not per-
formed. Preliminary work was proposed in [4] and we extend this work in several directions.
We evaluate different algorithms to implement the reallocation mechanism, different heuris-
tics to select the jobs, the automatic adjustment of the walltime to the speed of the cluster,
and several other optimizations.

The remainder of the paper is as follows. In Section 2, we present the architecture we
chose to implement reallocation algorithms and mechanisms. We also detail the different
(re)scheduling heuristics used and compared in this work. Then we explain the experimental
framework in Section 3, giving information on the simulator that we developed, on the plat-
forms simulated with real-world traces, scenarios of experiments that were conducted as well
as the metrics on which results are compared in Section 4. In Section 5 we present related
work and we conclude in Section 6.

2 Tasks Reallocation

In this section, we describe the proposed tasks reallocation mechanism. First, we present the
architecture (Section 2.1) of the components of the system. Then we present the different
algorithms used for the tasks reallocation (Section 2.2).



2 Y. Caniou, G. Charrier, F. Desprez

2.1 Architecture of the Solution

The architecture that we propose in order to manage task reallocation, is close to the GridRPC
standard from the Open Grid Forum. Thus it can be implemented in GridRPC compliant
middleware such as Diet [7] and Ninf [20].

The architecture relies on three main components: servers which are deployed on com-
puting resources, an agent (or a set of distributed agents), and clients that send computing
requests. Servers and their services are registered to the agent. When a user performs a
request, the client contacts the agent which can perform some meta-scheduling in order to
determine the best server according to a given metric. Usually, the server able to finish the
job the earliest is chosen. In such a case, transfers with the agent are required to communicate
information concerning the service and monitoring and/or prediction information. Then the
identity of the chosen server is sent back to the client that submits its request. Eventually
some data transfers are also performed. Finally, the server returns the results to the client if
needed.

Because such a middleware is deployed on existing resources and has limited possibilities
of action on the local resources managers, we developed a mechanism that only uses simple
queries such as submission, cancellation, and estimation of the completion time.

The server deployed onto the frontal of the parallel resource is in charge of the interactions
with the resource manager. It also computes each estimation of the walltime hence depend-
ing on cluster characteristics (in our work, we focus on processor speed, but better models
involving application detailed modeling with communications information with regard to the
architecture, bandwidth, and latency of the parallel resource can be used).

The agent (meta-scheduler) has to assign to a computing resource any incoming job sent
by the client. Different scheduling algorithms can be deployed. The two simplest are Random
(choose a resource randomly) and Round Robin (each cluster is selected one after the other).
Such mapping heuristics are sometimes available because monitoring may not be implemented
or available on some servers. A Grid middleware may also use other online algorithms such
as Minimum Completion Time (MCT) if some monitoring and performance prediction are
available (see [17] for a taxonomy of online and offline heuristics). In this study, we consider
that the meta-scheduler uses a MCT policy.

2.2 Algorithms

This section presents two versions of the reallocation algorithm (Section 2.2.1) and the heuris-
tics used in the algorithm to select jobs (Section 2.2.2).

In the first version, the algorithm gets a copy of the list of jobs stored in the waiting
queues of the local resources management systems on the different clusters and will try to
reallocate the jobs. The second version of the algorithm cancels all the waiting jobs in all the
queues and resubmits jobs in a new order.

2.2.1 Reallocation Algorithms

Algorithm 1 describes the reallocation algorithm in its first version. The algorithm works
as follows: it gets all jobs in the waiting queues of all clusters; it selects a job with the
implemented scheduling heuristic; if it is possible to submit the job somewhere else with a
better estimated completion time (ECT) of at least a minute, it cancels the job at its current
location and submits it on the other cluster; finally, it starts again on the remaining jobs.
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Algorithm 1 Reallocation algorithm.

l ⇐ waiting jobs on all clusters
while l 6= ∅ do

Choose j ∈ l according to a scheduling heuristic
if j.newECT + 60 < j.currentECT then

Cancel j on its current cluster
Submit j to the new cluster

end if
l = l \ {j}

end while

To have a better idea of what is done, consider an example of two batch systems with
different loads (see Figure 1). At time t, task f finishes before its walltime, thus releasing
resources. Task j is then scheduled earlier by the local batch scheduler. When a reallocation
is triggered by the meta-scheduler at t1, it reallocates tasks h and i to the second batch system
because their expected completion time is better there. To reallocate the tasks, h and i are
sequentially canceled on the first batch and then submitted to the second. In this example,
the two clusters are homogeneous so the tasks have the same execution time on both clusters.
In an heterogeneous context, the length of the tasks would change between the clusters. A
task starting earlier on a cluster does not implies that it will also finish earlier.
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Figure 1: Example of reallocation between two clusters.

Algorithm 2 is a reallocation algorithm with cancellation. It starts by canceling all jobs
in the waiting queues of all clusters. Then it selects a job according to a scheduling heuristic.
Finally it submits the job to the cluster giving the best estimated completion time before and
starts again on each of the remaining jobs.
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Algorithm 2 Reallocation algorithm with cancellation.

l ⇐ waiting jobs on all clusters
Cancel each job in l

while l 6= ∅ do
Choose j ∈ l using a heuristic
Submit j to the cluster according to a scheduling heuristic
l = l \ {j}

end while

The reallocation event in both versions of the algorithm is triggered periodically. In the
experiments presented in this paper, the frequency of reallocations is set to one hour. It is rare
enough not to constantly send requests to the local resources managers to obtain updates,
and is often enough to improve performances (see section 4.1 and 4.2).

2.2.2 Scheduling Heuristics

To choose the job that will be selected for reallocation, several heuristics are used: one online
heuristic and five offline heuristics. The online heuristic [21] takes jobs, one after another,
while the offline heuristics are executed on a set of jobs. Offline heuristics are supposed to
give better results, but their time complexity is bigger. The heuristics we compare are the
following:

MCT Online algorithm. Assigns a task to the cluster that gives the minimum expected
completion time. MCT takes jobs sequentially in their submission order.

MinMin/MaxMin Offline algorithms. Ask the expected completion time of all tasks and
selects the one with the minimum/maximum value. These heuristics try to give priority
to respectively small/large tasks.

MaxGain Offline algorithm. It gets the minimum expected completion time of each task.
Then it computes the gain of moving each task. The gain is the time in seconds that
the task would gain if it is reallocated (Gain = CurrentECT − NewECT ). The task
with the highest gain is selected and the heuristic starts again on the remaining tasks.

MaxRelGain Offline algorithm. Same as MaxGain, but divides the gain by the number of
processors of each task, thus preferring small tasks, except if a large task has a very
large gain.

Sufferage Offline algorithm. It gets the two best estimated completion times for each task,
computes the sufferage value as the difference between the two best estimated completion
times and selects the task with the maximum sufferage value.

Concerning the execution time for each heuristic during the rescheduling event, MCT is
the fastest. It takes the jobs in their arrival order without concern of the other jobs and
it is executed n times, with n the number of waiting jobs, so its complexity is O(n). The
offline heuristics on the other hand need to have information of all the jobs each time, so the
execution time is O(n2).
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3 Experimental framework

In this section we depict the experimental framework by presenting the architecture of the
simulator we used to run our experiments (Section 3.1), the simulated platforms (Section 3.2),
the jobs injected on those platforms (Section 3.3) and the metrics used to compare the heuris-
tics (Section 3.4).

3.1 Simulator

In order to simulate task reallocation in a distributed environment composed of several clus-
ters, we use Simgrid [8], a distributed environment simulator, and Simbatch, a batch systems
and parallel tasks simulator.

Simbatch [5] is a C API developed to facilitate the conception and evaluation of local
resources management systems algorithms [10]. It is built on top of the Simgrid library,
which provides simple network description models as well as host descriptions and is able to
take into account link contentions and latencies. Simbatch can simulate the main algorithms
used in batch schedulers such as First Come First Served (FCFS) and Conservative Back-
Filling (CBF). FCFS [22] gives the user the earliest slot at the end of the job queue. This
algorithm is available as default policy in most batch systems such as PBS [1], Sun Grid
Engine [12], Maui [14]. CBF [16] works almost like FCFS, but instead of choosing the slot
at the end of the job queue, if it can find a slot earlier in the queue (back-filling) without
delaying other jobs (Conservative), this slot is returned to the user. This scheduling algo-
rithm is available in batch systems such as Maui, Loadleveler [15], and OAR [6] among others.

The simulator is divided in three main components:

The server part is running on the frontal of a cluster and interacts with the batch system.
It is able to submit jobs, cancel a waiting job, return an estimation of the completion
time of a job (already submitted to the batch system or not) and return the list of jobs
in the waiting state.

The meta-scheduler part matches incoming jobs to a server according to a scheduling
heuristic and periodically reallocates jobs in waiting time on the platform using one of
the reallocation algorithms described in Section 2.2.1.

The client part sends jobs to the meta-scheduler. Jobs sent by the client are parallel rigid
jobs with a number of processors fixed in advance.

3.2 Platforms

We consider two platforms with different numbers of cores distributed on three sites. Each
platform is used in an homogeneous case (all clusters are similar in processor speed, but not
in number of processors) and in an heterogeneous case (clusters differs in terms of CPU speed
and number of processors).

The first platform corresponds to the simulation of three clusters of Grid’5000 [3]. The
three clusters are Bordeaux, Lyon, and Toulouse. Bordeaux is composed of 640 cores and is
the slowest cluster (if clusters are heterogeneous). Lyon has 270 cores and is 20% faster than
Bordeaux (in the heterogeneous case). Finally, Toulouse has 434 cores and is 40% faster than
Bordeaux (still in the heterogeneous case).
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Month/Site Bordeaux Lyon Toulouse Total

January 13084 583 488 14155

February 5822 2695 1123 9640

March 11673 8315 949 20937

April 33250 1330 1461 36041

May 6765 2179 1573 10517

June 4094 3540 1548 9182

Table 1: Number of jobs per month and in total for each site trace.

The second platform corresponds to experiments mixing the trace of Bordeaux from
Grid’5000 and two traces from the Parallel Workload Archive1. The three clusters are
Bordeaux, CTC, and SDSC. Bordeaux has 640 cores and is the slowest cluster. CTC has 430
cores and is 20% faster than Bordeaux. Finally, SDSC has 128 cores and is 40% faster than
Bordeaux.

3.3 Scenarios

We consider seven scenarios among which six scenarios use the traces of tasks submission on
a one month long period, and taken from the Grid’5000 platform. Traces contain the jobs of
the first six months of 2008. Table 1 gives the number of jobs per month on each cluster. The
seventh scenario is a six month long simulation using two traces from the parallel workload
archive (CTC and SDSC) and the trace of Bordeaux on Grid’5000. The trace from Bordeaux
contains 74647 jobs. The trace from CTC has 42873 jobs. The trace from SDSC contains
15615 jobs. Thus, the total number of jobs of the seventh scenario is 133135.

In our simulations, we consider that all jobs are submissions. Traces from Grid’5000

include advance reservations but we consider them as normal submissions. It should not
change the results because we compare simulations with other simulations. Furthermore,
note that we add a meta-scheduler to map the jobs onto clusters at submission time, as if a
grid middleware is used. In reality, users submit where they want (usually they submit to the
site closest to them).

The traces taken from the Parallel Workload Archive were taken in their standard original
format, i.e., they also contain “bad” jobs [11]: Since we want to reproduce the execution of
jobs on a cluster, we need to keep all the “bad” jobs removed in the clean version of the logs
because these jobs would have been submitted in reality.

3.4 Evaluation metrics

In order to evaluate the reallocation algorithm and the behavior of the scheduling heuristics,
we use different metrics. The first type of metrics is system centered metrics. The second
type is user centered metrics.

• System metrics

Jobs impacted by reallocation: The percentage of jobs whose completion time is
changed compared to an execution without reallocations. Only the jobs whose
completion time changes are interesting in our study. Note that we use a time

1http://www.cs.huji.ac.il/labs/parallel/workload/
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reference in this study to order performance of heuristics, but results on this metric
are not transitive.

Number of reallocations: Number of times jobs were moved. A job can be counted
several times if it was migrated several times. A small value is better because it
means that there will be less transfers.

• User metrics

Jobs finishing earlier: Percentage of jobs that finished earlier with reallocation than
without. This percentage is taken only from the jobs whose completion time
changed with reallocation. A value higher that 50% means that there were more
jobs early than late.

Gain on average job response time: Gain on average response time of the jobs
compared to the scenario without reallocation. The response time corresponds
to the time spent in the system from the submission to the completion [9]. The
gain is computed only for the jobs whose completion time changed. This is the
most important value for users because they generally want their jobs to finish as
soon as possible.

Figure 2 illustrates why there are jobs delayed and others finishing earlier onto a platform
composed of two clusters. At time 0 a reallocation event is triggered. A task is reallocated
from cluster 1 to cluster 2. Thus, some tasks of cluster 2 are advanced in the schedule. On
cluster 1, the task is back-filled. However, assume the task finishing at time 6 finishes at
time 2 because the walltime was wrongly defined (see the task with the dashed line). Thus,
because of the newly inserted task, the large task on cluster 1 is delayed (and all the tasks
after if there are some).

With FCFS, reallocation can also cause delay: if a job is sent to a cluster, all the jobs
submitted after may be delayed. Inversely, the job that was reallocated to another cluster
now leaves some free space and it may be used by other jobs to diminish their completion
time.

4 Results

In this section, we study the two versions of the reallocation algorithm onto several scenarios:
homogeneous or heterogeneous platforms; using FCFS or CBF as local resource manager;
using different sets of jobs traces; meta-heuristic implemented as a reallocation scheduling
policy. For a single experiment, each cluster uses the same batch algorithm. Thus, we have
performed a total of 364 experiments among which 28 experiments without reallocation (one
for each job trace, heterogeneity and batch algorithm) as reference experiments, against which
we compare our solutions.

First, we evaluate the reallocation algorithm without canceling the jobs in Section 4.1 and
then, in Section 4.2, we present the results on the algorithm with cancellation. Finally, we
compare our results two versions in the algorithm in Section 4.3.

4.1 Results without Cancellation

This section presents the results obtained for the different metrics for the reallocation without
cancellation of jobs (see Algorithm 1). The reallocation algorithm was triggered every hour
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Figure 2: Side effects of a reallocation.

Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct 3.75 13.49 21.95 36.58 23.81 24.87 17.07 20.22
MinMin 3.76 12.87 21.55 35.80 24.09 28.08 16.78 20.42
MaxMin 3.89 13.13 21.75 36.17 24.21 26.91 17.19 20.46
MaxGain 3.59 13.32 16.99 35.55 24.13 27.75 16.97 19.76

MaxRelGain 3.30 13.24 17.66 36.36 24.19 26.90 16.82 19.78
Sufferage 3.69 13.16 21.92 36.10 22.80 26.71 17.02 20.20

CBF

Mct 3.55 11.15 17.65 22.90 16.75 18.23 11.16 14.48
MinMin 3.54 11.31 17.67 21.37 16.42 17.84 11.22 14.20
MaxMin 3.75 11.51 17.72 22.54 16.00 19.38 11.15 14.58
MaxGain 3.40 11.21 14.26 20.64 16.30 17.71 11.25 13.54

MaxRelGain 3.10 11.29 14.35 22.36 16.53 17.16 11.11 13.70
Sufferage 3.55 11.36 17.70 23.19 16.83 18.25 11.10 14.57

Table 2: Percentage of jobs that have their completion time changed when reallocation is
performed on homogeneous platforms.

starting one hour after the first job submission.

Table 2 shows the percentage of jobs whose completion time changed on homogeneous
platforms when reallocation was performed. The percentage is quite low because quite a large
amount of jobs are able to start execution as soon as they are submitted. This percentage
is higher on platforms using FCFS. Indeed, jobs are not back-filled, thus waiting queues are
longer, and thus more jobs can be delayed and reallocated. The percentage of jobs impacted
when reallocation is performed mainly depends on the submissions. If the platform is quite
empty, submitted jobs will start execution as soon as they are submitted so reallocation will
not take them into account. On the other hand, when the platform is very loaded, most jobs
will not have the opportunity to be reallocated because it would not be possible for them to
finish earlier, thus reallocation will also not take them into account.

Table 3 shows the percentage of jobs whose completion time changed on heterogeneous
platforms when reallocation was performed. In the heterogeneous case, there are sometimes
more jobs whose completion time changed with CBF than with FCFS. This percentage is still
quite low because it depends partly on the submissions of the jobs. During low load, jobs
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Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct 10.46 11.54 19.68 16.98 16.16 22.54 29.23 18.08
MinMin 10.24 11.37 19.72 18.22 15.69 21.99 29.67 18.13
MaxMin 10.08 11.38 19.64 16.92 15.42 24.08 27.96 17.93
MaxGain 10.41 11.42 19.80 18.25 16.64 24.20 29.98 18.67

MaxRelGain 10.42 11.41 19.76 18.52 16.62 22.03 30.40 18.45
Sufferage 10.12 11.61 19.66 18.38 15.83 23.89 29.28 18.40

CBF

Mct 8.55 3.68 20.40 13.52 17.27 19.98 28.52 15.99
MinMin 8.36 3.55 20.46 12.79 17.12 20.01 29.34 15.95
MaxMin 8.10 3.38 20.61 13.91 17.05 21.93 28.08 16.15
MaxGain 8.46 3.41 20.70 13.77 18.50 22.59 29.04 16.64

MaxRelGain 8.46 3.55 20.69 14.03 18.30 22.04 29.08 16.59
Sufferage 8.11 3.59 20.58 12.84 17.51 19.84 28.64 15.87

Table 3: Percentage of jobs that have their completion time changed when reallocation is
performed on heterogeneous platforms.

Batch Heuristic jan feb mar apr may jun pwa-g5k

FCFS

Mct 237 132 782 3007 498 512 3734
MinMin 238 89 830 4882 687 612 4574
MaxMin 213 87 420 2599 423 430 3482
MaxGain 224 89 598 3393 666 541 3775

MaxRelGain 239 86 948 3300 714 613 4489
Sufferage 233 85 617 3052 504 498 3732

CBF

Mct 197 43 432 937 299 527 1601
MinMin 199 47 433 774 363 422 1738
MaxMin 193 60 440 631 294 451 1575
MaxGain 199 54 382 779 326 364 1733

MaxRelGain 209 51 416 878 340 383 1726
Sufferage 192 45 433 798 307 464 1595

Table 4: Number of reallocations on homogeneous platforms.

start execution as soon as they are submitted. When the platform is very loaded, waiting
queues are long and jobs have less chance to be reallocated because they would be submitted
at the end of other queues.

Tables 4 and 5 show the number of reallocations per experiment on homogeneous and
heterogeneous platforms respectively. Note that a same job can be reallocated several times.
In all cases, the number of reallocation is small relative to the number of tasks of each
experiment. On average, the number of reallocations corresponds to 2.3% and the maximum
value is 13.5%. The small number of reallocation implies that there would not be too many
reallocations of jobs between clusters thus not overloading the network.

Tables 6 and 7 show the percentage of jobs finishing earlier with reallocation than without
reallocation. This percentage only takes into account the jobs whose completion times changed
(cf. Tables 2 and 3). Thus, a value higher than 50 means that there are more than half of
the jobs that finish earlier with reallocation than without.

Table 6 shows the percentage of jobs finishing earlier with reallocation than without on
homogeneous platforms. In most cases there are more jobs finishing earlier than later. The
different heuristics behave differently depending on the trace. For example, MinMin is the
only heuristic that gives more jobs early in April with FCFS but is one of the two heuristics
that have more jobs late in June. On average, MinMin gives the bests results for FCFS by a
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Batch Heuristic jan feb mar apr may jun pwa-g5k

FCFS

Mct 195 18 294 1011 234 293 2026
MinMin 150 23 272 1171 441 315 2927
MaxMin 150 14 271 702 213 242 1929
MaxGain 140 20 224 934 367 222 2224

MaxRelGain 139 23 283 1072 678 274 2521
Sufferage 148 25 237 957 383 278 2098

CBF

Mct 194 8 47 266 235 191 1180
MinMin 148 7 52 298 177 210 1335
MaxMin 148 3 46 246 233 216 1217
MaxGain 151 3 64 304 228 208 1281

MaxRelGain 150 8 77 271 199 238 1375
Sufferage 147 8 57 199 200 238 1150

Table 5: Number of reallocations on heterogeneous platforms.

Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct 83.80 51.23 62.60 46.67 46.57 60.03 58.13 58.43
MinMin 82.52 61.69 64.16 50.47 51.60 49.50 60.30 60.03
MaxMin 84.03 60.79 55.51 46.80 45.94 53.50 57.70 57.75
MaxGain 82.48 71.81 44.25 45.38 42.24 47.45 58.55 56.02

MaxRelGain 81.80 73.12 57.52 46.23 46.11 54.09 58.98 59.69
Sufferage 82.18 62.30 54.23 42.98 48.29 51.37 59.85 57.31

CBF

Mct 76.10 72.74 68.04 52.26 52.89 59.44 48.83 61.47
MinMin 75.10 55.32 68.18 55.19 57.50 68.19 47.58 61.01
MaxMin 76.79 72.52 63.75 56.48 58.88 54.13 49.76 61.76
MaxGain 74.43 55.69 62.49 50.21 57.88 58.86 47.36 58.13

MaxRelGain 72.67 56.34 60.35 49.34 58.63 60.60 48.80 58.10
Sufferage 74.90 71.69 68.20 43.12 61.69 61.69 48.00 61.33

Table 6: Percentage of jobs finishing earlier when reallocation is performed on homogeneous
platforms.

few percents. On CBF platforms, heuristics based on the gain are usually less good than the
other heuristics. The other heuristics give similar results on average. MinMin differentiates
itself from the other with worse results in February, but better results in June.

Table 7 shows the percentage of jobs finishing earlier with reallocation than without on
heterogeneous platforms. In this case, MinMin is the best on average in both FCFS and
CBF platforms, and except in the case (homogeneous/apr) where all reallocation policies give
worst results on this metric, reallocation with the MinMin heuristic always improves the final
schedule. There are more cases where there are more jobs late than early with CBF than with
FCFS. We can see the impact of the batch algorithm on the reallocation results. Indeed, on
FCFS platforms, all results are negative for April while they are all positive with CBF. We
can see the opposite behavior in February or May.

The relative average response time is compared with no reallocation for the jobs whose
completion time changed. A value of 0.85 means that the reallocation provided a gain of
15% on the average response time of the jobs. A value higher than 1 means that the average
response time is bigger than without reallocation.

Table 8 shows the relative average response time of the heuristics on homogeneous plat-
forms. In the FCFS setup, MinMin gives the best results. It is the only heuristic than never
has a higher average response time than the experiments without reallocation, with a peak



Analysis of Tasks Reallocation in a Dedicated Grid Environment 11

Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct 62.16 65.86 60.96 42.94 54.33 59.13 52.44 56.83
MinMin 61.24 63.50 60.60 47.37 62.73 59.58 51.38 58.06
MaxMin 61.11 65.72 61.10 41.73 51.17 57.53 52.87 55.89
MaxGain 59.09 65.58 61.46 38.74 59.60 60.17 49.03 56.24

MaxRelGain 59.12 62.00 61.24 43.84 59.73 66.49 52.06 57.78
Sufferage 61.27 61.22 61.47 42.50 58.44 53.58 49.43 55.42

CBF

Mct 63.47 47.89 50.29 56.37 49.04 54.96 55.40 53.92
MinMin 62.42 61.11 50.40 59.34 50.28 55.77 53.62 56.13
MaxMin 62.95 48.16 50.06 57.38 49.50 51.07 54.24 53.34
MaxGain 60.15 48.33 49.76 61.97 51.08 48.51 53.85 53.38

MaxRelGain 60.07 46.20 49.77 62.86 48.86 51.04 53.61 53.20
Sufferage 63.15 46.82 49.86 59.52 48.32 57.77 54.68 54.30

Table 7: Percentage of jobs finishing earlier when reallocation is performed on heterogeneous
platforms.

Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct 0.82 1.07 1.08 1.25 0.92 0.97 0.81 0.99
MinMin 0.77 0.97 0.99 0.98 0.88 1.00 0.75 0.90
MaxMin 0.83 0.97 1.05 1.10 0.92 0.98 0.80 0.95
MaxGain 0.75 1.00 1.00 1.26 0.97 1.00 0.75 0.96

MaxRelGain 0.73 0.98 1.02 1.22 0.93 0.97 0.74 0.94
Sufferage 0.81 0.96 1.05 1.34 0.91 1.00 0.76 0.98

CBF

Mct 0.80 1.00 1.05 0.94 0.89 0.94 0.99 0.94
MinMin 0.80 0.99 1.04 0.85 0.86 0.93 1.02 0.93
MaxMin 0.80 1.00 1.03 0.93 0.84 0.94 1.00 0.94
MaxGain 0.77 1.00 1.01 1.01 0.89 0.95 0.99 0.95

MaxRelGain 0.75 1.00 1.04 1.09 0.88 0.95 0.97 0.95
Sufferage 0.80 1.01 1.02 1.03 0.83 0.95 1.03 0.95

Table 8: Relative average response time on homogeneous platforms.

performance of 23% for (FCFS/jan), achieving to beat MaxGain and MaxRelGain which are
a priori specifically designed for this metric. With CBF, the difference between heuristics
is smaller but MinMin still have the best average on the seven experiments by one percent.
MCT is the second best in average for CBF platforms, while it was the worst with FCFS.

Table 9 shows the relative average response time of the heuristics on heterogeneous plat-
forms. Here, MCT has the best average in both the FCFS and CBF setups. These good
results come from one experiment (January) where in both cases MCT improves a lot the
average response time while other heuristics give less satisfactory results. Without this exper-
iment, MCT would give results close to the other heuristics on average. On FCFS platforms,
MinMin and MaxRelGain perform well and are better than the other heuristics on average,
excluding MCT. On CBF platforms, all heuristics are close and none has a big advantage on
the others. Still, MCT has a 3% advantage on the second best and can improve the relative
average response time by 12% on average.

The previous tables (8 and 9) show that to diminish the average response time of jobs, the
choice of the heuristic can not really be made based on the results since they are too close.
Then, the heuristic of choice would be MCT because of its simplicity of implementation
compared to the others. Furthermore, average results of MCT on heterogeneous platforms
with CBF (which seem to be the most realistic platforms) are quite good, so this choice seems
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Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct 0.65 1.08 0.74 0.98 0.97 0.94 0.92 0.90
MinMin 0.98 1.17 0.77 0.93 0.86 0.93 0.92 0.94
MaxMin 0.99 1.11 0.73 1.20 1.00 0.94 0.95 0.99
MaxGain 0.93 1.10 0.73 1.30 0.93 0.93 0.94 0.98

MaxRelGain 0.93 1.15 0.75 0.97 0.91 0.89 0.92 0.93
Sufferage 0.98 1.19 0.74 1.11 0.94 0.97 0.96 0.98

CBF

Mct 0.66 0.94 0.71 0.85 1.11 0.94 0.96 0.88
MinMin 1.00 0.94 0.71 0.83 1.06 0.96 0.95 0.92
MaxMin 1.00 0.88 0.72 0.91 1.05 0.96 0.96 0.93
MaxGain 1.00 0.88 0.72 0.83 1.03 0.97 0.96 0.91

MaxRelGain 1.00 0.95 0.72 0.90 1.06 0.95 0.96 0.93
Sufferage 1.00 0.95 0.72 0.85 1.05 0.91 0.95 0.92

Table 9: Relative average response time on heterogeneous platforms.

Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct-C 11.36 24.53 23.02 36.36 24.68 29.46 19.43 24.12
MinMin-C 11.36 13.40 22.82 31.51 24.60 29.35 19.60 21.81
MaxMin-C 11.58 17.63 22.87 35.37 26.12 29.95 20.64 23.45
MaxGain-C 11.82 14.13 23.36 32.41 24.21 29.19 19.54 22.09

MaxRelGain-C 11.83 13.75 22.90 31.83 25.84 29.68 19.42 22.18
Sufferage-C 11.37 13.07 22.95 33.76 24.91 29.45 19.36 22.12

CBF

Mct-C 10.99 10.90 10.22 22.83 16.95 21.05 12.66 15.09
MinMin-C 11.00 12.77 17.50 22.35 17.76 21.28 12.63 16.47
MaxMin-C 11.18 10.91 10.29 21.96 18.14 20.92 12.32 15.10
MaxGain-C 11.23 10.87 17.49 21.60 18.87 21.04 11.21 16.04

MaxRelGain-C 11.24 11.03 17.66 21.81 18.50 20.62 11.17 16.00
Sufferage-C 11.14 10.87 10.11 23.00 17.75 21.08 12.47 15.20

Table 10: Percentage of jobs that have their completion time changed when reallocation is
performed on homogeneous platforms.

the best. It is possible to implement MinMin which usually gives better results but it will
make more requests to obtain estimations of the completion time of jobs.

4.2 Results with Cancellation

This section presents the results obtained on the different metrics for the reallocation algo-
rithm with cancellation (see Algorithm 2), thus heuristics are postfixed with “-C” in tables
presenting the results. As for the previous version of the algorithm, the reallocation is trig-
gered every hour.

Tables 10 and 11 show the percentage of jobs whose completion time changed on homo-
geneous and heterogeneous platforms when reallocation with cancellation is performed. The
percentage depends on the trace used and usually is between 10% and 30%. On both homo-
geneous and heterogeneous platforms, there are more jobs whose completion time changed
with reallocation with FCFS than with CBF. CBF is able to execute the jobs faster thanks
to back-filling, so the waiting queues are smaller.

Table 12 and 13 show the number of reallocations per experiment on homogeneous and
heterogeneous platforms. To count the number of reallocations, we save the location of a
job and if it is submitted on another cluster, we counts this as a reallocation. The number
of reallocations is small compared to the number of jobs per experiment. On average, the
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Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct-C 7.79 4.28 23.91 17.72 22.51 24.47 31.04 18.82
MinMin-C 7.89 4.65 8.44 19.47 24.16 24.59 32.16 17.34
MaxMin-C 7.82 4.12 19.13 18.19 24.95 26.85 31.54 18.94
MaxGain-C 8.02 5.79 7.90 17.78 24.86 25.58 31.19 17.30

MaxRelGain-C 8.04 4.95 7.83 17.99 22.66 24.89 32.25 16.94
Sufferage-C 7.83 4.15 18.76 19.73 23.14 26.79 32.06 18.92

CBF

Mct-C 6.86 3.13 18.84 14.50 21.64 22.58 30.20 16.82
MinMin-C 7.01 3.35 16.00 14.91 21.80 23.68 31.85 16.94
MaxMin-C 6.83 3.03 19.37 14.64 21.35 24.04 29.88 17.02
MaxGain-C 7.16 4.12 18.87 13.76 21.99 23.65 32.35 17.41

MaxRelGain-C 7.18 3.54 18.88 14.03 22.08 23.63 30.67 17.14
Sufferage-C 6.84 3.15 18.93 16.02 22.55 23.15 30.35 17.28

Table 11: Percentage of jobs that have their completion time changed when reallocation is
performed on heterogeneous platforms.

Batch Heuristic jan feb mar apr may jun pwa-g5k

FCFS

Mct-C 363 838 1432 6930 1573 2460 8317
MinMin-C 384 327 1411 3311 1563 2228 7791
MaxMin-C 410 1206 1466 8199 1441 2562 11821
MaxGain-C 585 365 1678 5495 1523 2653 9038

MaxRelGain-C 597 307 1476 6651 1463 2570 9881
Sufferage-C 474 362 1501 7318 1414 2542 8088

CBF

Mct-C 364 149 773 2486 594 1686 3299
MinMin-C 389 186 758 2112 693 1353 2899
MaxMin-C 424 182 714 1596 619 1091 3168
MaxGain-C 581 180 835 1651 705 1298 3851

MaxRelGain-C 578 180 807 2272 834 1361 3738
Sufferage-C 413 172 568 2231 706 1174 3454

Table 12: Number of reallocations on homogeneous platforms.

number of reallocations corresponds to 5.8% and the maximum is 28.8%. There are more
reallocations on FCFS platforms. It is for the same reason that more jobs had a different
completion time with FCFS than CBF. CBF executes jobs more quickly so the waiting queues
are smaller.

Table 14 shows the percentage of jobs finishing earlier with reallocation than without
on homogeneous platforms. The percentage of jobs finishing earlier with reallocation than
without is most of the time higher than 60%. There is only one case where there are more jobs
late than early, thus to the user point of view, more of his jobs finish sooner using reallocation.
The results with FCFS give MinMin and MaxGains heuristics as winners. On CBF platforms,
results are closer, but MinMin becomes the second worst heuristic on average.

Table 15 shows the percentage of jobs finishing earlier with reallocation than without on
heterogeneous platforms. There are a few cases where more jobs are late than early, but on the
average all heuristics give positive results, with around 10% finishing sooner when reallocation
with cancellation. MCT is the heuristic that produces the less jobs early on average. The
other heuristics give results close to one another.

Table 16 shows the relative average response time of the heuristics on homogeneous plat-
forms. On FCFS platforms, in the best case, the average response time of the jobs can be
divided by a factor of 4 (MinMin-C in April). The MinMin heuristic gives always a gain
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Batch Heuristic jan feb mar apr may jun pwa-g5k

FCFS

Mct-C 255 34 282 934 628 731 3082
MinMin-C 257 27 246 1379 724 1186 3362
MaxMin-C 258 31 431 1468 716 899 3416
MaxGain-C 326 41 276 1517 702 1025 4282

MaxRelGain-C 326 50 278 2022 856 1437 4620
Sufferage-C 260 44 369 1645 596 656 3056

CBF

Mct-C 248 7 141 512 262 491 1814
MinMin-C 250 12 186 501 230 455 1805
MaxMin-C 246 22 140 536 258 520 1758
MaxGain-C 329 30 175 690 329 570 2170

MaxRelGain-C 327 30 185 677 335 570 2447
Sufferage-C 250 14 180 446 238 505 1819

Table 13: Number of reallocations on heterogeneous platforms.

Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct-C 62.40 29.73 63.51 67.30 68.22 69.65 67.46 61.18
MinMin-C 63.18 62.07 64.09 89.85 73.91 74.99 70.11 71.17
MaxMin-C 61.99 52.41 63.28 68.65 65.89 66.91 60.62 62.82
MaxGain-C 63.90 60.87 63.40 80.09 75.69 73.54 72.76 70.04

MaxRelGain-C 63.82 80.68 59.16 83.08 73.43 71.52 69.56 71.61
Sufferage-C 62.52 55.71 62.09 70.73 67.25 67.34 68.45 64.87

CBF

Mct-C 61.70 74.22 66.50 51.24 67.02 67.36 52.06 62.87
MinMin-C 62.81 62.55 60.96 55.06 64.70 70.83 56.70 61.94
MaxMin-C 61.15 78.90 55.57 64.84 66.65 71.42 58.51 65.29
MaxGain-C 61.01 62.40 61.31 67.68 66.94 69.10 59.03 63.92

MaxRelGain-C 61.12 73.28 55.77 58.79 59.71 71.28 59.91 62.84
Sufferage-C 61.76 74.52 56.09 54.60 58.01 69.21 55.10 61.33

Table 14: Percentage of jobs finishing earlier when reallocation is performed on homogeneous
platforms.

Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct-C 53.94 41.89 55.12 47.08 49.45 71.12 54.95 53.36
MinMin-C 54.12 52.68 64.84 47.15 55.18 70.95 56.47 57.34
MaxMin-C 53.97 60.45 70.68 45.52 48.78 65.60 55.27 57.18
MaxGain-C 57.13 40.25 68.62 54.84 56.89 63.37 57.78 56.98

MaxRelGain-C 57.21 42.56 69.51 52.75 57.20 69.82 56.62 57.95
Sufferage-C 54.06 47.00 71.79 50.13 60.60 67.85 54.98 58.06

CBF

Mct-C 50.46 59.47 67.61 45.58 51.01 70.06 52.18 56.62
MinMin-C 50.35 64.40 63.62 55.94 60.05 71.02 53.53 59.84
MaxMin-C 50.57 68.26 66.86 49.99 49.76 65.43 55.30 58.02
MaxGain-C 52.81 66.25 67.82 52.98 54.17 69.38 54.67 59.73

MaxRelGain-C 52.66 63.64 67.79 53.22 57.06 70.12 54.32 59.83
Sufferage-C 50.72 67.66 67.71 51.94 49.54 68.94 55.87 58.91

Table 15: Percentage of jobs finishing earlier when reallocation is performed on heterogeneous
platforms.
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Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct-C 0.84 1.37 0.60 0.48 0.73 0.73 0.59 0.76
MinMin-C 0.83 0.71 0.57 0.26 0.69 0.68 0.52 0.61
MaxMin-C 0.86 1.57 0.62 0.50 0.75 0.75 0.70 0.82
MaxGain-C 0.86 0.79 0.59 0.35 0.66 0.71 0.55 0.64

MaxRelGain-C 0.87 0.75 0.58 0.37 0.65 0.68 0.54 0.63
Sufferage-C 0.89 0.84 0.62 0.49 0.70 0.77 0.57 0.70

CBF

Mct-C 0.88 0.88 0.85 0.91 0.77 0.82 0.90 0.86
MinMin-C 0.88 1.02 0.84 0.78 0.81 0.75 0.85 0.85
MaxMin-C 0.91 0.92 0.95 0.70 0.79 0.69 0.86 0.83
MaxGain-C 0.90 0.89 0.89 0.66 0.78 0.73 0.86 0.82

MaxRelGain-C 0.90 0.89 0.89 0.74 0.85 0.73 0.86 0.84
Sufferage-C 0.90 0.90 0.92 0.81 0.84 0.73 0.88 0.86

Table 16: Relative average response time on homogeneous platforms.

Batch Heuristic jan feb mar apr may jun pwa-g5k AVG

FCFS

Mct-C 0.56 1.04 0.63 0.52 0.93 0.81 0.84 0.76
MinMin-C 0.57 0.94 0.62 0.46 0.88 0.76 0.81 0.72
MaxMin-C 0.57 0.94 0.68 0.67 1.01 0.83 0.84 0.79
MaxGain-C 0.57 0.96 0.63 0.46 0.89 0.85 0.84 0.74

MaxRelGain-C 0.57 0.96 0.64 0.48 0.91 0.78 0.84 0.74
Sufferage-C 0.57 0.98 0.68 0.54 0.82 0.80 0.83 0.75

CBF

Mct-C 0.57 0.93 0.75 0.90 0.92 0.84 0.96 0.84
MinMin-C 0.57 0.92 0.77 0.82 0.88 0.83 0.94 0.82
MaxMin-C 0.57 0.93 0.77 0.90 0.92 0.84 0.94 0.84
MaxGain-C 0.58 0.95 0.75 0.87 0.93 0.86 0.94 0.84

MaxRelGain-C 0.57 0.95 0.75 0.86 0.93 0.83 0.95 0.83
Sufferage-C 0.57 0.91 0.76 0.82 0.91 0.85 0.94 0.82

Table 17: Relative average response time on heterogeneous platforms.

of at least 17% and is the best in all but one experiment. There are only two cases where
reallocation increased the average response time: in February with MCT and MaxMin. MCT
being slower is in concordance with its results from the percentage of jobs finishing early. 59%
of the jobs were late, so it seems normal that the relative average response time is higher. To
have a gain the jobs early should have a huge gain to compensate, which was not the case.
However, MaxMin had more jobs early than late, so it means that the jobs that were delayed
were delayed for a long time.

On CBF homogeneous platforms, there is only one case where the reallocation worsens
the average response time, but only by 2%. In the other cases, reallocation usually brings
an improvement of more than 10%. All heuristics give close results with CBF with a small
advantage for MaxGain.

Table 17 shows the relative average response time of the heuristics on heterogeneous
platforms. In all experiments, there are only two cases with an increase of the average
response time. When using FCFS, MinMin gives the best results and MaxMin the worst. On
CBF heterogeneous platforms, all heuristics give similar results on average, with a difference
between the best and the worse of less than 2%. There is no experiment with CBF were
reallocation gave worse results than the experiment without reallocation. The gain is always
at least 4%.

Finally, we can conclude that MCT or MinMin should be the heuristics to implement in a
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middleware able to perform reallocation with cancellation. Indeed, MCT is not the best one,
but it gives satisfactory results for a better time complexity. The only setup where it should
not be used (given the results of the experiments) is on an homogeneous platform with FCFS
batch managers. In the most realistic platform (heterogeneous and CBF) it gives good results
(all heuristics do). MinMin seems to be the best heuristic, but only by a small improvement
over the other heuristics.

4.3 Comparison

In this section, we give some points of comparison between the two versions of the realloca-
tion algorithm: without and with cancellation of the jobs in the batch waiting queues (see
Algorithms 1 and 2).

Concerning the percentage of jobs whose completion time changed on homogeneous plat-
forms, there are more jobs concerned with cancellation (see Tables 2 and 10). With both
batch algorithms there are almost always more jobs concerned with reallocation when there
is cancellation. In some cases, January for example, there are 8% more jobs concerned when
canceling. In other cases, April for example, there are less than 1% more jobs concerned. In
February with CBF, there are more jobs concerned by reallocation without cancellation. On
heterogeneous platforms with CBF, the percentage of jobs whose completion time changed
with reallocation is a little higher on average with cancellation than without (see Tables 3
and 11). This behavior is not always true, for example in January. With FCFS there are less
jobs on average whose completion time changed with cancellation.

On both homogeneous and heterogeneous platforms, the number of reallocations is higher
when cancellations are involved (see Tables 4, 5, 12, and 13). With cancellations, all waiting
queues are reduced to the currently running jobs only and when resubmitting, most jobs
can migrate. Without cancellation, the waiting queues stay full so chances for a job to be
reallocated are smaller. Reallocating without canceling induces less migrations.

The percentage of jobs early on an homogeneous platform using FCFS is higher with
cancellations (see Tables 6 and 14). When there are more jobs late than early without
cancellation, adding the cancellation correct this bad behavior and the results obtained are
better. However, MCT in February gives really worse results with cancellation so cancellation
can degrade performances. With CBF, the results are mostly a little better with cancellation.
When there are more jobs finishing late than early, cancellation reverses the results. For
example, for the six months experiments where all heuristics gave negative results we can see
an improvement of nearly 10%. On the average, the cancellation always improves the results
by a few percents.

On heterogeneous platforms, results (given in Tables 7 and 15) are different than on
homogeneous platforms. First, with FCFS, the results are often in favor of the reallocation
without cancellation. There is only a big improvement for reallocation with canceling in June.
For the 6-month experiment, results are a little better with cancellation, but only by a few
percents. On the average, results are mixed. Sometimes the cancellation improves the number
of jobs early, other times, it degrades it. With CBF, the cancellation improves the results on
average. If we consider each experiment separately, we can see a clear improvement in the
number of cases where reallocation brings a gain on the number of jobs completed earlier.

On the average, job response time on homogeneous platforms (see Tables 8 and 16),
cancellation brings a large improvement over the algorithm without cancellation. With FCFS
without cancellation, the maximum average gain is for MinMin with a gain of 10%. The
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maximum gain with cancellation is still MinMin but it brings an improvement of nearly 40%.
The worst heuristic on the average with cancellation is MaxMin, but it is still better than the
best heuristic without cancellation. There are only a few cases where the reallocation without
cancellation is better, all of them in January or February. In the CBF setup, there is still the
same comparison (worst with cancellation better than best without cancellation), but with
less difference. On homogeneous platforms, it is clearly beneficial to cancel and resubmit the
jobs.

Concerning heterogeneous platforms (see Tables 9 and 17), the average job response time
is also improved with cancellation. With FCFS, there is just one case where the cancellation
worsened the result (in May with MaxMin). In all the other cases it is better with cancellation.
With CBF, there are several cases where cancellation worsens the average response time of the
jobs by a few percents. They all occur in February, March or April. On average, cancellation
improves the results between 4 and 10%.

We can conclude that in the different cases studied here, cancellation usually brings im-
provement over the first version of the reallocation algorithm. The drawback of canceling
jobs and resubmitting them is that there are more reallocations, thus batch systems are issu-
ing more requests (submissions as well as cancellations). Another drawback of the canceling
version of the algorithm is that it can produce starvation. It is possible for a job to be can-
celed each time and resubmitted after new jobs. Starvation never occurred in the simulations
because there are phases of low load so waiting queues can be entirely executed.

The reallocation can be used to improve the average response time of the jobs with a
small number of reallocations. Consequently, it should be considered in Grids to improve
performance.

5 Related work

In [19] Sonmez et al. concentrate their study on the scheduling of parallel jobs onto several
heterogeneous multi-site environment, where each site has an homogeneous cluster of pro-
cessors. They use a meta-scheduler to select a cluster where to submit a job choosing the
less loaded one. In order to take advantage of the different sites, the heuristic is modified
to use multiple submissions on all or a subset of the sites to minimize the response time.
When a task starts, it is canceled on the other site. Then, they compare different resources
management algorithms and find that the conservative back-filling strategy is superior to the
aggressive back-filling. In our work, we use the reallocation to try to minimize the response
time while they rely on multiple submissions. Another difference is that our meta-scheduler
chooses the site with the minimum expected completion time while theirs use the site with
the less instantaneous load.

Netto and Buyya [18] study the rescheduling of co-allocated tasks on several sites. They
use flexible advance reservations to obtain the proper synchronization between sites. The
flexibility of the reservations provides the ability to change the processors mapping of the
reservations (to regroup a reservation on a single site) and the start time (if all needed re-
sources are available earlier than expected). In our work, there is no advance reservation and
tasks have to be on a single site. Once a task has been submitted, the only possible action
being the task cancellation in order to resubmit it on another site.

In [13], Guim and Corbalán present a detailed study of different meta-scheduling poli-
cies. The different policies include the Less-JobWaitTime, the Less-JobsInQueue, the Less-
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WotkLeft and Less-SubmittedJobs. Each task uses its own scheduler to be mapped on a
parallel resource. Once submitted, the task is managed by the local scheduler and is never
reallocated. The local policies are Shortest Job First and FCFS. In our work, we use the same
two level architecture: a global scheduler and a local one, but our global scheduler is cen-
tralized and it adapts to the current platform load and can reschedule and decide to migrate
tasks. Furthermore, local policies in our work are FCFS and CBF.

In [24], each cluster sends a snapshot of its state to a central scheduler. This data exchange
is done at fixed intervals. Then the central scheduler chooses jobs in round robin or fixed
order and tries to back-fill jobs in queues of other clusters. In this approach, computation
done by the central scheduler is enormous since it needs the Gantt chart of all sites and it
make all the computations itself. All the clusters are homogeneous in power and size. In our
work, the central scheduler just asks the local scheduler when a task would complete, but it
does not perform complex computations. Our algorithm without canceling is close to theirs
in the sense that we verify if a job can be moved to another cluster to finish earlier, but we
use different heuristics to select the jobs. The study we presented in our paper also takes into
account the heterogeneity between the sites.

Sonmez et al. [23] present a method to diminish the errors made during a jobs burst in a
multi-cluster environment. The method used consists in submitting the same job to several
clusters (from 2 to all clusters) and when a job starts, all the other copies are canceled. To
select the clusters, they use different heuristics such as MCT, Load Balancing, and Fastest
Processor First. This method provides good results but adds an important load to the local
resources management systems. Their approach is close to ours because it is also a middleware
on top of an existing architecture. They use the multiple submissions to diminish the job
response time while we use the reallocation mechanism. Our technique will keep the local
resources management system less loaded because each job is only in one queue, but it will
need more communications. With the multiple submissions, the first job that starts will
send cancellation messages to the other, so this technique is not well suited for heterogeneous
platforms where a job starting later can finish earlier.

6 Conclusion and perspectives

We presented two tasks reallocation algorithms and the study of their behavior in the context
of a multi-cluster grid environment. These reallocation algorithms are designed to be used in
the meta-scheduling component of a grid framework for example. They perform scheduling
and rescheduling with possible reallocations (migration of tasks from one site to another one)
with information gathered from local resources managements, which use FCFS or CBF local
scheduling policies.

The MCT online heuristic is used to map tasks as soon as they are submitted to the
framework, and a reallocation event is triggered once every hour to attempt to improve
the schedule. Each reallocation algorithm implements a rescheduling heuristic among MCT,
MinMin, MaxMin, MaxGain, MaxRelGain, and Sufferage, and we analyzed and compared
results of experimental simulations performed on the basis of traces of real distributed systems
(taken from Grid’5000 and from the Parallel Workload Archive) on different metrics, among
which the percentage of tasks finishing sooner that if not re-scheduled, and the gain obtained
on the average response time.

The key difference between our reallocation algorithms is that the first one considers each
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task sequentially, both in rescheduling and migrating which implies also possible cancellation;
the second one cancels all jobs on every sites, and runs the rescheduling heuristic.

First, the study shows that on average reallocation is beneficial on the considered metrics.
Thus, such a mechanism should be embedded in a Grid framework. Second, reallocation
achieves even better results when all tasks are canceled and submitted again as a whole bag
of tasks. Third, from the simulation experiments involved in this study, one can expect,
on average and depending on the platform (level of heterogeneity, local systems load, local
resource management policy, etc.), around 5% of tasks finishing sooner with a 10% average
gain on the response time compared to a system which does not implement such a mechanism.

However, the first reallocation mechanism is less complex to implement and maintain, and
ensures gain, in the sens that we can be sure that everything will go as planned even in a non-
dedicated environment: a task can be submitted to another site, the server can ensure that the
ECT is as expected by the meta-scheduler with some contract checking mechanisms, and then
be canceled from the originating site’s batch system. In a non-dedicated environment, the
second algorithm would issue the fact that other-and-direct submissions to the local resource
manager can take place, and all canceled tasks would be delayed. Nonetheless, we plan as
future work for SPADES2 to maintain a set of reserved resources of a site which are managed
by our own batch scheduler. In this context resources are dedicated to our Grid framework
and thus, this second mechanism can be fully exploited.
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