
HAL Id: ensl-00463353
https://ens-lyon.hal.science/ensl-00463353v1

Preprint submitted on 11 Mar 2010 (v1), last revised 21 Dec 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing decimal floating-point arithmetic through
binary: some suggestions

Nicolas Brisebarre, Milos Ercegovac, Nicolas Louvet, Erik Martin-Dorel,
Jean-Michel Muller, Adrien Panhaleux

To cite this version:
Nicolas Brisebarre, Milos Ercegovac, Nicolas Louvet, Erik Martin-Dorel, Jean-Michel Muller, et al..
Implementing decimal floating-point arithmetic through binary: some suggestions. 2010. �ensl-
00463353v1�

https://ens-lyon.hal.science/ensl-00463353v1
https://hal.archives-ouvertes.fr

Implementing decimal floating-point arithmetic through binary: some suggestions

Nicolas Brisebarre, Milos Ercegovac, Nicolas Louvet,

Erik Martin-Dorel, Jean-Michel Muller, and Adrien Panhaleux

Abstract

We propose several algorithms and provide some re-

lated results that make it possible to implement decimal

floating-point arithmetic on a processor that does not have

decimal operators, using the available binary floating-

point functions. In this preliminary study, we focus on

round-to-nearest mode only. We show that several functions

in decimal32 and decimal64 arithmetic can be imple-

mented using binary64 and binary128 floating-point arith-

metic, respectively. Specifically, we discuss the decimal

square root and some transcendental functions. We also

consider radix conversion algorithms.

Keywords-floating-point arithmetic ; decimal floating-point
arithmetic; square root; transcendental functions; radix con-
version.

I. Introduction

The recent IEEE 754-2008 standard for floating-point

(FP) arithmetic [10], [16], [19] specifies decimal formats.

The main parameters of the decimal interchange formats

of that standard are listed in Table I.

Name decimal32 decimal64 decimal128
(basic) (basic)

precision 7 16 34
e10,max +96 +384 +6144
e10,min −95 −383 −6143

Table I. Main parameters of the decimal inter-

change formats of size up to 128 bits speci-

fied by the 754-2008 standard [10], [19].

Decimal arithmetic is mainly used in financial applica-

tions. This has the following implications:

• An implementation must be correct (especially, the

arithmetic operations must round according to what

is specified by the standard), but on most platforms

(except those specialized for finance and business

applications), it does not necessarily need to be fast

(that is, one may sacrifice latency if a good throughput

is guaranteed).

• Because some functions, such as the trigonometric

functions, may be very rarely used, user reporting

will be infrequent, so that possible bugs may remain

hidden for years.

Hence, a natural solution would be to implement the

decimal functions using the binary ones and radix con-

versions. If the radix conversions are overlapped with the

binary functions, good throughput would be kept. Also,

this would avoid having to restart from scratch in decimal

arithmetic the considerable effort done in the last 20 years

on developing high quality binary functions, and validating

the “new” set of decimal functions would just require

validating once and for all the conversion algorithms. Note

that using this approach in a naive way (i.e., just converting

to binary, computing the function in binary, and converting

back the result to decimal) could sometimes lead to poor

accuracy.

In this paper, we will focus on the “binary encoding”

format of decimal floating-point arithmetic. Cornea, Har-

rison, Anderson, Tang, and Gvozdev describe a software

implementation of IEEE 754-2008 arithmetic using that

encoding [5]. Harrison [9] suggests re-using binary tran-

scendental functions as much as possible, and to use radix

conversions, with ad-hoc improvements when needed, to

implement decimal transcendental functions. As noticed

by Harrison, for implementing a function f , the naive

method fails when the “condition number” |x·f ′(x)/f(x)|
becomes large. A typical example of that is the evaluation

of trigonometric functions. Consider computing, using the

naive method, the sine of the decimal32 number x10 =
1.234567×1022. The binary64 number nearest x10 is x2 =
12345669999999999541248. The binary64 number nearest

the sine of x2 is 8305399354678595/9007199254740992.

Rounding that number to decimal32 gives 0.9220846,

whereas the decimal32 number nearest sin(x10) is

−0.8600666. We will partially circumvent that problem

by merging a kind of “modular range reduction” with the

radix conversion.

In the following, we follow the Harrison’s approach

(implementing decimal functions through binary arith-

metic), mainly focusing on more low-level aspects (arith-

metic operations, conversions, and range reduction). We

assume that we wish to implement a precision-p10,

rounded to nearest,1 decimal arithmetic. We assume the

underlying binary arithmetic is of precision p2. One of

our major goals will be to estimate what value of p2 will

allow for good quality precision-p10 decimal arithmetic.

We will denote

RNp
β(x)

the number x rounded to the nearest radix-β, precision-

p floating-point number (when this is not specified in the

text, we assume round-to-nearest even in case of a tie). We

assume that the binary format is such that 10e10,max+1 <
2e2,max+1, and 10e10,min−p10+1 > 2e2,min , so that there are

no over/underflow issues to be considered when converting

from decimal to binary.

We call a midpoint the exact middle of two consecutive

FP numbers.

Even if our goal is correctly rounded (to nearest)

functions, we will see in the following that fulfilling

that goal will not necessarily require correctly-rounded

conversions. Indeed, the conversion algorithms presented

in Section II will sometimes—although very rarely—return

a result within slightly more than 1/2 ulp from the exact

value. We will assume that, when converting:

• from a precision-p10 decimal FP number x10 to

precision-p2 binary, we get a result

x2 = R10→2(x10) = x10(1 + ǫ),

with |ǫ| ≤ 2−p2 + 3 · 2−2p2 ;
(1)

• from a precision-p2 binary FP number z2 to precision-

p10 decimal, we get a result

z10 = R2→10(z2) = RNp10

10 (z∗2),

with z∗2 = z2(1 + ǫ),

and |ǫ| ≤ 2−p2 + 3 · 2−2p2 .

(2)

The conversion algorithms presented in Section II satisfy

these requirements. Of course, if the conversions are cor-

rectly rounded (to the nearest), then (1) and (2) are also

satisfied (in that case, we may even get smaller bounds on

p2).

II. Radix Conversion Algorithms

In this section, we present two very fast radix-

conversion algorithms that do not always return a

1Our study is easily generalizable to directed roundings: we focus on
round-to-nearest for the sake of brevity.

correctly-rounded result. These algorithms require the

availability of a fused multiply-add (fma) instruction in

binary FP arithmetic. Their accuracy will suffice for our

purpose (implementing decimal functions using the binary

ones), but they cannot be directly used for implementing

the (correctly rounded) radix conversions specified by the

IEEE 754-2008 standard for FP arithmetic. And yet, we

can fairly easily precompute the very few input values for

which these algorithms do not provide correctly-rounded

conversions, and use this information to design variants

that always return correctly rounded results.

Early works on radix conversion were done by Gold-

berg [8] and by Matula [17]. At that time, it was assumed

that the processors’ arithmetic was binary, and that the

user wanted to enter and read data in decimal. Assuming a

radix-2 underlying arithmetic and a radix-10 user interface,

algorithms for input and output radix conversion can be

found in the literature [2]–[4], [20], [21].

The IEEE 754–2008 standard [10] specifies two encod-

ing systems for decimal floating-point arithmetic, called

the decimal and binary encodings. The reason for that is

that the binary encoding makes a software implementation

of decimal arithmetic easier, whereas the decimal encoding

is more suited for a hardware implementation. The set of

representable floating-point numbers is the same for both

encoding systems, so that this additional complexity is

transparent for most users. We focus here on the binary

encoding. In that encoding, the exponent as well as 3 to 4

leading bits of the significand are stored in a “combination

field”, and the remaining significand bits are stored in

a “trailing significand field”. We can easily assume here

(packing to and unpacking from the combination and

trailing significand fields is simple) that a decimal number

x10 is represented by an exponent e10 and an integral

significand X10, |X10| ≤ 10p10 − 1 such that

x10 = X10 · 10e10−p10+1.

From this, one can easily deduce that converting from

decimal to binary essentially consists in performing, in

binary arithmetic, the multiplication X10 × 10e10−p10+1,

where X10 is already available in binary, and the binary

representation of 10e10−p10+1 (or, merely, a suitable ap-

proximation to that number) is precomputed and stored in

memory. Conversion from binary to decimal will essen-

tially consist in performing a multiplication by the inverse

constant (or, merely, a suitable approximation to it), with

some additional difficulty linked with decimal exponent

guess and rounding.

In a very comprehensive study [5], Cornea et al.

give constraints on the accuracy of the approximation to

the powers of ten used in conversions, suggest ways of

performing decimal roundings, and give algorithms for

implementing decimal arithmetic in software, assuming the

binary encoding is used.

Our goal is to implement conversions using, for per-

forming the multiplications by the factors 10e10−p10+1, a

very fast FP multiply-by-a-constant algorithm suggested

by Brisebarre and Muller [1], and then to use these

fast conversions for implementing functions in decimal

arithmetic using already existing binary functions. Let us

first briefly present the multiply-by-a-constant algorithm.

A. Multiplication by a constant

We want to compute C · x with correct rounding (as-

suming rounding to nearest even) in binary, precision-p2,

FP arithmetic, where C is a constant (i.e., C is known at

compile time), and x is a floating-point number. C is not an

FP number, nor the middle of two consecutive FP numbers

(otherwise the problem would be straightforward). We

assume that an fma instruction is available. We also assume

that the two following FP numbers are precomputed:

{

Ch = RNp2

2 (C),

Cℓ = RNp2

2 (C − Ch),
(3)

We use the following multiplication algorithm:

Algorithm 1: (Multiplication by C with a multipli-

cation and an fma). From x, compute

{

u = RNp2

2 (Cℓx),

v = RNp2

2 (Chx + u).
(4)

The result to be returned is v.

It is worth pointing out that without the use of an fma

instruction, Algorithm 1 would fail to return a correctly

rounded result for all but a few simple (e.g., powers of

2) values of x. Brisebarre and Muller give methods [1]

that allow one to check, for a given constant C and a

given precision p2, whether Algorithm 1 always returns

a correctly-rounded product—i.e., v = RNp2

2 (C · x) for

all FP numbers x—or not. For the constants C for which

the algorithm does not always return a correctly-rounded

result, their methods also give the (in general, very few)

values of x for which it does not.

Even when the multiplication is not correctly rounded,

one can easily show that

v = C · x · (1 + α),

with

|α| ≤ 2−p2 + 2 · 2−2p2 + 3 · 2−3p2 + 2−4p2 .

(5)

or, more simply, |α| ≤ 2−p2 +3 · 2−2p2 for p2 ≥ 2 (which

always holds in practice).

B. Decimal to binary conversion, possibly
with range reduction

Converting x10 = X10 · 10e10−p10+1 to binary FP

arithmetic consists in getting 10e10−p10+1 in binary, and

then to multiply it by X10. Notice that, in all the cases

considered later on in this paper (for which 2p2 ≈ 102p10),

X10 is exactly representable in precision-p2 binary FP

arithmetic. Hence, our problem is to multiply, in binary,

precision-p2 arithmetic, the exact floating-point number

X10 by 10e10−p10+1, and to get the product possibly

rounded-to-nearest. Notice that when 10e10−p10+1 is ex-

actly representable in precision-p2 binary arithmetic, this

will be straightforward, so we assume we are not in that

case.

To perform the multiplication, we will use Algorithm 1.

More precisely, we assume that two precomputed tables

TH and TL, addressed by e10, of binary, precision-p2 FP

numbers contain the following values:

{

TH [e10] = RNp2

2

(

10e10−p10+1
)

,

TL[e10] = RNp2

2

(

10e10−p10+1 − TH [e10]
)

.

The multiplication algorithm consists in computing, using

a multiplication followed by an fma:

{

u = RNp2

2 (TL[e10] · X10)

x2 = RNp2

2 (TH [e10] · X10 + u).

Notice that (5) implies that x2 = x10 · (1+ α), with |α| ≤
2−p2 + 3 · 2−2p2 .

A potential benefit of our approach is that range reduc-

tion can be partly merged with conversion, which avoids

the big loss of accuracy one might expect, for instance,

with the trigonometric functions, when the decimal input

value is large and close to a multiple of π. For that,

it suffices to notice that we can run exactly the same

algorithm, replacing the values TH and TL given above

by

{

TH [e10] = RNp2

2

(

10e10−p10+1 mod (2π)
)

TL[e10] = RNp2

2

(

10e10−p10+1 mod (2π) − TH [e10]
)

The obtained binary result will be equal to x10 plus or

minus a multiple of 2π, and it will be of absolute value

less than

2 · (10p10 − 1)π.

For estimating, depending on p10 and e10,max which

accuracy will be obtained using that process, one must

compute the “hardest to range-reduce” number of that

decimal format. This is easily done using a continued-

fraction based algorithm due to Kahan. See [18] for details.

This range reduction algorithm process is similar to

Daumas et al’s “modular” range reduction [6] (with the ad-

dition of the radix conversion). The improvements brought

to modular range reduction by Villalba et al. [22] and Jaime

et al. [11] might possibly be adapted to this new context.

C. Binary to decimal conversion

Assume the input binary FP value z2 to be converted

to decimal is of exponent 2k. Let us call z10 the decimal

floating-point value we wish to obtain.

Again, we will suggest a conversion strategy that al-

most always provides a correctly rounded result—namely,

RNp10

10 (z2), and, when it does not, has error bounds that

allow some correctly rounded decimal functions.

We assume that we have tabulated
{

T ′

H [k] = RNp2

2

(

10p10−1−m
)

T ′

L[k] = RNp2

2

(

10p10−1−m − T ′

H [k]
)

where

m =
⌊

log10 2k
⌋

=

⌊

k · ln(2)

ln(10)

⌋

.

The best way of doing that is probably to tabulate function

k 7→
⌊

log10 2k
⌋

and to re-use the tables TH and TL of the

decimal-to-binary conversion.

We will have

1 ≤ z2 · 10−m < 20,

so that m is the “tentative” exponent of z10. This gives the

following method:

1) approximate z2·10p10−1−m using again Algorithm 1,

i.e., compute
{

u = RNp2

2 (T ′

L[k] · z2),

v = RNp2

2 (T ′

H [k] · z2 + u),

using an fma. The returned value v satisfies

v = z2 · 10p10−1−m(1 + α),

where α is the same as in the previous section, i.e.,

it satisfies |α| ≤ 2−p2 + 3 · 2−2p2 ,

2) round v to the nearest integer, say Ztent
10 ;

3) if |Ztent
10 | < 10p10 , then return Z10 = Ztent

10 as the

integral significand, and m as the exponent, of z10.

We have

z10 = z2(1 + β)(1 + α),

with |β| ≤ 1
210−p10+1;

4) if |Ztent
10 | ≥ 10p10 , then the right exponent for z10

was m + 1: repeat the same calculation with m
replaced by m + 1.

Notice that when the product z2×10p−1−m is correctly

rounded, then we get a correctly rounded conversion,

provided that when rounding v to the nearest integer, we

follow the same rule in case of a tie as that specified by

the rounding direction attribute being chosen.

Several variants are possible. For instance, at the price

of larger tables, one may considerably lower the probability

of having to re-do the calculations (step 4 of the algorithm)

with m + 1 because of a wrong guess of m: it suffices to

use a few most significant bits of the significand of z2 (in

addition to the bits of the binary exponent k) to address

the table that returns the decimal exponent guess m.

D. Correctly rounded conversions

As one may easily infer from the presentation of the

conversion algorithms:

• when e10 is such that multiplication by 10e10−p10+1

using Algorithm 1 in precision-p2 binary arithmetic

is correctly rounded, the decimal-to-binary conversion

of any decimal number of exponent e10 will be

correctly rounded;

• when m = ⌊log10(2
k)⌋ = ⌊k ln(2)/ ln(10)⌋ is such

that multiplication by 10p10−1−m and by 10p10−2−m

using Algorithm 1 in precision-p2 binary arithmetic

are correctly rounded, the binary-to-decimal conver-

sion of any binary number of exponent k will be

correctly rounded.

Hence, to the tables TH and T ′

H , we may add a one-bit

information saying if with their corresponding inputs the

conversions will always be correctly rounded. When this is

not the case, we may also store the cases (in general, only

one value of the significand) for which they are not, along

with the corresponding correct product. We give below,

for the combinations that are most useful in this paper

(namely, p10 = 7 and p2 = 53 on the one hand; and

p10 = 16 and p2 = 113 on the other hand), for all values of

n that correspond to a conversion algorithm, information

on whether multiplication by 10n using Algorithm 1 is

correctly rounded or not.

III. Implementing square root

Assume we wish to implement decimal square root,

using the available binary square root. We assume that the

binary square-root is correctly rounded (to the nearest),

and that the radix conversion functions R10→2 and R2→10

satisfy (1) and (2). The input is a decimal number x10 with

precision-p10. We would like to obtain the decimal number

z10→10 nearest to its square-root, namely:

z10→10 = RNp10

10 (
√

x10).

To do that, we will successively compute

x2 = R10→2(x10),

Table II. Only values of k of the form e10 −
p10 + 1, where e10 is a possible exponent of

the decimal32 format and p10 = 7, for which

Algorithm 1 does not provide RN53
2 (10k · x), in

binary64 arithmetic, for all binary64 numbers

x. For each of these k, we also give the only

value of the integral significand X of x for

which the product is not correctly rounded.

k X

−89 6601914299527020

−88 5281531439621616

−80 7442610212143378

−75 5775274921417125

−74 4620219937133700

−39 8862054676683570

−27 6322612303128019

44 5303153036887306

58 8642445784927644

81 6901257826767179

88 5651538526623358

(radix conversion)

z2 = RNp2

2 (
√

x2),

(square root evaluation—correctly rounded—in binary

arithmetic), and

z10→2→10 = R2→10(z2)

(final radix conversion). This process is illustrated in Fig. 1.

Hence, for a given value of p10, we wish to find the

smallest value of p2 for which we always have

z10→2→10 = z10→10.

Since the conversion from decimal to binary satisfies

the above-given bound (5) and there is no underflow, we

have

x2 = x10(1 + ǫ1), with |ǫ1| ≤ 2−p2 + 3 · 2−2p2 .

Therefore, using the Taylor expansion of the square root,

one easily shows that, for p2 ≥ 4 (which of course always

holds),

√
x2 =

√
x10(1 + α), with |α| < 5 · 2−p2−3.

Also, since the binary square root is correctly rounded, we

have,

z2 =
√

x2(1 + ǫ2), with |ǫ2| ≤ 2−p2

=
√

x10(1 + α)(1 + ǫ2),

Table III. Only values of k of the form e10 −
p10 + 1, where e10 is a possible exponent of

the decimal64 format and p10 = 16, for which

Algorithm 1 does not provide RN113
2 (10k ·x), in

binary128 arithmetic, for all binary128 num-

bers x. For each of these k, we give the only

value of the integral significand of x for which

the product is not correctly rounded.

k X

−386 9112734237932218690853399696774399

−378 7242199164100711678964795921763675

−370 7387780147932711281846213407860827

−366 9030535448407523093861102123233582

−341 8876622449795353385425413401372881

−337 6398800729562582643093563805868318

−321 9733058520718851395240193222788951

−299 7254071569507698067447409648478358

−255 8420037188430750089874967107566084

−216 7092222896684371577329011008509126

−213 5978104514746316698522949986211426

−208 7819201611817033293250348210521362

−205 9176499926406477441751731510052609

−201 6147546804684554728806205112916912

−170 6741115501527551991876387329828438

−147 7047077962118662907301301892821441

−135 6413459584451932443084069332366359

−135 8880174809241137228885634460199574

−98 9131465889259917887910527902508007

−94 6107221362342102098957875445841455

−93 9771554179747363358332600713346328

−91 5245772648018445409310711705444553

−79 8214172409224803096715171793824655

50 8830495628708781616500719816269637

53 8977130164254515139438098097718914

66 8242181742429741154107184443779615

67 6593745393943792923285747555023692

68 6082237853544029391229065199706647

72 6647986280316239471002715043516349

97 7828682968655773269275153271989461

104 8542621403039910360698431518230241

114 8127586059857279945562443240423537

117 9140128814978807893208758706899101

136 10040263224243486040560969864754721

168 8844516341894039352827957736164263

196 7924013583806267510992034661017008

199 8960378110017008565992024636123430

200 7168302488013606852793619708898744

209 9639858543694613831445685610840127

211 8601284311093546706469164865091153

228 9906047520426601977163334293496794

232 7234803841169706373123880707254055

233 5787843072935765098499104565803244

271 6741632986223488059614626186938307

275 7150614868271423658884646767856406

304 9633029414231518796424126849373638

311 8380758931291951336060712077039187

313 10261688674644756765606840220687138

316 6023454981334475145807272672423666

320 8904056246038449267373935728447895

327 6732919594331605841230704290640399

331 7721102674233137984982033339726463

336 5947706203160762969288847397912650

337 9516329925057220750862155836660240

361 7637047751532585804954356957701013

362 9179428247248746743725772171767959

evaluation

x10
x2

conversion

conversion

z10→10 = RNp10

10 (
√

x10)

z10→2→10 = R2→10(z2) z2 = RNp2

2 (
√

x2)

evaluation

emulated

Figure 1. Implementing decimal square root
through binary: we first convert the decimal
number x10, and get a binary number x2.

√
x2

is evaluated, which gives z2, and z2 is con-
verted to decimal, which gives z10→2→10. We
wish to know which conditions on p2 need to

be satisfied so that z10→2→10 is always equal
to z10→10 = RNp10

10 (
√

x10).

from which we deduce, after some straightforward calcu-

lations, that for p2 ≥ 4,

z2 =
√

x10(1 + η) with |η| <
7

4
2−p2 . (6)

Now, we determine if R2→10(z2) is equal to
√

x10

rounded to the nearest precision-p10 decimal number. Since

R2→10(z2) = RNp10

10 (z2 · (1 + ǫ)), where |ǫ| ≤ 2−p2 +
3 · 2−2p2 , this will be the case if and only if there is

no exact midpoint between z∗2 = z2 · (1 + ǫ) and
√

x10.

Therefore, we now have to estimate the minimum possible

relative distance between the square root of a precision-

p10 decimal number x10 and a decimal midpoint. To that

purpose, without loss of generality, we can assume that

1 ≤ x10 < 100, so that 1 ≤ √
x10 < 10. The middle m of

two consecutive decimal FP numbers in that domain has

the form
(

M +
1

2

)

· 10−p10+1,

where M is an integer satisfying 10p10−1 ≤ M ≤ 10p10 −
1. The FP number x10 has the form

X · 10−p10+δ+1,

where X is an integer satisfying 10p10−1 ≤ X ≤ 10p10−1,

and δ ∈ {0, 1}. Let us try to find a lower bound on |β|,
where m =

√
x10 · (1 + β).

From m2 = x10 · (1 + β)2, we deduce
(

M +
1

2

)2

· 10−2p10+2 = X · 10−p10+δ+1 · (1 + β)2,

hence,

(2M + 1)2 = X · 2p10+δ+1 · 5p10+δ−1 · (1 + β)2. (7)

From (7), we can easily find again the well-known fact [15]

that the square-root of an FP number cannot be a midpoint

of the same format: β = 0 is impossible since the left-hand

part of (7) is an odd integer, and the right-hand part would

be an even integer. Now if β 6= 0, then (7) implies that

(1 + β)2 is an integer multiple of

1

X·2p10+δ+1 · 5p10+δ−1
.

Moreover, (1 + β)2 6= 1, thus

∣

∣(1 + β)2 − 1
∣

∣ ≥ 1

X·2p10+δ+1 · 5p10+δ−1
>

1

22p10+2 · 52p10

.

Since m is the closest midpoint to
√

x10, one has |β| ≤
1/2·101−p10 ≤ 1/2 as soon as p10 ≥ 1, hence

|(1 + β)2 − 1| ≤ |β|·(2 + |β|) ≤ 5/2·|β|.
As a consequence,

β >
1

102p10+1
. (8)

Now, (6) implies that the number z∗2 such that

z10→2→10 = RNp10

10 (z∗2) satisfies z∗2 =
√

x10(1+η)(1+ ǫ)
with |η| ≤ 7

42−p2 and |ǫ| ≤ 2−p2 + 3 · 2−2p2 . From this,

we easily deduce that for p2 ≥ 5, z∗2 =
√

x10(1 + η∗),
with |η∗| < 3 · 2−p2 .

Now, by combining this with (8), we deduce that for

3 · 2−p2 ≤ 1

102p10+1
,

we will always have z10→2→10 = z10→10. This gives the

following result.

Theorem 1 (Decimal sqrt through binary arithmetic):

If the precisions and extremal exponents of the decimal

and binary arithmetics satisfy

2p2 ≥ 3 · 102p10+1,

and 10e10,max+1 < 2e2,max+1, and 10e10,min−p10+1 >
2e2,min , and p2 ≥ 5, then

RNp10

10 (
√

x10) = R2→10

(

RNp2

2

√

R10→2(x10)
)

for all decimal, precision-p10, FP numbers x10 (i.e., our

method provides a correctly-rounded square root).

Table IV gives, for the basic decimal formats of the

IEEE 754-2008 standard, the smallest value of p2 such

that, from Theorem 1, the method proposed here is shown

to always produce a correctly-rounded square-root. Inter-

estingly enough, these results show that

p10

Smallest p2 s.t. R2→10

(

RNp2

2

√

R10→2(x10)

)

= RNp10

10
(
√

x), ∀ decimal x

7 52

16 112

34 231

Table IV. Smallest values of p2 that allow one

to obtain a correctly rounded decimal square

root.

• to implement a correctly rounded square root in the

decimal32 format, using the binary64 (p2 = 53)

format2 suffices; and

• to implement a correctly rounded square root in the

decimal64 format, using the binary128 (p2 = 113)

format3 suffices.

Implementing square root in the decimal128 format would

require the use of a multiple-precision library such as

MPFR [7].

IV. Other arithmetic operations

It is possible to design algorithms for addition, subtrac-

tion, multiplication, and division using our approach. They

are somewhat more complex than square root, because the

sum, product, or quotient of two decimal FP numbers can

be a decimal midpoint. Concerning addition/subtraction

and multiplication, it is very likely that the algorithms

given in [5] have better performance. Division is a case

we wish to investigate in future studies.

V. Some results on transcendental functions

Dealing with the transcendental functions is easier than

dealing with the arithmetic operations, because for the

most common ones (sine, cosine, exponentials, logarithms,

arctangents), the value of the function at a FP number

cannot be a midpoint. We wish to evaluate a function f us-

ing the approach depicted by Figure 1 for the square-root:

decimal-to-binary conversion (using the algorithm outlined

in Section II), evaluation of the function in precision-p2

binary arithmetic, and then binary-to-decimal conversion.

Estimating what value of p2—and what accuracy of the

binary function—guarantees a correctly-rounded decimal

function requires to solve the Table maker’s dilemma

(TMD) for function f in radix 10. Up to now, authors have

mainly focused on that problem in binary arithmetic (see

e.g. [12], [13]). We are currently working on computing

2Formerly called “double precision”.
3Formerly called “quad precision”.

hardest-to-round cases for the most common functions in

the basic decimal formats of the IEEE 754-2008 standard.

Getting the hardest-to-round cases for a given function

in decimal32 arithmetic only requires a few hours of

computations. The first authors to get all the hardest-to-

round cases for a nontrivial function in the decimal64

formats were Lefèvre, Stehlé and Zimmerman [14].

A. A simple example: the exponential func-
tion

Assume we wish to evaluate ex10 . We successively

compute

x2 = R10→2(x10),

and (assuming a correctly-rounded exponential function in

binary, precision-p2, FP arithmetic)4,

z2 = RNp2

2 (ex2) ,

and, finally,

z10→2→10 = R2→10(z2).

We would like to obtain

z10→2→10 = RNp10

10 (ex10).

Using the bound of the decimal-to-binary conversion al-

gorithm, and the relative error bound of the binary expo-

nential function, we find

z2 = (1 + β) · ex10 · e(1+α),

with |α| ≤ 2−p2 + 3 · 2−2p2 and |β| ≤ 2−p2 . Also,

R2→10(z2) = RNp10

10 (z∗2),

where z∗2 = z2(1 + ǫ), with |ǫ| ≤ 2−p2 + 3 · 2−2p2 .

Combining all these bounds, we find

z∗2 = ex10(1 + η),

with

|η| ≤ 4 · 2−p2

(9)

If the hardest-to-round case is within w∗ ulp of the

decimal format from a midpoint of that decimal format,

then it means that for any midpoint m,

|ex10 − m| ≥ w∗ · x10 · 10−p10+1,

which implies, combined with (9) that if

w∗ · 10−p10+1 ≥ 4 · 2−p2 ,

then our strategy will always produce correctly rounded

results. For instance, for the decimal32 format (p10 = 7)

4But in many cases—as we will see for the decimal32 format, we
will have some “margin”, so that if the maximum error of the binary
exponential function is slightly more than 1/2 ulp, we will anyway have
a correctly rounded decimal exponential.

and the exponential function, we get w∗ = 5.35 · · · ×
10−9 ulp (it is attained for x = 2.408597× 10−3), so that

w∗ · 10−p10+1 = 5.35 · · · × 10−15. If p2 = 53, we find

4 · 2−p2 = 4.44 × 10−15. From this we deduce

Theorem 2: If the decimal format is the decimal32 for-

mat of IEEE 754-2008 (i.e., p10 = 7) and the binary format

is the binary64 format (i.e., p2 = 53), then our strategy

always produces correctly rounded decimal exponentials,

that is,

RNp10

10 (x10) = R2→10 (RNp2

2 (exp(R10→2(x10)))) ,

for all decimal32 FP numbers x10.

In the decimal64 format (p10 = 16), the hardest-to-

round case for the exponential function with round-to-

nearest is

exp(9.407822313572878 × 10−2)

= 1.09864568206633850000000000000000278 · · ·
for which w∗ ≈ 2.78 × 10−18 ulp, so that

w∗ · 10−p10+1 ≈ 2.78 × 10−33 ulp

If p2 = 113, we find 4 · 2−p2 ≈ 3.85 × 10−34.

Hence, we get

Theorem 3: If the decimal format is the decimal64

format of IEEE 754-2008 (i.e., p10 = 16) and the binary

format is the binary128 format (i.e., p2 = 113), then

our strategy always produces correctly rounded decimal

exponentials, that is,

RNp10

10 (x10) = R2→10 (RNp2

2 (exp(R10→2(x10)))) ,

for all decimal64 FP numbers x10.

B. Preliminary results on the logarithm
function

Performing an analysis very similar to that of the

exponential function, we can show that if the hardest-to-

round case is within w∗ ulp of the decimal format from

a midpoint of the decimal format, then our strategy will

produce a correctly-rounded result, for 0 < x10 < 1/e or

x10 > e, as soon as

w∗ · 10−p10+1 ≥ 5 · 2−p2 .

The hardest-to-round case for logarithms of decimal32

numbers between 10−28 and 10+22 is within w∗ ≈
0.235 × 10−8 ulp from a midpoint of the decimal format.

That value is reached for x10 = 1.192327 × 10−20,
whose logarithm is −45.875794999999976472 · · · . We

have w∗ · 10−p10+1 = 0.235 × 10−14, whereas (with

p2 = 53), 5 · 2−p2 = 0.555 × 10−15, therefore:

Theorem 4: If the decimal format is the decimal32

format of IEEE 754-2008 (i.e., p10 = 7) and the binary

format is the binary64 format (i.e., p2 = 53), then our

strategy always produces correctly rounded logarithms,

that is,

RNp10

10 (x10) = R2→10 (RNp2

2 (ln(R10→2(x10)))) ,

for all decimal32 FP numbers x10 ∈
[10−28, 1/e]

⋃

[e, 1022].
The hardest-to-round case for the logarithm of decimal32

numbers corresponds to x = 6.436357 × 10−29, whose

logarithm is −64.9130049999999991880307 · · · . For that

value, we have w∗ · 10−p10+1 = 0.8112 · · · 10−16: our

method may not work on that value. And yet, still using

our computed tables of hardest-to-round cases, we can

show that the only decimal32 input values not in [1/e, e]
for which our method may not work are 3.3052520E-

83, 6.436357E-29, 6.2849190E+22, and 4.2042920E+44:

these four values could easily be processed separately.

Implementing logarithms for decimal inputs close to 1
would require a different approach (it is probably better to

use function x → ln(1 + x)).
(Note to the referees: in the final version, we will

have hardest-to-round cases for all common functions in

decimal32, so that we will be able to derive results similar

to Theorem 2 for these functions. We will also try to have

some results for decimal64, but we cannot be sure: this

requires months of CPU)

VI. Conclusion and future work

We have analyzed a way of implementing decimal

floating-point arithmetic on a processor that does not have

decimal operators. We have introduced two conversion

algorithms that do not provide correctly rounded con-

versions, but are fast and suffice to guarantee correctly

rounded decimal arithmetic, at least for several functions.

Our future work will consist in improving the conversion

algorithms (with the aim of deriving algorithms that always

produce correctly rounded conversions), getting hardest-

to-round cases in the decimal64 format, and trying (for

decimal64 functions) to use as much as possible the

“double extended” binary format, instead of the binary128

one.

References

[1] N. Brisebarre and J.-M. Muller. Correctly rounded multipli-
cation by arbitrary precision constants. IEEE Transactions
on Computers, 57(2):165–174, February 2008.

[2] R. G. Burger and R. Kent Dybvig. Printing floating-
point numbers quickly and accurately. In Proceedings of
the SIGPLAN’96 Conference on Programming Languages
Design and Implementation, pages 108–116, June 1996.

[3] W. D. Clinger. How to read floating-point numbers accu-
rately. ACM SIGPLAN Notices, 25(6):92–101, June 1990.

[4] W. D. Clinger. Retrospective: how to read floating-point
numbers accurately. ACM SIGPLAN Notices, 39(4):360–
371, April 2004.

[5] M. Cornea, J. Harrison, C. Anderson, P. T. P. Tang,
E. Schneider, and E. Gvozdev. A software implementation
of the IEEE 754R decimal floating-point arithmetic using
the binary encoding format. IEEE Transactions on Com-
puters, 58(2):148–162, 2009.

[6] M. Daumas, C. Mazenc, X. Merrheim, and J.-M. Muller.
Modular range reduction: A new algorithm for fast and
accurate computation of the elementary functions. Journal
of Universal Computer Science, 1(3):162–175, March 1995.

[7] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zim-
mermann. MPFR: A Multiple-Precision Binary Floating-
Point Library with Correct Rounding. ACM Transactions
on Mathematical Software, 33(2), 2007. available at http:
//www.mpfr.org/.

[8] I. B. Goldberg. 27 bits are not enough for 8-digit accuracy.
Commun. ACM, 10(2):105–106, 1967.

[9] J. Harrison. Decimal transcendentals via binary. In Proceed-
ings of the 19th IEEE Symposium on Computer Arithmetic
(ARITH-19). IEEE Computer Society Press, June 2009.

[10] IEEE Computer Society. IEEE Standard for Floating-
Point Arithmetic. IEEE Standard 754-2008, August
2008. available at http://ieeexplore.ieee.org/servlet/opac?
punumber=4610933.

[11] Francisco J. Jaime, Julio Villalba, Javier Hormigo, and
Emilio L. Zapata. Pipelined architecture for additive range
reduction. J. Signal Process. Syst., 53(1-2):103–112, 2008.

[12] V. Lefèvre and J.-M. Muller. Worst cases for correct
rounding of the elementary functions in double precision.
In N. Burgess and L. Ciminiera, editors, Proceedings of the
15th IEEE Symposium on Computer Arithmetic (ARITH-
16), Vail, CO, June 2001.

[13] V. Lefèvre, J.-M. Muller, and A. Tisserand. Towards cor-
rectly rounded transcendentals. In Proceedings of the 13th
IEEE Symposium on Computer Arithmetic. IEEE Computer
Society Press, Los Alamitos, CA, 1997.

[14] V. Lefèvre, D. Stehlé, and P. Zimmermann. Worst cases for
the exponential function in the IEEE 754r decimal64 format.
In Reliable Implementation of Real Number Algorithms:
Theory and Practice, Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008.

[15] P. Markstein. IA-64 and Elementary Functions: Speed and
Precision. Hewlett-Packard Professional Books. Prentice-
Hall, Englewood Cliffs, NJ, 2000.

[16] Peter Markstein. The new IEEE-754 standard for float-
ing point arithmetic. In Numerical Validation in Current
Hardware Architectures, number 08021 in Dagstuhl Semi-
nar Proceedings, Dagstuhl, Germany, 2008. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany.

[17] D. W. Matula. In-and-out conversions. Communications of
the ACM, 11(1):47–50, January 1968.

[18] J.-M. Muller. Elementary Functions, Algorithms and Im-
plementation. Birkhäuser Boston, MA, 2nd edition, 2006.

[19] Jean-Michel Muller, Nicolas Brisebarre, Florent
de Dinechin, Claude-Pierre Jeannerod, Vincent Lefèvre,
Guillaume Melquiond, Nathalie Revol, Damien Stehlé,
and Serge Torres. Handbook of Floating-Point Arithmetic.
Birkhäuser Boston, 2010. ACM G.1.0; G.1.2; G.4; B.2.0;
B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[20] S. Rump. Solving algebraic problems with high accuracy
(habilitationsschrift). In Kulisch and Miranker, editors, A
New Approach to Scientific Computation, pages 51–120.
Academic Press, New york, NY, 1983.

[21] G. L. Steele Jr. and J. L. White. Retrospective: how to print
floating-point numbers accurately. ACM SIGPLAN Notices,
39(4):372–389, april 2004.

[22] Julio Villalba, Tomas Lang, and Mario A. Gonzalez.
Double-residue modular range reduction for floating-
point hardware implementations. IEEE Trans. Comput.,
55(3):254–267, 2006.

