
HAL Id: ensl-00470506
https://ens-lyon.hal.science/ensl-00470506v1

Submitted on 6 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic generation of polynomial-based hardware
architectures for function evaluation
Florent de Dinechin, Mioara Joldes, Bogdan Pasca

To cite this version:
Florent de Dinechin, Mioara Joldes, Bogdan Pasca. Automatic generation of polynomial-based hard-
ware architectures for function evaluation. Application-specific Systems, Architectures and Processors,
Jul 2010, Rennes, France. �ensl-00470506�

https://ens-lyon.hal.science/ensl-00470506v1
https://hal.archives-ouvertes.fr

Automatic generation of polynomial-based hardware architectures for function

evaluation

LIP research report 2010-14

Florent de Dinechin, Mioara Joldes, Bogdan Pasca∗

LIP (CNRS/INRIA/ENS-Lyon/UCBL)

Université de Lyon

{Florent.de.Dinechin, Mioara.Joldes, Bogdan.Pasca}@ens-lyon.fr

Abstract

Many applications require the evaluation of some func-

tion through polynomial approximation. This article details

an architecture generator for this class of problems that im-

proves upon the literature in two aspects. Firstly, it bene-

fits from recent advances related to constrained-coefficient

polynomial approximation. Secondly, it refines the error

analysis of polynomial evaluation to reduce the size of the

multipliers used. As a result, architectures for evaluating

arbitrary functions with precisions up to 64 bits, making

efficient use of the resources of recent FPGAs, can be ob-

tained in seconds. An open-source implementation is pro-

vided in the FloPoCo project.

1 Introduction and motivation

In this article, we consider real functions f(x) of one real

variable x, and we are interested in a fixed-point implemen-

tation of such a function over some interval. We assume

that f is continuously differentiable over some interval up

to a certain order. The literature provides many examples

of such functions for which a hardware implementation is

required.

• Fixed-point sine, cosine, exponential and logarithms

are routinely used in signal processing algorithms.

• Random number generators with a Gaussian distribu-

tion may be built using the Box-Muller method, which

requires logarithm, square root, sine and cosine [11].

Arbitrary distributions may be obtained by the inver-

sion method, in which case one needs a fixed-point

∗This work was partly supported by the ANR EVAFlo project and Stone

Ridge Technology.

evaluator for the inverse cumulative distribution func-

tion (ICDF) of the required distribution [3]. There are

as many ICDF as there are statistical distributions.

• Approximations of the inverse 1/x and inverse square

root 1/
√

x functions are used in recent floating-point

units to bootstrap division and square root computation

[12].

• flog(x) = log(x + 1/2)/(x − 1/2) over [0, 1], and

fexp(x) = ex − 1 − x over [0, 2−k] for some small

k, are used to build hardware floating-point logarithm

and exponential in [8].

• fcos(x) = 1 − cos
(

π
4 x

)

, and fsin(x) = π
4 − sin(π

4
x)

x
over [0, 1], are used to build hardware floating-point

trigonometric functions in [7].

• s2(x) = log2(1 + 2x) and d2(x) = log2(1 + 2x) are

used to build adders and subtracters in the Logarithm

Number System (LNS), and many more functions are

needed for Complex LNS [1].

Many function-specific algorithms exist, for example

variations on the CORDIC alorithm provide low-area, long-

latency evaluation of most elementary functions [13]. Our

purpose here is to provide a generic method, that is a

method that works for a very large class of functions. The

main motivation of this work is to facilitate the implemen-

tation of a full hardware mathematical library (libm) in

FloPoCo, a core generator for high-performance computing

on FPGAs1.

1.1 Related work and contributions

Article describing specific polynomial evaluators are too

numerous to be mentionned here, and we just review works

that describe generic methods.

1www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Lee et al [10] have published many variations on a

generic datapath optimisation tool called MiniBit to opti-

mize polynomial approximation. They use ad-hoc mixes of

analytical techniques such as interval analysis, and heuris-

tics such as simulated annealing to explore the design space.

However, the design space explored in these articles does

not include the architectures we describe in the present

paper: All the multipliers in these papers are larger than

strictly needed, therefore they miss the optimal. In addi-

tion, this tool is closed-source and difficult to evaluate from

the publications, in particular it is unclear if it scales beyond

32 bits.

The High-Order Table-Based Method (HOTBM) by De-

trey and Dinechin [6] is based on polynomial approxima-

tion. Their implementation is available as open-source in

FloPoCo. However it is not suited to recent FPGAs with

powerful DSP blocks and large embedded memories. In

addition, it doesn’t scale beyond 32 bits: the table sizes

scale exponentially, and so does the design-space explo-

ration time.

Tisserand studied the optimisation of low-precision (less

than 10 bits) polynomial evaluators [15]. He finetunes a

rounded minimax approximation using an exhaustive ex-

ploration of neighbouring polynomials. He also use other

tricks on smaller (5-bit or less) coefficients that replace the

multiplication by such a coefficient by very few additions.

Such tricks do not scale to larger precisions.

Compared to these publications, the present work has the

following distinctive features.

• This approach scales precisions of 64 bits or more,

while being equivalent or better than the previous ap-

proaches for smaller precisions.

• We use for polynomial approximation minimax poly-

nomials provided by the Sollya tool2, which is the

state-of-the-art for this application, as detailed in Sec-

tion 2.2.

• We attempt to use the smallest possible multipliers. As

others, we attempt to minimize the coefficient sizes. In

addition, we also truncate, at each computation step,

the input argument to the bare minimum of bits that

are needed at this step. Besides, we also use truncated

multipliers.

• This approach is fully automated, from the parsing of

an expression describing the function to VHDL gener-

ation. An open-source implementation is available as

the FunctionEvaluator class in the FloPoCo open sub-

version repository (it will be part of the next release of

FloPoCo). This implementation is fully operational, to

the point that Table 2 was obtained in less one hour.

2http://sollya.gforge.inria.fr/

Family Multipliers

Virtex II to Virtex-4 18x18 signed or 17x17 unsigned

Virtex-5/Virtex-6 18x25 signed or 17x24 unsigned

Stratix II/III/IV 18x18 signed or unsigned

Table 1. Multiplier blocks in recent FPGAs

• The resulting architecture may be automatically

pipelined to a user-specified frequency thanks

FloPoCo’s pipelining framework [?].

• This implementation provides an easy to use interface:

it inputs an arbitrary function expression, a polynomial

degree, and input and output bit-width. It produces

an architecture in synthesizable VHDL evaluating the

function with faithful accuracy.

1.2 Relevant features of recent FPGAs

Here are some of the features of recent FPGAs that can

be used in polynomial evaluators.

• Embedded multipliers features are summed up in Ta-

ble. 1 It is possible to build larger multipliers by assem-

bling these embedded multipliers [5]. Besides, these

multipliers are embedded in more complex DSP blocks

that also include specific adders and shifters, which the

synthesis tools will use efficiently.

• Memories have a capacity of 9Kbit or 144Kbit (Altera)

or 18Kbit (Xilinx) and can be configured in shape, for

instance from 216 × 1 to 29 × 36 for the Virtex-4.

• A given FPGA typically contains a comparable num-

ber of memory blocks and multipliers. When design-

ing an algorithm for an operator, it therefore makes

sense to try and balance the consumption of these two

resources. However, the availability of these resources

also depends on the wider context of the application,

and it is even better to provide a range of trade-offs

between them.

2 Function evaluation by polynomial approx-

imation

Polynomial approximation is the generic mathematical

tool that reduces the evaluation of a function to additions

and multiplications. For these operations, we can either

build architectures (in FPGAs or ASICs), or use built-in

operators (in processors or DSP-enabled FPGAs). A good

primer on polynomial approximation for function evalua-

tion is Muller’s book [13].

Approximation
generation

CodeEvaluation

optimizer

VHDL

increase the gπ
j and g

y
jvary coefficient sizes

compute approximation error
compute evaluation error

function

degree εapprox

coeff tables

architecture

parameters

increase k

precision

Figure 1. Automated implementation flow

Building a polynomial evaluator for a function may be

decomposed into two subproblems: 1/ approximation: find-

ing a good approximation polynomial, and 2/ evaluation:

evaluating it using adders and multipliers. The smaller

the input argument, the better these two steps will behave,

therefore a range reduction may be applied first if the input

interval is large.

We now discuss each of these steps in more detail, to

build the implementation flow depicted on Figure 1. In all

the following, we will consider, without loss of generality a

function f over the input interval x ∈ [0, 1).

In our implementation, the user inputs the function, input

and output precisions, and the degree d of the polynomials

used. This last parameter could be determined heuristically,

but we leave it as a means for the user to trade-off multipli-

ers and latency for memory size.

2.1 Range reduction

In this work, we use the simple range reduction that con-

sists in splitting the input interval in 2k sub-intervals, in-

dexed by i ∈ {0, 1, ..., 2k − 1}. The index i may be ob-

tained as the leading bits of the binary representation of

the input: x = 2−ki + y with y ∈ [0, 2−k). This de-

composition comes at no hardware cost. We now have

∀i ∈ {0, . . . , 2k − 1} f(x) = fi(y), and we may ap-

proximate each fi by a polynomial pi. A table will hold the

coefficients of all these polynomials, and the evaluation of

each polynomial will share the same hardware (adders and

multipliers), which therefore have to be built to accomodate

the worst-case among these polynomial. Figure 3 describes

the resulting architecture.

Compared to a single polynomial on the interval, this

range reduction increases the storage space required, but de-

creases the cost of the evaluation hardware for two reasons.

First, for a given target accuracy εtotal, the degree of each of

the pi decreases with k. There is a strong threshold effect

here, and for a given degree there a minimal k that allows to

achieve the accuracy. Second, the reduced argument y has

k bits less than the input argument x, which will reduce the

size of the multipliers inputting it. If we target an FPGA

with DSP blocks, there will also be a threshold effect here

on the number of DSP blocks used.

Many other range reductions are possible, most related

to a given function or class of functions, like the logarith-

mic segmentation used in [3]. For an overview, see Muller

[13]. Most of our contributions are independent of the range

reduction used.

2.2 Polynomial approximation

One may use the well-known Taylor or Chebyshev ap-

proximation polynomials of arbitrary degree d [13]. These

polynomials can be obtained analytically, or using computer

algebra systems. A third method of polynomial approxima-

tion is Remez’ algorithm, a numerical process that, under

some conditions, converges to the minimax approximation:

the polynomial of degree d that minimizes the maximal dif-

ference between the polynomial and the function. In all the

following, we will call approximation error, and note εapprox,

this maximum absolute difference between the polynomial

and the function.

Between approximation and evaluation, for an efficient

machine implementation, one has to round the coefficients

of the minimax polynomial (which has real numbers in the-

ory, and are computed with large precision in practice) to

smaller-precision numbers suitable for efficient evaluation.

On a processor, one will typically try to round to single- or

double-precision numbers. On an FPGA or an ASIC, we

may build adders and multipliers of arbitrary size with a

one-bit granularity, so, we have one more question to an-

swer: what is the optimal size of these coefficients? In [10],

this question is answered by an error analysis that considers

separately the error of rounding each coefficient of the min-

imax polynomial (considered as a real-coefficient one) and

tries to minimize the bit-width of the rounded coefficients

while remaining within acceptable error bounds.

However, there is no guarantee that the polynomial ob-

tained by rounding the coefficients of the real minimax

polynomial is the minimax among the polynomials with

coefficients constrained to these bit-width. Indeed, this

asumption is generally wrong. One may obtain much more

accurate polynomials for the same coefficient bit-width us-

ing a modified Remez algorithm due to Brisebarre and

Chevillard [2] and implemented as the fpminimax com-

mand of the Sollya tool. This command inputs a function,

an interval and a list of constraints on the coefficient (e.g.

constraints on bitwidths), and returns a polynomial that is

very close to the best minimax approximation polynomial

among those with such constrained coefficients.

Since the approximation polynomial now has con-

strained coefficients, we will not round these coefficients

anymore. In other words, we have merged the approxima-

tion error and the coefficient truncation error of [10] into a

single error, which we still denote εapprox. The only remain-

ing rounding or truncation errors to consider are those that

happen during the evaluation of the polynomial.

Let us now provide a good heuristic for determining the

coefficient constraints. Actually, the constraints taken by

fpminimax are the minimal weights of the least signif-

icant bit (LSB) of each coefficient. To reach some target

precision 2−p, we need the LSB of a0 to be of weight at

most 2−p. This provides the constraint on a0. Now con-

sider the developed form of the polynomial, as illustrated

by Figure 2. As coefficient aj is multiplied by yj which is

smaller than 2−kj , the accuracy of the monomial ajy
j will

be aligned on that of the monomial a0 if its LSB is of weight

2−p+kj . This provides a constraint on aj .

The heuristic used is therefore the following. Remember

that the degree d is provided by the user. The constraints on

the d + 1 coefficients are set as just explained. For increas-

ing k, we try to find 2k approximation polynomials pi of

degree d respecting the constraints, and fulfilling the target

approximation error (which will be defined in Section 2.4).

We stop at the first k that succeeds. Then, the 2k polyno-

mials are scanned, and the maximum magnitude of all the

coefficients of degree j provides the most significant bit that

must be tabulated, hence the memory consumed by this co-

efficient.

2.3 Polynomial evaluation

Given a polynomial, there are many possible ways to

evaluate it. The HOTBM method [6] uses the developed

a0

a1y

a2y
2

k

2k

any
n

2−p

Figure 2. Alignment of the monomials

mult.
trunc.

mult.
trunc.

y

D

ROM
Coef.

A

a0

an−1

an

ỹ2

y

+

σ′
1

π̃′
n

σ′
n

i

ỹ1

π̃′
1

+

trunc

trunc

R

round

Figure 3. The function evaluation architecture

form p(y) = a0 + a1y + a2y
2 + ... + ady

d and attempts to

tabulate as much of the computation as possible. This leads

to short-latency architecture since each of the aiy
i may be

evaluated in parallel and added thanks to an adder tree, but

at a high hardware cost.

In this article, we chose a more classical Horner evalua-

tion scheme, which minimizes the number of operations, at

the expense of the latency: p(y) = a0 +y× (a1 +y× (a2 +
.... + y × ad)...). Our contribution is essentially a fine error

analysis that allows us to minimize the size of each of the

operations. It is presented below in 2.4.

There are intermediate schemes that could be explored.

For large degrees, the polynomial may be decomposed into

an odd and an even part: p(y) = pe(y
2) + y × po(y

2). The

two sub-polynomial may be evaluated in parallel, so this

scheme has a shorter latency than Horner, at the expense of

the precomputation of x2 and a slightly degraded accuracy.

Many variations on this idea exist [13], and this should be

the subject of future work. A polynomial may also be refac-

tored to trade multiplications for more additions [9], but this

idea is mostly incompatible with range reduction.

2.4 Accuracy and error analysis

The maximal error target εtotal is an input to the algo-

rithm. Typically, we aim at faithful rounding, which means

that εtotal must be smaller than the weight of the LSB of the

result, noted u. In other words, all the bits returned hold

useful information. This error is decomposed as follows:

εtotal = εapprox + εeval + εfinalround where

• εapprox is the approximation error, the maximum abso-

lute difference between any of the pi and the corre-

sponding fi over their respective intervals. This com-

putation belongs to the approximation step and is also

performed using Sollya [4].

• εeval is the total of all rounding errors during the eval-

uation;

• εfinalround is the error corresponding to the final round-

ing of the evaluated polynomial to the target format. It

is bounded by u/2.

We therefore need to ensure εapprox + εeval < u/2. The

polynomial approximation algorithm iterates until εapprox <
u/4, then reports εapprox. The error budget that remains for

the evaluation is therefore εeval < u/2 − εapprox and is be-

tween u/4 and u/2.

Let p(y) = a0 + a1y + a2y
2 + ... + ady

d be the poly-

nomial on one of the sub-intervals (for clarity, we remove

the indices corresponding to the sub-interval in all this sec-

tion). The input y is considered exact, so p(y) is the value

of the polynomial if evaluated in infinite precision. What

the architecture evaluates is p′(y), and our purpose here is

to compute a bound on εeval(y) = p′(y) − p(y).

Let us decompose the Horner evaluation of p as a recur-

rence:

σ0 = ad

πj = y × σj−1 ∀j ∈ {1...d}
σj = ad−j + πj ∀j ∈ {1...d}
p(y) = σd

This would compute the exact value of the polynomial,

but at each evaluation step, we may perform two trunca-

tions, one on y, and one on πj . As a rule of thumb, each step

should balance the effect of these two truncations on the fi-

nal error. For instance, in an addition, if one of the addends

is much more accurate than the other one, it probably means

that it was computed too accurately, wasting resources.

To understand what is going on, consider step j. In the

addition σj = ad−j + πj , the πj should be at least as ac-

curate as ad−j , but not much more accurate: let us keep gπ
j

bits to the right of the LSB of ad−j , where gπ
j is a small

positive integer (0 ≤ gπ
j < 5 in our experiments). The pa-

rameter gπ
j defines the truncation of πj , and also the size of

σj (which also depends on the weight of the MSB of ad−j).

Now since we are going to truncate πj = y × σj−1,

there is no need to input to this computation a fully accurate

y. Instead, y should be truncated to the size of the truncated

πj , plus a small number gy
j of guard bits.

The computation actually performed is therefore the fol-

lowing:

σ′

0 = ad

π′

j = ỹj × σ′

j−1 ∀j ∈ {1...d}
σ′

j = ad−j + π̃′

j ∀j ∈ {1...d}
p′(y) = σ′

d

In both previous equations, the additions and multipli-

cations should be viewed as exact: the truncations are ex-

plicited by the tilded variables, e.g. π̃′

j is the truncation of

π′

j to gπ
j bits beyond the LSB of ad−j . There is no need to

truncate the result of the addition, as the truncation of π′

j

serves this purpose already.

We may now compute the rounding error:

εeval = p′(y) − p(y) = σ′

d − σd

where

σ′

j − σj = π̃′

j − πj

= (π̃′

j − π′

j) + (π′

j − πj)

Here we have a sum of two errors. The first, π̃′

j − π′

j , is

the truncation error on π′ and is bounded by a power of two

depending on the parameter gπ
j . The second is computed as

π′

j − πj = ỹj × σ′

j−1 − y × σj−1

= (ỹjσ
′

j−1 − yσ′

j−1) + (yσ′

j−1 − yσj−1)
= (ỹj − y)σ′

j−1 + y × (σ′

j−1 − σj−1)

Again, we have two error terms which we may bound sep-

arately. The first bound is the truncation error on y, which

depends on the parameter gy
j , and is multiplied by a bound

on σ′

j−1 which has to be computed recursively itself. The

second term recursively uses the computation of σ′

j − σj ,

and the bound y < 2−k.

2.5 Parameter space exploration

The previous error computation is implemented in C++.

The parameters gπ
j and gy

j are set to zero, then increased

until the error εeval satisfies the bound εeval < u/2− εapprox.

This is a fairly small parameter space exploration, and

its execution time is negligible with respect to the few sec-

onds it may take to compute all the constrained minimax

approximations. There are many ways of improving it, in

particular we should favor truncations of y to sizes that are

soft spots for DSP block implementations: multiples of 17

bits for Virtex 4, multiples of 18 bits for Stratix II and later,

multiples of 17 or 24 bits for Virtex-5 and Virtex-6. This is

under investigation.

It is difficult to compare to previous works, especially as

none of them reaches the large precisions we attain. Our

approach brings no savings in terms of DSP blocks for pre-

cisions below 17 bits. We may compare to the logarithm

unit in [11] which computes log(1 + x) on 27 bits using a

degree-2 approximation. Our tool instantly finds the same

coefficient sizes of 30, 22 and 13, and our implementation

uses 5 DSP blocks where [11] uses 6: one multiplier is

saved thanks to the truncation of y. For larger precisions,

the savings would also be larger.

f(x) I
23 bits (single prec.) 36 bits 52 bits (double prec.)

d k Coeffs size d k Coeffs size d k Coeffs size

√
1 + x [0, 1]

2 64 27, 19, 11 3 128 40, 31, 22, 14 4 512 56, 45, 34, 24, 15
1 2048 27, 14 2 2048 40, 27, 14 3 2048 56, 43, 30, 18

π
4 − sin(π

4
x)

x
[0, 1]

2 64 27, 21, 14 3 128 40, 33, 25, 15 4 256 56, 48, 39, 28, 18
1 4096 27, 15 2 2048 40, 29, 17 3 2048 56, 45, 33, 19

1 − cos(π
4 x) [0, 1]

2 64 27, 21, 14 3 128 40, 33, 25, 15 4 256 56, 48, 39, 28, 19
1 4096 27, 15 2 2048 40, 29, 17 3 2048 56, 45, 33, 19

log2(1 + x) [0, 1]
2 128 27, 20, 12 3 256 40, 32, 23, 14 4 512 56, 47, 37, 27, 18
1 4096 27, 15 2 2048 40, 29, 17 3 4096 44, 31, 18

log(x+1/2)
x−1/2

[0, 1]
2 256 27, 19, 11 3 512 40, 31, 22, 14 4 1024 56, 46, 36, 27, 17
1 4096 27, 15 2 4096 40, 28, 16 3 8192 56, 43, 30, 18

Table 2. Examples of polynomial approximations obtained for several functions

f(x) I
23 bits (single prec.) 36 bits 52 bits (double prec.)

d l slices DSP BRAM d. l slices DSP BRAM d l slices DSP BRAM

√
1 + x [0, 1]

2 8 82 3 2* 3 16 282 9 3 4 29 864 23 5

1 4 31 1 5 2 10 170 5 9 3 22 580 15 17

π
4
−

sin(π

4
x)

x
[0, 1]

2 8 86 3 2* 3 18 365 11 4* 4 33 1045 27 6

1 4 33 1 11 2 10 173 5 10 3 26 713 19 17

1 − cos(π
4
x) [0, 1]

2 8 86 3 2* 3 18 365 11 4* 4 34 1084 29 6

1 4 33 1 11 2 10 173 5 10 3 29 708 19 17

log2(1 + x) [0, 1]
2 8 83 3 2* 3 18 358 11 4* 4 31 997 26 6

1 4 33 1 11 2 11 170 5 10 3 21 562 14 38

log(x+1/2)
x−1/2

[0, 1]
2 8 81 3 2* 3 18 352 11 3 4 29 887 23 12

1 4 33 1 11 2 10 171 5 21 3 21 558 14 74

Table 3. Synthesis Results using ISE 11.1 on VirtexIV xc4vfx100-12. l is the latency of the operator
in cycles. All the operators operate at a frequency above 250 MHz. A star indicates that a BlockRAM
is severely underused.

3 Examples of application

Table 2 presents the input and output parameters for ob-

taining the approximation polynomials for several represen-

tative functions mentioned in the introduction. The function

f considered over [0, 1], with identical input and output pre-

cision. Three precisions are given in Table 1. Table 2 pro-

vides synthesis results for the same experiments.

4 Conclusion, open issues and future work

Application-specific systems sometimes need

application-specific operators, and this includes oper-

ators for function evaluation. This work has presented

a fully automatic design tool that allows one to quickly

obtain architectures for the evaluation of a polynomial

approximation with a uniform range reduction for large

precisions, up to 64 bits. The resulting architectures are

better optimized than what the literature offers, firstly

thanks to state-of-the-art polynomial approximation tools,

and secondly thanks to a finer error analysis that allows

for truncating the reduced argument. They may be fully

pipelined to a frequency close to the nominal frequency of

current FPGAs.

This work will enable the design, in the near future, of

elementary function libraries for reconfigurable computing

that scale to double precision. However, we also wish to of-

fer to the designer a tool that goes beyond a library: a gener-

ator that produces carefully optimized hardware for his very

function. Such application-specific hardware will be more

efficient than the composition of library components.

Towards this goal, this work can be extended in several

directions.

• There is one simple way to further reduce the multi-

plier cost, by the careful use of truncated multipliers

[14]. Technically, this only changes the bound on the

multiplier truncation error in the error analysis of 2.4.

The implementation in next FloPoCo release will in-

clude this further optimization.

• Another way, for large multiplications, is the use of the

Karatsuba-Ofman scheme, which is also implemented

in FloPoCo [5]. It is even compatible with the previous

one.

• Non-uniform range reduction schemes should be ex-

plored. The power-of-two segmentation of the input

interval used in [3] has a fairly simple hardware imple-

mentation using a leading zero or one counter. This

will enable more efficient implementation of some

functions.

• More parallel versions of the Horner scheme should be

explored to reduce the latency.

• Parameter space exploration should be tuned to find

soft spots related to specific features of the target hard-

ware, in particular available configurations of embed-

ded memory blocks, embedded multiplier input width,

etc.

• Our tools should attempt to detect if the function is odd

or even, and consider only odd or even polynomials

for such case. Whether this works along with range

reduction remains to be explored.

• Designing a pleasant and universal interface for such

a tool is a surprisingly difficult task. Currently, we re-

quire the user to input a function from [0, 1) to [0, 1) –

any function can be trivially scaled to fit in this frame-

work. Besides, the tool should also detect if some bits

of the output are constantly 1 or 0, and avoid comput-

ing them, or raise a warning.

References

[1] M. G. Arnold and S. Collange. A dual-purpose real/complex

logarithmic number system ALU. In Proceedings of the

19th IEEE Symposium on Computer Arithmetic, pages 15–

24, 2009.

[2] N. Brisebarre and S. Chevillard. Efficient polynomial L∞-

approximations. In 18th Symposium on Computer Arith-

metic, pages 169–176. IEEE Computer Society Press, 2007.

[3] R. Cheung, D.-U. Lee, W. Luk, and J. Villasenor. Hard-

ware generation of arbitrary random number distributions

from uniform distributions via the inversion method. IEEE

Transactions on VLSI Systems, 8(15), 2007.

[4] S. Chevillard, M. Joldes, and C. Lauter. Certified and fast

computation of supremum norms of approximation errors.

In 19th IEEE SYMPOSIUM on Computer Arithmetic, pages

169–176, 2009.

[5] F. de Dinechin and B. Pasca. Large multipliers with fewer

DSP blocks. In Field Programmable Logic and Applica-

tions. IEEE, Aug. 2009.

[6] J. Detrey and F. de Dinechin. Table-based polynomi-

als for fast hardware function evaluation. In Application-

specific Systems, Architectures and Processors, pages 328–

333. IEEE, 2005.

[7] J. Detrey and F. de Dinechin. Floating-point trigonomet-

ric functions for FPGAs. In Field-Programmable Logic and

Applications, pages 29–34. IEEE, 2007.

[8] J. Detrey and F. de Dinechin. Parameterized floating-point

logarithm and exponential functions for FPGAs. Micropro-

cessors and Microsystems, Special Issue on FPGA-based

Reconfigurable Computing, 31(8):537–545, 2007.

[9] D. Knuth. The Art of Computer Programming, vol.2:

Seminumerical Algorithms. Addison Wesley, 3rd edition,

1997.

[10] D. Lee, A. Gaffar, O. Mencer, and W. Luk. Optimizing hard-

ware function evaluation. IEEE Transactions on Computers,

54(12):1520–1531, 2005.

[11] D.-U. Lee, J. Villasenor, W. Luk, and P. Leong. A hardware

Gaussian noise generator using the Box-Muller method and

its error analysis. IEEE Transactions on Computers, 55(6),

2006.

[12] P. Markstein. IA-64 and Elementary Functions: Speed and

Precision. Hewlett-Packard Professional Books. Prentice

Hall, 2000.

[13] J.-M. Muller. Elementary Functions, Algorithms and Imple-

mentation. Birkhäuser, 2nd edition, 2006.

[14] M. Schulte and E. Swartzlander. Truncated multiplication

with correction constant. In Workshop on VLSI Signal Pro-

cessing, pages 388–396, 1993.

[15] A. Tisserand. High-performance hardware operators for

polynomial evaluation. Int. J. High Performance Systems

Architecture, 1(1):14–23, 2007.

