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Abstract

Semiclassical approximations for tunneling processes usually involve complex trajectories or com-

plex times. In this paper we use a previously derived approximation involving only real trajectories

propagating in real time to describe the scattering of a Gaussian wavepacket by a finite square

potential barrier. We show that the approximation describes both tunneling and interferences very

accurately in the limit of small Planck’s constant. We use these results to estimate the tunneling

time of the wavepacket and find that, for high energies, the barrier slows down the wavepacket but

that it speeds it up at energies comparable to the barrier height.

PACS numbers: 03.65.Sq,31.15.Gy
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I. INTRODUCTION

The success of semiclassical approximations in molecular and atomic physics or theoret-

ical chemistry is largely due to its capacity to reconcile the advantages of classical physics

and quantum mechanics. It manages to retain important features which escape the classical

methods, such as interference and tunneling, while providing an intuitive approach to quan-

tum mechanical problems whose exact solution could be very difficult to find. Moreover,

the study of semiclassical limit of quantum mechanics has a theoretical interest of its own,

shedding light into the fuzzy boundary between the classical and quantum perspectives.

In this paper we will apply the semiclassical formalism to study the scattering of a one

dimensional wavepacket by a finite potential barrier. In the case of plane waves, the tunneling

and reflection coefficients can be easily calculated in the semiclassical limit, giving the well

known WKB expressions [1]. For wavepackets, however, the problem is more complicated

and few works have addressed the question from a dynamical point of view [2, 3, 4]. The time

evolution of a general wavefunction with initial condition ψ(x, 0) = ψ0(x) can be written as

ψ(x, T ) =< x|K(T )|ψ0 >=
∫

< x|K(T )|xi > dxi < xi|ψ0 >, (1)

where K(T ) = e−iHT/~ is the evolution operator and H is the (time independent) hamil-

tonian. The extra integration on the second equality reveals the Feynman propagator

< x|K(T )|xi >, whose semiclassical limit is known as the Van-Vleck formula [5] (see

next section). When the Van-Vleck propagator is inserted in Eq.(1) we obtain a general

semiclassical formula which involves the integration over the ‘initial points’ xi:

ψsc(x, T ) =

∫

< x|K(T )|xi >Van Vleck dxi < xi|ψ0 > . (2)

If this integral is performed numerically one obtains very good results, specially as ~ goes

to zero. However, doing the integral is more complicated than it might look, because for

each xi one has to compute a full classical trajectory that starts at xi and ends at x after a

time T , which may not be simple task. Alternative methods involving integrals over initial

conditions (instead of initial and final coordinates) in phase space have also been developed

and shown to be very accurate [6, 7, 8]. All these approaches sum an infinite number of

contributions and hide the important information of what classical trajectories really matter

for the process.
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In a previous paper [9] several further approximations for this integral were derived

and applied to a number of problems such as the free particle, the hard wall, the quartic

oscillator and the scattering by an attractive potential. The most accurate (and also the most

complicated) of these approximations involves complex trajectories and was first obtained

by Heller and collaborators [10, 11]. The least accurate (and the simplest to implement)

is known as the Frozen Gaussian Approximation (FGA), and was also obtained by Heller

[12]. It involves a single classical trajectory starting from the center of the wavepacket.

However, other approximations involving real trajectories can be obtained [4, 9, 13]. These

are usually not as accurate as the complex trajectory formula, but are much better than

the FGA and can be very good in several situations. Moreover, it singles out real classical

trajectories from the infinite set in Eq.(2) that can be directly interpreted as contributing

to the propagation.

In this paper we apply these real trajectory approximations to study the tunnel effect.

Since this is a purely quantum phenomena, it is a very interesting case to test the semi-

classical approximation and to understand what are the real trajectories that contribute

when the wavepacket is moving ‘inside’ the barrier. More specifically, we will consider the

propagation of a Gaussian wavepacket through a finite square barrier. We shall see that the

semiclassical results are very accurate, although some important features of the wavepacket

propagation cannot be completely described.

This paper is organized as follows: in the next section we review the semiclassical results

derived in [9], which are the starting point of this work. Next we describe the evolution of

a Gaussian through a square potential barrier in its three separate regions: before, inside

and after the barrier. Finally in section IV we discuss the calculation of tunneling times, as

proposed in [2]. We find that the barrier slows down the wavepacket at high energies, but

that it speeds it up at energies comparable to the barrier height. Finally, in section V we

present our conclusions.

II. APPROXIMATION WITH COMPLEX AND REAL TRAJECTORIES

One important class of initial wavefunctions is that of coherent states, which are minimum

uncertainty Gaussian wavepackets. In this paper we shall consider the initial wavepacket
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|ψ0 > as the coherent state of a harmonic oscillator of mass m and frequency ω defined by

|z〉 = e−
1

2
|z|2ezâ† |0〉, (3)

where |0〉 is the harmonic oscillator ground state, â† is the creation operator and z is the

complex eigenvalue of the annihilation operator â with respect to the eigenfunction |z〉.
Using the position and momentum operators, q̂ and p̂ respectively, we can write

â† =
1√
2

(

q̂

b
− i

p̂

c

)

z =
1√
2

(q

b
+ i

p

c

)

, (4)

where q and p are real numbers. The parameters b = (~/mω)
1

2 and c = (~mω)
1

2 are the

position and momentum scales respectively, and their product is ~.

In order to write the Van Vleck formula of the Feynman propagator, we need to introduce

the tangent matrix. Let S ≡ S(xf , T ; xi, 0) be the action of a classical trajectory in the

phase space (X,P ), with xi = X(0) and xf = X(T ). A small initial displacement (δxi, δpi)

modifies the whole trajectory and leads to another displacement (δxf , δpf) at time T . In

the linearized approximation, the tangent matrix M connects these two vectors of the phase

space












δxf

b

δpf

c













=















− Sii

Sif
−c
b

1

Sif

b

c

(

Sif − Sff
Sii

Sif

)

−Sff

Sif



























δxi

b

δpi

c













≡











mqq mqp

mpq mpp























δxi

b

δpi

c













(5)

where Sii ≡ ∂2S/∂x2
i , Sif ≡ ∂2S/∂xi∂xf ≡ Sfi and Sff ≡ ∂2S/∂x2

f . In terms of the

coefficients of the tangent matrix, the Van Vleck propagator is [5]

〈xf |K(T )|xi〉V anV leck =
1

b
√

2πmqp

exp

[

i

~
S(xf , T ; xi, 0) − i

π

4

]

. (6)

For short times mqp is positive and the square root is well defined. For longer times mqp

may become negative by going through zero. At these ‘focal points’ the Van Vleck formula

diverges. However, sufficiently away from these points the approximation becomes good

again, as long as one replaces mqp by its modulus and subtracts a phase π/2 for every focus

encountered along the trajectory. We shall not write these so-called Morse phases explicitly.

Assuming some converging conditions, the stationary phase approximation allows us to

perform the integral over xi in Eq. (2) (for more details, see [9]). We obtain

ψ(z, xf , T )sc =
b−1/2π−1/4

√

mqq + imqp

exp

[

i

~
S(xf , T ; x0, 0) +

i

~
p(x0 − q/2) − (x0 − q)2

2b2

]

, (7)
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where x0 is the value of the initial coordinate xi when the phase of the propagator is sta-

tionary. It is given by the relation

x0

b
+ i

p0

c
=
q

b
+ i

p

c
where p0 = −

(

∂S

∂xi

)

x0

. (8)

The end point of the trajectory is still given by X(T ) = xf . In spite of q and p being real, x0

and p0 are usually complex. This implies that the classical trajectories with initial position

x0 and momentum p0 are complex as well, even with xf ∈ R. Eq. (7) was first obtained by

Heller [10, 11] and it is not an initial value representation (IVR). There are a priori several

complex trajectories satisfying the boundary conditions. Thanks to the stationary phase

approximation, we were able to replace an integral over a continuum of real trajectories (2)

by a finite number of complex ones (7). The problem is now solvable, but still quite difficult

to compute. However, it turns out that, in many situations, these complex trajectories can

be replaced by real ones, which are much easier to calculate [4, 9].

Therefore, we look for real trajectories that are as close as possible to the complex ones.

Let (X(t), P (t)) ∈ C × C be the coordinates of a complex trajectory, and (u(t), v(t)) a new

set of variables defined by

u =
1√
2

(

X

b
+ i

P

c

)

, v =
1√
2

(

X

b
− i

P

c

)

. (9)

According to Eq. (8), the boundary conditions become

u(0) =
1√
2

(x0

b
+ i

p0

c

)

=
1√
2

(q

b
+ i

p

c

)

= z and X(T ) = xf . (10)

The initial condition is then the complex coordinate z and the final condition is the real

position xf . The real and imaginary parts of z are related to the central position q and

the central momentum p of the initial wavepacket respectively. This gives us three real

parameters that we may use as boundary conditions to determine the real trajectory. But

a particle whose initial conditions are q and p will not a priori reach xf after a time T .

Although it is possible to satisfy such final condition, it will not usually happen because

X(T ) is imposed by q and p. Likewise, fixing the initial and final positions q and xf will

not generally lead to P (0) = p. Therefore we need to choose only two boundary conditions

among the three parameters, and use the hamiltonian of the system to calculate analytically

or numerically the third one. This means that the relation (8) will not be generally fulfilled

and the hope is that it will be fulfilled approximately. For a discussion about the validity of
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this approximation, see the beginning of the third section in [9]. If we fix (q, p), we obtain the

Frozen Gaussian Approximation of Heller [12]. This is an initial value representation that

involves a single trajectory and is unable to describe interferences or tunneling, which are

the aim of this paper. However, we can fix X(0) = q , X(T ) = xf and calculate P (0) = pi.

When the complex quantities in Eq.(7) are expanded about this real trajectory we obtain

[9]

ψ(z, xf , T )sc =
b−1/2π−1/4

√

mqq + imqp

exp

[

i

~
S(xf , T ; q, 0) +

i

2~
pq − 1

2

imqp

mqq + imqp

(

p− pi

c

)2
]

.(11)

Eq. (11) is the semiclassical formula we are going to use in this paper. We shall show

that, although still very simple, it can describe tunneling and interferences quite well.

III. THE 1-D SQUARE BARRIER

Consider the specific case of a particle of unit mass scattered by the 1-D square barrier

defined by (see fig.1)

V (x) =











V0 if x ∈ [−a, a] where a ∈ R
+

0 otherwise
. (12)

The initial state of the particle is a coherent state ψ(z, x, 0) = 〈x|z〉 with average position

q < −a and average momentum p > 0, i.e., the wavepacket is at the left of the barrier and

moves to the right. In all our numerical calculations we have fixed V0 = 0.5 and defined the

critical momentum p̃ =
√

2V0 = 1.

The application of the semiclassical formula Eq.11 requires the calculation of classical

trajectories from q to xf in the time T . For the case of a potential barrier, the number of

such trajectories depends on the final position xf . This dependence, in turn, causes certain

discontinuities in the semiclassical wavefunction.

Since the initial wavepacket starts from q < −a, it is clear that for xf > a (at the right

side of the barrier) there is only one trajectory satisfying x(0) = q and x(T ) = xf . This

’direct trajectory’ has pi >
√

2V0 and x(t) increases monotonically from q to xf .

For xf < −a, on the other hand, in addition to the direct trajectory there might also be

a reflected trajectory, that passes through xf , bounces off the barrier and returns to xf in
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the time T . The initial momentum of such a reflected trajectory must be greater than that

of the direct one, since it has to travel a larger distance. However, if this distance is too big,

i.e., if xf << −a, the initial momentum needed to traverse the distance in the fixed time

T becomes larger than
√

2V0 and the reflected trajectory suddenly ceases to exist (see next

subsection for explicit details for the case of the square barrier and figure 2 for examples).

This qualitative discussion shows that reflected trajectories exist only if xf is sufficiently

close to the barrier. The points where these trajectories suddenly disappear represent discon-

tinuities of the semiclassical calculation. Fortunatelly, this drawback of the approximation

becomes less critical as ~ goes to zero, since the contribution of the reflected trajectory at

those points become exponentially small as compared to the direct one (see for instance

figure 2(g)).

In the remaining of this paper we are going to obtain explicit expressions for ψ(z, xf , T )sc

before, inside and after the barrier. For fixed q we will calculate the classical trajectories for

each xf , extracting the initial momentum pi, the action S ≡ S(xf , T ; q, 0) and its derivatives

(in order to obtain mqq and mqp).

A. Before the barrier: xf < −a

The specificity of this region is that there may exist two different paths connecting q to

x during the time T : a direct trajectory and a reflected one (fig. 1) whose initial momenta,

action and tangent matrix elements are given by

pi d =
x− q

T
; Sd =

(x− q)2

2T
; mqq d = 1; mqp d =

T

λ
, (13)

pi r = −x+ q + 2a

T
; Sr =

(x+ q + 2a)2

2T
; mqq r = −1; mqp r = −T

λ
, (14)

where λ = b/c. The contribution of each trajectory to the wavefunction at xf , ψd and ψr, is

ψd = b−1/2π−1/4√
1+i T

λ

exp

[

i

~

(xf − q)2

2T
+

i

2~
pq − 1

2

iT

λ+ iT

(

pT − xf + q

cT

)2
]

,

ψr = b−1/2π−1/4√
1+i T

λ

exp

[

iθ +
i

~

(xf + q + 2a)2

2T
+

i

2~
pq − 1

2

iT

λ+ iT

(

pT + xf + q + 2a

cT

)2
]

.

(15)

Notice that we have added an extra phase θ in ψr. Without this extra phase (that includes

the minus sign coming from the tangent matrix elements in Eq.(14)), the wavepacket would
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not be continuous as it goes through the barrier. For a hard wall, for instance, we impose

θ = π to guarantee that the wavefunction is zero at the wall. For smooth barriers this

phase would come out of the approximation automatically, but for discontinuous potentials

we need to add it by hand. To calculate θ we rewrite the previous expressions in complex

polar representation, ψd = D(xf)e
iϕd(xf ), ψr = R(xf )e

iϕr(xf )+iθ, and let W (xf)e
iϕw(xf )+iξ be

the wavefunction inside the barrier, where ξ is the corresponding phase correction. The

continuity of the wavefunction at xf = −a imposes

D(−a)eiϕd(−a) +R(−a)eiϕr(−a)+iθ = W (−a)eiϕw(−a)+iξ. (16)

Eqs. (15) show that R(−a) = D(−a) and ϕd(−a) = ϕr(−a). Denoting ϕ = ϕw(−a) −
ϕd(−a), Eq. (16) becomes 1 + eiθ = Aei(ϕ+ξ) where A = [W (−a)/D(−a)]. This complex

relation represents in fact two real equations for the unknown variables θ and ξ. The solutions

consistent with the boundary conditions are cos(θ) = A2/2 − 1 and cos(φ + ξ) = A/2. In

the limit where p goes to zero (or the potential height V0 goes to infinity) we obtain θ = π

as expected. Finally, the full wavefunction before the barrier is ψ(z, xf , T )sc = ψd + ψr and

the probability density can be written as

|ψ(z, xf , T )sc|2 =
1

b
√
π

1
√

1 + T 2

λ2

{

exp

[

− λ2

λ2 + T 2

(

xf − q − pT

b

)2
]

+ exp

[

− λ2

λ2 + T 2

(

xf + q + pT + 2a

b

)2
]

+ 2 cos

[

2(xf + a)

~(λ2 + T 2)

(

λ2p− (q + a)T
)

− θ

]

exp

[

− λ2

λ2 + T 2

(pT + q + a)2 + (xf + a)2

b2

]

}

.

(17)

This is the same result as obtained in [9] for a completely repulsive barrier (V0 → ∞),

except for the phase, because of the different boundary condition at xf = −a (|ψ(−a)sc|2 = 0

for the hard wall). However, as discussed in the beginning of this section, an additional

difficulty appears when the wall is finite: the reflected trajectory does not always exist.

From the classical point of view, there is no reflected part if the energy E = p2
i r/2 > V0. The

maximum initial momentum allowed is then
√

2V0 and a particle with such momentum takes

the time Tc = −a+ q√
2V0

to reach the barrier. Furthermore, for T > Tc the reflected trajectory

only exists if pi r = −xf + q + 2a

T
6

√
2V0 i.e. if |xf | = −xf 6 xc = q + 2a +

√
2V0T .
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Therefore, if T > Tc and |xf | 6 xc, the probability density is given by Eq.(17), otherwise we

only have the contribution of the direct ψd and

|ψ(z, xf , T )sc|2 =
1

b
√
π

1
√

1 + T 2

λ2

exp

[

− λ2

λ2 + T 2

(

xf − q − pT

b

)2
]

. (18)

As a final remark we note that the calculation of θ might involve a technical difficulty

depending on the values of ~, p and T . For some values of these parameters the contribution

of the direct and reflected trajectories might become very small at x=-a (see for instance

fig.2(f), which shows the reflected wavepacket in a case of large transmission). In these

cases the probability density becomes very small at x=-a and the value of the phase θ is

irrelevant. In some of these situations, where the value of θ does not affect the results, we

actually found that cos(theta) = A2/2 − 1 > 1, which cannot be solved for real θ. For the

sake of numerical calculations we have set θ = 0 in these cases.

The semiclassical wavepacket is now completely described for xf < −a. The probability

density |ψsc|2 is a function of q, p, xf , T and depends on several parameters, a, b, ~ and V0.

In our numerical calculations we fixed a = 50. This makes the barrier large enough so

that we study in detail what is happening inside (see subsection IIIB). The height of the

barrier intervenes only in Tc and xc to establish the limits of the reflected trajectory. Its

numerical value is not important, but its comparison with p is fundamental: since we have

fixed V0 = 0.5 this gives pi r 6 p̃ =
√

2V0 = 1. Finally, to simplify matters we fixed b = c,

i.e. the same scale for position and momentum. This imposes λ = b/c = 1. Quantum

phenomena such as interference and tunneling should be more important for high values of

~. Since ~ = bc = b2, b becomes in fact the only free parameter of the approximation. We

have also fixed q = −60, which guarantees that the initial wavepacket is completely outside

the barrier for all values of b used.

Fig. 2 shows snapshots of the wavepacket as a function of xf at time T = 50. Consider

first the panels (a)-(c) with ~ = 1. The agreement between the exact and the semiclassical

curves is qualitatively good for p 6
√

2V0 = 1. The interference peaks occurs at about the

same positions, but the height of the peaks are not exactly the same. Also the intervals

between peaks are a little bigger for the semiclassical curve than for the exact one. On the

other hand, when p is increased, the comparison gets worst and the approximation is not

really accurate for p = 2. However, we see that the value of |ψsc|2 at p = 2 is only a tenth

of its value at p = 0.5: the most important part of the wavepacket is in fact inside and after

9



the barrier. It is then really important to consider xf > −a for high p and we need to wait

until subsections III B and IIIC to look at the whole picture.

When ~ = 0.25, Fig. 2(d)-(f) and (h), the approximation improves substantially, espe-

cially close to the barrier; this shows that the extra phase θ works well. When p is increased,

the contribution of the direct trajectory becomes irrelevant and the interference oscillations

are lost in the semiclassical calculation, although it still shows good qualitative agreement

in the average. The cut-off of the semiclassical curve at xf = −xc is also clearly visible,

whereas the exact one is decreasing continuously. On the one hand this means that the

approximation is not perfect but, on the other hand, the semiclassical approximation ex-

plains that the fast rundown of the exact quantum wavepacket comes from the progressive

disappearance of the reflected classical trajectory due to the finite size of the barrier. Fi-

nally, for ~ = 0.1, Fig. 2(g), the approximation becomes nearly perfect. As expected, the

semiclassical approximation works better and better when ~ is decreasing, i.e. when the

quantum rules give way to the classical ones.

To end this subsection, we mention that the quality of the approximation is independent

of the time T , except for times slightly smaller than Tc. In this time interval only the direct

trajectory contributes but the exact wavepacket already shows interferences that can not be

described by |ψsc|2 (fig. 2, T = 10). We now enter the heart of the matter, and consider

what’s happening inside and after the barrier.

B. Inside the barrier: −a 6 xf 6 a

From the classical point of view there is only the direct trajectory in this region (see Fig.

1), since a reflection on the other side of the barrier (at x = a) can not be considered without

quantum mechanics. Calling p1 = pi >
√

2V0 and p2 the momentum of this trajectory before

and inside the barrier respectively, energy conservation gives p2
1/2 = p2

2/2 + V0. This is the

first equation connecting p1 to p2, but we need a second one which is imposed by the

propagation time T = t1 + t2 where:

t1 = −a+q
p1

is the time to go from q to −a with momentum p1;

t2 =
xf +a

p2
is the time to go from −a to xf with momentum p2.

10



The combination of these two equations gives

T = −a + q

p1
+

xf + a
√

p2
1 − 2V0

(19)

which can be rewritten as

(p2
1 − 2V0)(p1T + a+ q)2 = (xf + a)2p2

1. (20)

This is a quartic polynomial, which we solve numerically. We obtain four solutions: one is

always negative, which we discard since we fixed the initial position q on the left side of the

barrier; two are sometimes complex and, when real, have p1 < 1; finally, one of the roots

is always real, larger than 1 and tends to
xf−q

T
when V0 is negligible (the limit of a free

particle). We take this last root as the initial momentum p1.

The action S is also a function of p1 given by

S(z, xf , T ) =

∫ t1

0

p2
1

2
dt+

∫ T

t1

(

p2
2

2
− V0

)

dt

=
p2

1

2
t1 +

(

p2
2

2
− V0

)

t2

= −1

2
(a+ q)p1 +

1

2
(xf + a)

√

p2
1 − 2V0 −

V0(xf + a)
√

p2
1 − 2V0

.

(21)

We calculate the derivatives of S numerically by computing p1 and S for the initial conditions

(q, xf), (q+dq, xf), (q, xf +dxf) . . . and approximate
∂S

∂xf

(z, xf , T ) by [S(z, xf +dxf , T )−
S(z, xf , T )]/dxf , etc. Finally, the propagator inside the barrier is given by Eq.(11) plus the

phase correction ξ calculated in the previous subsection. The probability density, which in

independent of ξ, becomes

|ψ(z, xf , T )sc|2 =
1

b
√
π

1
√

m2
qq +m2

qp

exp

[

−
m2

qp

m2
qq +m2

qp

(

p− p1

c

)2
]

. (22)

Figure 3 shows |ψsc|2 as a function of xf for the same parameters as in subsection IIIA.

Although the semiclassical approximation also improves for small ~, here we shall fix ~ = 1.

This is because the behavior of the propagator becomes trivial for small ~: if p < 1 the

wavepacket bounces off the barrier almost completely, and otherwise it simply passes over

the barrier barely noticing the presence of the potential.

The first remark is that the wavepacket is continuous at xf = −a: the extra phase θ

does play its role correctly. As in the case before the barrier, the comparison between exact
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and semiclassical calculations is always at least qualitatively good, and sometimes even

quantitatively so. However, there are two main effects that the semiclassical approximation

cannot take into account.

1. there is a gap between the exact and semiclassical curves, which decreases progressively

as xf increases, and is bridged near the local maximum of the probability density.

The reason may come from the fact it is not possible to impose the continuity of the

derivative of ψsc with respect to xf at −a.

2. there are oscillations on the exact curve (especially for p = 2 and T = 50) close to

the right side of the barrier, that are not present in the semiclassical approximation.

This is a purely quantum effect, because classical mechanics can not account for a

reflected trajectory which would interfere with the direct one in this case. |ψsc|2 is

in fact the mean-value of the oscillations, and that is why there is a discontinuity of

the wavepacket at xf = a, since the exact curve is beginning at the bottom of an

oscillation.

If we want to stay strictly in the semiclassical limit, there is nothing we can do about the

lack of interferences in the barrier region: this is the limit of our approximation. But if we

want to use the semiclassical point of view in order to provide a more intuitive picture of

the quantum world, we can add a ‘ghost’ trajectory that reflects at xf = a and see if it can

account for the interferences. Similar ideas have been applied to the frequency spectrum of

microwave cavities with sharp dielectric interfaces [14] and, more recently, to the spectrum of

step potentials confined by hard walls [15]. The argument will be the same as in subsection

IIIA, except of course that the reflected trajectory will now bounce on the right side of the

barrier. The equation for pi = p1 is again a quartic polynomial given by

(p2
1 − 2V0)(p1T + a+ q)2 = (3a− xf )

2p2
1. (23)

We know that p1 direct is the same as p1 reflected at xf = a and we choose the only solution of

(23) which satifies this condition. The expression of the new action is:

Sr(z, xf , T ) = −1

2
(a + q)p1 +

(

p2
1

2
− 2V0

)

3a− xf
√

p2
1 − 2V0

. (24)

The expressions of ψd and ψr are the same as eq. (11) but with pi, S,mqq and mqp indexed

by d or r. After some calculations, the new expression of the probability density inside the
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barrier becomes

|ψ(z, xf , T )sc|2 =
1

b
√
π

1
√

m2
qq d +m2

qp d

exp

[

−
m2

qq d

m2
qq d +m2

qp d

(

p− p1 d

c

)2
]

+
1

b
√
π

1
√

m2
qq r +m2

qp r

exp

[

−
m2

qq r

m2
qq r +m2

qp r

(

p− p1 r

c

)2
]

+
2

b
√
π

cos (ϕr − ϕd + θ′)
1

4

√

(

m2
qq r +m2

qp r

) (

m2
qq d +m2

qp d

)

× exp

[

−1

2

m2
qq d

m2
qq d +m2

qp d

(

p− p1 d

c

)2

− 1

2

m2
qq r

m2
qq r +m2

qp r

(

p− p1 r

c

)2
]

,

(25)

where θ′ is the new extra phase (that absorbs the previously computed ξ) and

ϕr − ϕd =
Sr − Sd

~
+

1

2
arctan

(

mqp d

mqq d

)

− 1

2
arctan

(

mqp r

mqq r

)

+
1

2

mqq dmqp d

m2
qq d +m2

qp d

(

p− p1 d

c

)2

− 1

2

mqq r mqp r

m2
qq r +m2

qp r

(

p− p1 r

c

)2

.

(26)

The results of such an expression, however, are not good: the oscillations become too big,

which means that the reflected trajectory needs to be attenuated by a reflection coefficient

ρ. To calculate ρ we use the following reasoning: for each point xf inside the barrier there

corresponds a reflected trajectory from q to xf with a certain value of p1 > 1 computed with

Eq. (23). We take for ρ the same attenuation coefficient a plane wave with momentum p1

would have. Let (F eiκxf +Ge−iκxf ) and C eikxf be such a plane wave inside and after the

barrier respectively, where κ =
√

2(E − V0)/~ =
√

p2
1 − p̃2/~ and k =

√
2E/~ = p1/~. The

continuity of this function and its derivative at xf = a give us the relative weight of the

reflected trajectory with respect to the direct one:

ρ(p1, V0) =

∣

∣

∣

∣

G

F

∣

∣

∣

∣

=
1 − κ/k

1 + κ/k
=

1 −
√

1 − p̃2/p2
1

1 +
√

1 − p̃2/p2
1

. (27)

The expression for the total propagator becomes
(

ψsc d + ρψsc r e
iθ′

)

. We use the same

argument as in subsection IIIA to compute the extra phase θ′, adding another correction

ξ′ to the wavefunction on the right side of the barrier. Because there is always a single

trajectory on the right side, ξ′ does not affect the probability density there. We find that

cos θ′ = A2
+/2 − 1 where A+ = W (a)/D(a).

The new results are displayed in figure 4. The gap is still present, but the agreement

between exact and semiclassical on the right side is nearly perfect. The interferences are

13



indeed coming from a real ’ghost’ trajectory that bounces off at the end of the barrier

like a quantum plane wave. Since the left side of the figure has not changed much, the

reflected trajectory has no effect on this part of the wavepacket and we don’t need to

consider additional reflections. Furthermore, we don’t have to take ρψsc r into account when

we calculate θ in subsection IIIA. We finish this subsection with two comments: first, the

approximation with the ghost trajectory is accurate even for larger values of ~. Second, the

wavepacket becomes continuous at xf = a. That is very interesting because continuity comes

only when we include the reflected trajectory, whereas the part of the wavepacket which

goes through the barrier is calculated independently with a single direct trajectory (see next

subsection). This means that the semiclassical propagator after the barrier somehow knows

there is a reflected part.

In the next subsection, we will briefly present the computation of the wavefunction at

the right side of the barrier.

C. After the barrier: a < x

Following the same arguments as in subsection IIIB, we use the energy conservation

p2
1/2 = p2

2/2 + V0 = p2
3/2 (the index 3 refers to the right of the barrier) and the different

times t1 = −a+q
p1

, t2 = 2a
p2

and t3 = x−a
p3

to calculate the initial momentum of the direct

trajectory. We obtain

(p2
1 − 2V0)(p1T + 2a+ q − x)2 = (2a)2p2

1, (28)

whereas the action becomes

S(z, x, T ) =

∫ t1

0

p2
1

2
dt+

∫ t1+t2

t1

(

p2
2

2
− V0

)

dt+

∫ T

t1+t2

p2
3

2
dt

=
1

2
(x− q − 2a)p1 + a

√

p2
1 − 2V0 −

2a V0
√

p2
1 − 2V0

. (29)

In this region, no reflection is possible and the probability density |ψsc|2 is simply given by

Eq. (22). The results are presented in figure 5. For any values of p, T or ~, there is still

a very small difference between the exact and semiclassical curves for the ascending part of

the wavepacket, whereas the agreement is perfect when the function is decreasing.

The conclusion of this section is that the semiclassical approximation with real trajectories

gives very good results and is indeed able to describe some important quantum effects.
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Interference on the left side of the barrier appears naturally when the wavepacket hits the

barrier and the comparison with the exact solution gets better as ~ gets smaller. However,

these interferences cannot be obtained in the barrier region, since there are no reflected

trajectories in the classical dynamics. We showed that these interferences can be recovered

if a ‘ghost’ trajectory that reflects at x = a is added and assumed to contribute with the

same coefficient of a plane wave of initial momentum pi. With this addition the semiclassical

approximation becomes again very accurate inside the barrier. In the next section we shall

briefly discuss the possibility of using our results to calculate the tunneling time as defined

in [2].

IV. SEMICLASSICAL TUNNELING TIMES

The question of how much time a particle spends in the classically forbidden region

during the tunneling process has been attracting the attention of physicists for a long time

[2, 16, 17, 18, 19, 20, 21, 22]. The very concept of a ‘tunneling time’ is, however, debatable

[18]. Nevertheless, in a semiclassical formulation where real trajectories play crucial roles in

the tunneling process, the temptation to estimate such a time is irresistible.

Since we are considering a wavepacket, and not a classical state localized by a point in

the phase space, we can only define a mean value of the tunneling time. Let us fix the initial

conditions q, p (such that p < 1) and xf > a. The probability of finding the initial Gaussian

state at xf after a time T is given by | < xf |K(T )|z > |2. Therefore, the particle can

reach xf from (q, p) in several different time intervals T . For each value of the time T there

corresponds a single real trajectory whose initial momentum p1(T ) > p̃ =
√

2V0 is given by

Eq. (28). This trajectory spends a time τ(T ) = 2a
p2(T )

= 2a√
p2

1
(T )−p̃2

in the region −a < x < a.

Notice that the average energy of the wavepacket is below the barrier but the contributing

trajectory always has energy above the barrier. Therefore, for fixed q, p, xf , the probability

that the wavepacket crosses the barrier in a time τ(T ) is proportional to | < xf |K(T )|z > |2.
Following ref. [2], we can define the mean value of the tunneling time as

〈τ〉 = N
−1

∫ +∞

0

τ(T ) | < x|K(T )|z > |2 dT (30)

where

N =

∫ +∞

0

| < x|K(T )|z > |2 dT (31)
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is the normalization factor. It is not equal to 1 because only the part of the wavepacket which

goes through the barrier is considered. This is important in our case, since the semiclassical

approximation is better for xf > a.

We calculated these integrals numerically, performing a discrete sum over Tn = nδT , with

n = 1, 2, . . . , N and δT = Tmax/N . If an observer is placed at a fixed position xf > a, as

the time T slips by, he/she sees the wavepacket arriving from the barrier, becoming bigger

and bigger, reaching a maximum and then decreasing and disappearing. We ended the sum

at Tmax such that | < x|K(T )|z > |2 < 10−4 ∀ T > Tmax.

An important remark is that 〈τ〉 is independent of the observer’s position xf (except for

small fluctuations due to the numerical computation), since Eq.(30) measures only the time

inside the barrier. The three different times we are going to use for comparison are:

• 〈τbarr〉 is the tunneling time computed according to Eq. (30)

• 〈τfree〉 is obtained from the same way as 〈τbarr〉, but in a system without barrier; 〈τfree〉
is simply the time for a free wavepacket to go from −a to a.

• τclass = 2a√
p2−p̃2

is the time required by a classical particle to cross the barrier.

Fig. 6 shows the dependence of these functions with respect to p. The curves become

very similar as p increases, because the barrier becomes more and more negligible. The

wavepacket spreads but stays centered around p, which explains why it behaves like a particle

of momentum p. When the influence of the barrier is more important, the wavepacket gets

trapped by the barrier and slows down (〈τbarr〉 is above 〈τfree〉), but for p < 1.8, 〈τfree〉 and

τclass start to increase very fast ( τclass actually diverges at p = 1), whereas 〈τbarr〉 stays

finite until p is very close to 0: thanks to the tunnel effect the wavepacket is accelerated by

the barrier, which acts like a filter for the wavepacket and cuts off the contributions of its

slowest components (see Fig. 7.(a)). On the other hand when p increases, the fraction of

the trajectories with p <
√

2V0 = 1 becomes negligible and the barrier simply restrains the

propagation of the wavepacket (fig. 7.(b)).

V. CONCLUSION

In this paper we used the semiclassical approximation Eq. (11), derived in [9], to study

the propagation of a wavepacket through a finite square potential barrier. One of the main

16



purposes of this work was to test the validity and accuracy of the approximation, which

involves only real trajectories, in the description of tunneling. Surprisingly, we have shown

that the approximation is very good to describe the wavepacket after the barrier, even

when the average energy of the wavepacket is below the barrier height. The region before

the barrier is also well described by the approximation, although discontinuities are always

observed because of the sudden disappearance of the reflected trajectory. The continuity of

the wavefunction between this region and the region inside the barrier also depends on the

calculation of an extra phase θ. Finally, inside the barrier the semiclassical formula is not

able to describe interferences. These, however, can be recovered when a ghost trajectory,

that reflects on the right side of the barrier, is included and attenuated with the proper

coefficient. In all regions the approximation becomes more accurate as ~ becomes smaller.

The semiclassical approximation (11) is particularly relevant because the propagated

wavepacket is not constrained to remain Gaussian at all times, as in the case of Heller’s

Thawed Gaussian Approximation [12], and also because it uses only a small number of real

trajectories. These are much easier to calculate than complex ones, especially in multi-

dimensional problems. The demonstration of its ability to describe tunneling and interfer-

ences is important to establish its generality and also to provide a more intuitive under-

standing the processes themselves. In particular, using the underlying classical picture, we

have computed a tunneling time which shows that the wavepacket can be accelerated or

restrained by the barrier depending on the value of the initial central momentum p.

Some interesting perspectives of this semiclassical theory are the study of propagations

through smooth potential barriers (which are more realist and more adapted to semiclassical

calculations), the study of time dependent barriers and the extension of the method to

higher dimensions and to chaotic systems.
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FIG. 1: Direct and reflected trajectories from q to x1 < −a. For −a < x2 < a or x3 > a only the

direct trajectory exists.
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FIG. 2: (Color online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket at

time T = 50, except for panel (h) where T = 10. We fixed ~ = 1 for (a), (b) and (c), whereas

~ = 1/4 for (d), (e), (f), (h) and ~ = 1/10 for (g).
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FIG. 3: (Color online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket inside

the barrier for various values of p and T and ~ = 1.
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FIG. 4: (Color online) Exact (blue thin lines) and semiclassical with ghost reflected trajectory (red

thick lines) wavepacket inside the barrier . The panels on the right are magnifications of the left

ones, showing the perfect match between the approximation and the exact solution.
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show the semiclassical result according to Eq.(30) for the square barrier and the free particle

respectively. The thin black line is the classical time for the square barrier potential.
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FIG. 7: (Color online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket after

going through the barrier. The green curve (above the other two in both figures) shows the

corresponding free particle wavepacket. For p = 0.5 the barrier acts like a filter and only the fast

components of the initial wavepacket go through. For p = 2, on the other hand, the wavepacket

interacting with the barrier is slightly behind the free particle wavepacket, showing that the barrier

slows the trajectories because the momentum is reduced to p2 =
√

p2
1 − 2V0 < p1 between −a and

a.
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