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Abstract

Most current square root implementations for FPGAs use a digit re-
currence algorithm which is well suited to their LUT structure. How-
ever, recent computing-oriented FPGAs include embedded multipliers
and RAM blocks which can also be used to implement quadratic con-
vergence algorithms, very high radix digit recurrences, or polynomial
approximation algorithms. The cost of these solutions is evaluated and
compared, and a complete implementation of a polynomial approach is
presented within the open-source FloPoCo framework. It allows a much
shorter latency and a higher frequency than the classical approach. The
cost of IEEE-compliant correct rounding using such approximation algo-
rithms is shown to be very high, and faithful (last-bit accurate) operators
are advocated in this case.

Keywords: square-root, FPGA



Multiplicative square root algorithms for FPGAs 1

1 Introduction

1.1 Algorithms for floating-point square root

There are two main families of algorithms that can be used to extract square roots.

The first family is that of digit recurrences, which provide one digit (often one bit) of
the result at each iteration. Each iteration consists of additions and digit-by-number mul-
tiplications (which have comparable cost) [9]. Such algorithms have been widely used in
microprocessors that didn’t include hardware multipliers. Most FPGA implementations in
vendor tools or in the literature [15, 13, 7] use this approach, which was the obvious choice
for early FPGAs which did not yet include embedded multipliers.

The second family of algorithms uses multiplications, and was studied as soon as processors
included hardware multipliers. It includes quadratic convergence recurrences derived from
the Newton-Raphson iteration, used in AMD IA32 processors starting with the K5 [19], in
more recent instruction sets such as Power/PowerPC and IA64 (Itanium) whose floating-
point unit is built around the fused multiply-and-add [16, 3], and in the INVSQRT core
from the Altera MegaWizard. Other variations involve piecewise polynomial approximations
[10, 18]. On FPGAs, the VFLOAT project [20] uses an argument reduction based on tables
and multipliers, followed by a polynomial evaluation of the reduced argument.

To sum up, digit recurrence approaches allow one to build minimal hardware, while multi-
plicative approaches allow one to make the best use of available resources when these include
multipliers. As a bridge between both approaches, a very high radix algorithm introduced
for the Cyrix processors [2] is a digit-recurrence approach where the digit is 17-bit wide,
and digit-by-number multiplication uses the 17x69-bit multiplier designed for floating-point
multiplication.

Now that high-end FPGAs embed several thousands of small multipliers, the purpose of
this article is to study how this resource may be best used for computing square root [12]. The
first contribution of this article is a detailed survey of the available multiplicative algorithms
and their suitability to the FPGA target. A second contribution is an implementation of
a promising multiplier-based square root based on polynomial evaluation which is, to our
knowledge, original in the context of FPGAs.

The conclusion is that it is surprisingly difficult to really benefit from the embedded
multipliers, especially for double precision. A problem is correct rounding (mandated by the
IEEE-754 standard) which is shown to require a large final multiplication.

The wider goal of this work is to provide the best possible square root implementations
in the FloPoCo project1.

1.2 Multiplicative algorithms fit recent FPGAs

Let us first review the features of recent FPGAs that can be used for computing square roots.

Embedded multipliers available in recent FPGAs are summed up in the following table.

Family Multipliers

Virtex II to Virtex-4 18x18 signed or 17x17 unsigned

Virtex-5/Virtex-6 18x25 signed or 17x24 unsigned

Stratix II/III/IV 18x18 signed or unsigned

1http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
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It is possible to build larger multipliers by assembling these embedded multipliers [6]. Besides,
these multipliers are embedded in more complex DSP blocks that also include specific adders
and shifters – we shall leave it to the design tools to make the best use of these resources.

Memories have a capacity of 9Kbit or 144Kbit (Altera) or 18Kbit (Xilinx) and can be
configured in shape, for instance from 216 × 1 to 29 × 36 for the Virtex-4.

A given FPGA typically contains a comparable number of memory blocks and multipliers.
When designing an algorithm for an operator, it therefore makes sense to try and balance the
consumption of these two resources. However, the availability of these resources also depends
on the wider context of the application, and it is even better to provide a range of trade-offs
between them.

1.3 Notations and terminology

In all this paper, x, the input, is a floating-point number on wF bits of mantissa and wE

bits of exponent. IEEE-754 single precision is (wE , wF ) = (8, 23) and double-precision is
(wE , wF ) = (11, 52).

Given a floating-point format with wF bits of mantissa, it makes no sense to build an
operator which is accurate to less than wF bits: it would mean wasting storage bits, espe-
cially on an FPGA where it is possible to use a smaller wF instead. However, the literature
distinguishes two levels of accuracy.

• IEEE-754 correct rounding: the operator returns the FP number nearest to
√

x. This
correspond to a maximum error of 0.5 ulp with respect to the exact mathematical result,
where an ulp (unit in the last place) represents the binary weight of the last mantissa bit
of the correctly rounded result. Noting the (normalized) mantissa 1.F with F a wF -bit
number, the ulp value is 2−wF . Correct rounding is the best that the format allows.

• Faithful rounding: the operator returns one of the two FP numbers closest to
√

x, but
not necessarily the nearest. This corresponds to a maximum error strictly smaller than
1 ulp.

In general, to obtain a faithful evaluation of a function such as
√

x to wF bits, one needs to
first approximate it to a precision higher than that of the result (we denote this intermediate
precision wF + g where g is a number of guard bits), then round this approximation to the
target format. This final rounding performs an incompressible error of almost 0.5 ulp in the
worst case, therefore it is difficult to directly obtain a correctly rounded result: one needs a
very large g, typically g ≈ wF [17]. It is much less expensive to obtain a faithful result: a
small g (typically less than 5 bits) is enough to obtain an approximation on wF + g bits with
a total error smaller than 0.5 ulp, to which we then add the final rounding error of another
0.5 ulp.

However, in the specific case of square root, the overhead of obtaining correct rounding
is lower than in the general case. Section 2 shows a general technique to convert a faithful
square root on wF + 1 bits to a correctly rounded one on wF bits. This technique is, to our
knowledge, due to [10], and its use in the context of a hardware operator is novel.
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2 The cost of correct rounding

For square root, correct rounding may be deduced from faithful rounding thanks the following
technique, used in [10]. We first compute a value of the square root r̃ on wF +1 bits, faithfully
rounded to that format (total error smaller than 2−wF−1). This is relatively cheap. Now, with
respect to the wF -bit target format, r̃ is either a floating-point number, or the exact middle
between two consecutive floating-point numbers. In the first case, the total error bound of
2−wF−1 on r̃ entails that it is the correctly rounded square root. In the second case, squaring
r̃ and comparing it to x tells us (thanks to the monotonicity of the square root) if r̃ <

√
x

or r̃ >
√

x (it can be shown that the case r̃ =
√

x is impossible). This is enough to conclude
which of its two neighbouring floating-point numbers is the correctly rounded square root on
wF bits.

We use in this work the following algorithm, which is a simple rewriting of the previous
idea.

◦(
√

x) =

{
r̃ truncated to wF bits if r̃2 ≥ x,

r̃ + 2−wF−1 truncated to wF bits otherwise.
(1)

With respect to performance and cost, one may observe that the overhead of correct
rounding over faithful rounding on wF bits is

• a faithful evaluation on wF + 1 bits – this is only marginally more expensive than on
wF bits;

• a square on wF + 1 bits – even with state-of-the-art dedicated squarers [6], this is
expensive. Actually, as we are not interested in the high-order bits of the square, some
of the hardware should be saved here, but this has not been explored yet.

This overhead (both in area and in latency) may be considered a lot for an accuracy
improvement of one half-ulp. Indeed, on an FPGA, it will make sense in most applications to
favor faithful rounding on wF +1 bits over correct rounding on wF bits (for the same relative
accuracy bound).

The FloPoCo implementation should eventually offer both alternatives, but in the follow-
ing, we only consider faithful implementations for approximation algorithms.

3 A survey of square root algorithms

We compute the square root of a floating-point number X in a format similar to IEEE-754:

X = 2E × 1.F

where E is an integer (coded on wE bits with a bias of 2wE−1 − 1, but this is irrelevant to
the present article), and F is the fraction part of the mantissa, written in binary on wF bits:
1.F = 1.f−1f−2 · · · f−wF

(the indices denote the bit weights).

There are classically two cases to consider.

• If E is even, the square root is

√
X = 2A/2 ×

√
1.F .
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• If e is odd, the square root is

√
X = 2(E−1)/2 ×

√
2 × 1.F .

In both cases the computation of the exponent of the result is straightforward, and we
will not detail it further. The computation of the square root is reduced to computing

√
Z

for Z ∈ [1, 4[. Let us survey the most relevant square root algorithms for this.
In the following, we evaluate the cost of the algorithms for double-precision (1+52 bits of

mantissa) for comparison purpose. We also try, for algorithms designed for the VLSI world,
to retarget them to make the best use of the available FPGA multipliers which offer a smaller
granularity.

Unless otherwise stated, all the synthesis results in this article are obtained for Virtex-4
4vfx100ff1152-12 using ISE 11.3.

3.1 Classical digit recurrences

The general digit recurrence, in radix β, is expressed as follows.

1: R0 = X − 1
2: for j ∈ {1..n} do

3: sj+1 = Sel(βRj , Sj)
4: Rj+1 = βRj − 2sj+1Sj − s2

j+1β
−j−1

5: end for

Here Sel is a function that selects the next digit (in radix β) of the square root, and
the radix β controls a trade-off between number of iterations and cost of an iteration. More
details can be found in textbooks [9].

Most square roots currently distributed for FPGAs use radix 2, including Xilinx LogiCore
FloatingPoint (we compare here to 5.0 as available in ISE 11.3) and Altera MegaWizard, but
also libraries such as Lee’s [13], and FPLibrary, on which FloPoCo is based [7]. The main
reason is that in this case, Sel costs nothing.

Pipelined versions perform one or more iterations per cycle. In Xilinx LogiCore, one may
chose the latency: less cycles mean a lower frequency, but also lower resource consumption.

The FloPoCo implementation inputs a target frequency and minimizes the latency for it.
Based on an approximate model of the delay of an iteration [5], several iterations will be
grouped in a single cycle if this is compatible with this target frequency. As the width of the
computation increases as iterations progress, it is possible to pack more iterations in a cycle at
the beginning of the computation than at the end. For instance, for a single precision square
root pipelined for 100 MHz, the 25 iterations are grouped as 7 + 5 + 5 + 4 + 4. Table 1
shows the improvements this may bring in terms of slices. It also shows that FloPoCo slightly
outperforms LogiCore.

3.2 Newton-Raphson

These iterations converge to a root of f(y) = 1/y2 − x using the recurrence:

yn+1 = yn(3 − xy2
n)/2. (2)

The square root can then be computed by multiplying the result by x, a wF × wF mul-
tiplication: This is inherently inefficient if one wants to compute

√
x. However, considering
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Table 1: Pipelining of digit-recurrence square root on a Virtex-4 4vfx100ff1152-12 using ISE
11.3. The command line used is flopoco -frequency=f FPSqrt wE wF

(wE , wF ) Tool cycles Synth. results

(8, 23)

FloPoCo 50 MHz 3 49 MHz, 253 sl.
FloPoCo 100 MHz 6 107 MHz, 268 sl.
LogiCore 6 cycles 6 86 MHz, 301 sl.
FloPoCo 200 MHz 12 219 MHz, 327 sl.
LogiCore 12 cycles 12 140 MHz, 335 sl.
FloPoCo 400 MHz 25 353 MHz, 425 sl.
LogiCore 28 cycles 28 353 MHz, 464 sl.

(11, 52)

FloPoCo 50 MHz 7 48 MHz, 1014 sl.
FloPoCo 100 MHz 15 99 MHz, 1169 sl.
FloPoCo 200 MHz 40 206 MHz, 1617 sl.
FloPoCo 300 MHz 53 307 MHz, 1770 sl.
LogiCore 57 cycles 57 265 MHz, 1820 sl.

the cost of a division (comparable to that of a square root, and higher than that of a multi-
plication) it is very efficient in situations when one needs to divide by a square root.

Convergence towards 1/
√

x is ensured as soon as y0 ∈ (0,
√

3/
√

x). It is a quadratic
convergence: the number of correct bits in the result doubles at each iteration. Therefore,
implementations typically first read an initial approximation y0 of 1/

√
x accurate to k bits,

from a table indexed by the (roughly) k leading bits of x. This saves the k first iterations.

Let us now evaluate the cost of a double-precision pipelined implementation on a recent
FPGA. A 214 × 18 bits ROM may provide an initial approximation accurate to 14 bits. This
costs 16 18Kb memories, or 32 9Kb ones.

Then, two iterations will provide 56 correct bits, enough for faithful rounding. If we try
to compute just right, the first iteration may truncate all its intermediate computations to 34
bits, including x: its result will be accurate to 34 bits only. It thus needs

• 2 multipliers for the 34x17-bit product xy0

• 2 more to multiply the previous result (truncated to 34 bits) by y0 to obtain xy2
0

• 2 more for the last multiplication by y0

The resulting product y1 may be truncated to 34 bits, and the second iteration, which needs
to be accurate to 56 bits, needs

• 6 multipliers for xy1 (here we keep the 54 bits of x)

• 6 more for xy2
1

• and again 6 for the last multiplication by y1.

Altogether, we estimate that approximating faithfully 1/
√

x costs 24 multipliers, and 16
memory blocks. This is slightly better than the 27 multipliers cited in [12], where, probably,
x was not truncated for the first iteration.
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Table 2: Comparison of double-precision square root operators. Numbers in italic are esti-
mations.

Algorithm precision latency frequency slices DSP BRAM

FloPoCo digit recurrence 0.5 ulp 53 cycles 307 MHz 1740 0 0

Radix-217 digit recurrence 0.5 ulp 30 cycles 300 MHz ? 23 1

VFLOAT [20] 2.39 ulp 17 cycles >200 MHz 1572 24 116

Polynomial (d = 4) 1 ulp 25 cycles 300 MHz ? 18 20

Altera (1/
√

x) [12] 1 ulp? 32 cycles ? 900 ALM 27 32 M9K

3.3 High-radix digit recurrences

The Cyrix 83D87 co-processor described in [2] is built around a 17x69-bit multiply-and-add
unit that is used iteratively to implement larger multiplications, and also division and square
root [1]. It is pure coincidence that one dimension is 17 bits, as in FPGA multipliers, but it
makes retargetting this algorithm simpler. Variations of this technique have been published,
e.g. [11]. The larger dimension is actually the target precision (64 bits for the double-exended
precision supported by this coprocessor), plus a few guard bits. We now note it wF + g.

The algorithm uses the same iteration as in Section 3.1, only in radix β = 217. It first
computes a 17-bit approximation Y to the reciprocal square root 1/

√
X, using a table lookup

followed by one Newton-Raphson iteration in [1]. This would consume very few memories
and 3 multipliers, but on a recent FPGA, we could choose instead a large ROM consuming
128 36Kb blocks. Then, iteration i consists of two 17 × (17i) multiplications, plus additions
and logic. One of the multiplications is the computation of the residual Rj+1 as above, and
the second implements Sel by selection by rounding : the multiplication of the residual by Y ,
with suitable truncation, provides the next 17 bits of the square root (i.e. the next radix-217

digit sj+1).

It should be noted that by maintaining an exact remainder, this technique is able to
directly provide a correctly rounded result.

Let us now evaluate the cost of this approach on a recent FPGA. We have already discussed
the initial approximation to 1/

√
X. Then we need 4 iteration for i = 1 to i = 4, each costing

two multiplication of 17 × 17i bits, or 2i embedded multipliers.

The total cost is therefore 20 multipliers, plus possibly 3 for the initial Newton-Raphson
if we choose to conserve memory. On a Virtex-5 or 6, the 24 × 17-bit multipliers may reduce
the cost of some of the 4 iterations. On Altera devices, three iterations may be enough, which
would reduce multiplier count to only 12. In both cases, this evaluation has to be validated
by an actual implementation.

The latency would be comparable to the multiplier count, as each multiplication depends
on the previous one. However, for this cost, we would obtain a correctly rounded result.

3.4 Piecewise polynomial approximation

In piecewise polynomial approximation, the memory blocks are used to store polynomial
coefficients, and there is a trade-off between many polynomials with smaller degree and fewer
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Table 3: FloPoCo polynomial square root for Virtex-4 4vfx100ff1152-12 and Virtex5 xc5vlx30-
3-ff324. The command line used is flopoco -target=Virtex4|Virtex5 -frequency=f FPSqrt-

Poly wE wF 0 degree
(wE , wF ) Degree cycles Synth. results

handcrafted faithful

(8, 23)
2 5 339 MHz, 79 slices, 2 BRAM, 2 DSP

handcrafted, correct rounding 2 12 237 MHz, 241 slices, 2 BRAM, 5 DSP
2 8 318 MHz, 137 slices, 2 BRAM, 3 DSP

FloPoCo, Virtex4, 400 MHz

(9, 36) 3 20 318 MHz, 485 slices, 4 BRAM, 11 DSP
(10, 42) 3 20 318 MHz, 525 slices, 7 BRAM, 11 DSP

(11, 52)
3 23 320 MHz, 719 slices, 74 BRAM, 14 DSP
4 33 318 MHz, 1145 slices, 11 BRAM, 26 DSP

estimation was: 4 25 300 MHz, 20 BRAM, 18 DSP

FloPoCo, Virtex5, 400 MHz

(8, 23) 2 7 419 MHz, 177 LUT, 176 REG, 2 BRAM, 2 DSP
(9, 36) 3 15 376 MHz, 542 LUT, 461 REG, 4 BRAM, 9 DSP
(10, 42) 3 17 364 MHz, 649 LUT, 616 REG, 4 BRAM, 9 DSP
(11, 52) 4 27 334 MHz, 1156 LUT, 1192REG, 6 BRAM, 19 DSP

polynomials of larger degree [14, 4].

To evaluate the cost for double precision, we first played with the Sollya tool2 to obtain
polynomials. It was found that an architecture balancing memory and multiplier usage would
use 2048 polynomials of degree 4, with coefficients on 12, 23, 34, 45, and 56 bits, for a total of
170 bits per polynomial. These coefficients may be stored in 20 18Kb memories. The reduced
argument y is on 43 bits. The polynomials may be evaluated using the Horner scheme, with
a truncation of y to 17, 34, 34, 51 bits in the respective Horner steps [4], so the corresponding
multiplier consumption will be 1 + 4 + 4 + 9 = 18 embedded multipliers.

This does only provide faithful rounding. Correct rounding would need one more 54-bit
square, which currently costs an additional 9 multipliers.

3.5 And the winner is...

Table 2 summarizes the cost and performance of the various contenders. The VFLOAT line
is copied from [20], which give results for Virtex-II (frequency is extrapolated for Virtex-4).
The ALTFP INV SQRT component is available in the Altera MegaWizard with Quartus 9.1,
but its results are inconsistent with [12] (and much worse). This is being investigated.

According to these estimations, the best multiplicative approach seems be the high radix
one. However, it will require a lot of work to implement properly, and before we have at-
tempted it, we may not be completely sure that no hidden cost was forgotten. Besides, this
work will be specific to the square root.

The next best is polynomial approach, and it has several features which make it a better
choice from the point of view of FloPoCo. First, it doesn’t seem far behind in terms of perfor-
mance and resource consumption. Second, we develop a universal polynomial approximator
in FloPoCo [4] which will enable the quick development of many elementary functions to
arbitrary precision. Working on the square root helps us refine this approximator. More im-
portantly, improvements in this approximator (e.g. to improve performance, or to adapt it to
newer FPGA targets) will immediately reflect to the square root operator, so the polynomial
approach is more future-proof. We therefore choose to explore this approach in more details
in the next section.

2http://sollya.gforge.inria.fr/

http://sollya.gforge.inria.fr/
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4 Square root by polynomial approximation

As stated earlier, we address the problem of computing
√

Z for Z ∈ [1, 4[. We are classically
[14] splitting the interval [1, 4[ into sub-intervals, and using for each sub-interval an approxi-
mation polynomial whose coefficients are read from a table. The state of the art for obtaining
such polynomials is the fpminimax command of the Sollya tool. The polynomial evaluation
hardware is shared by all the polynomials, therefore they must be of same degree d and have
coefficients of the same format (here a fixed-point format). We evaluate the polynomial in
Horner form, computing just right at each step by truncating all intermediate results to the
bare minimum. Space is missing to provide all the details, which can be found in [4] or in the
open-source FloPoCo code itself. Let us focus here on specific optimizations related to the
square root.

A first idea is to address the coefficient table is to use the most significant bits of Z.
However, as Z ∈ [1, 4[, the value 00xxx is unused, which would mean that one quarter of the
table is never addressed. Besides, the function

√
Z varies more for small Z, therefore for a

given degree d, polynomials on the left of [1, 4[ are less accurate than those on the right. A
solution to both problems is to make two cases according to exponent parity: [1, 2] (even case)
will be split in as many sub intervals as [2, 4], and the sub-intervals on [1, 2] will be twice as
small as those on [2, 4].

Here are the details of the algorithm. Let k be an integer parameter that defines the
number of sub-intervals (2k in total). The coefficient table has 2k entries.

• If E is even, let τeven(x) =
√

1 + x for x ∈ [0, 1): we need a piecewise polynomial
approximation for τeven. [0, 1[ is split into 2k−1 sub-intervals [ i

2k−1 , i+1
2k−1 [ for i from 0 to

2k−1 − 1. The index (and table address) i consists of the bits f−1f−2 · · · f−k+1 of the
mantissa 1.F . On each of these sub-intervals, τeven(1 + i

2k−1 + y) is approximated by a

polynomial of degree d: pi(y) = c0,i + c1,iy + · · · + cd,iy
d.

• If E is odd, we need to compute
√

2 × 1.F . Let τodd(x) =
√

2 + x for x ∈ [0, 2[. The
interval [0, 2[ is also split into 2k−1 sub-intervals [ j

2k−2 , j+1
2k−2 [ for j from 0 to 2k−1 − 1.

The reader may check that the index j consists of the same bits f−1f−2 · · · f−k+1 as in
the even case. On each of these sub-intervals, |τodd(1 + j

2k−2 + y) is approximated by a
polynomial qj of same degree d.

The error budget for a faithful evaluation may be summarized as follow. Let r be the value
computed by the pipeline before the final rounding. It is represented on wF + g bits, the max
of the size of all the c0 and the size of the truncated y(c1 + · · · ).

For a faithful approximation, we have to ensure a total error smaller than 2−wF . We must
reserve 2−wF−1 for the final rounding: ǫfinal < 2−wF−1. This final rounding may be obtained
at no cost by truncation of r to wF bits, provided we have stored, instead of each constant
coefficient c0, the value c0 + 2−wF−1 (we use ⌊z⌉ = ⌊z + 1/2⌋).

The remaining 2−wF−1 error budget is tentatively split evenly between polynomial ap-
proximation error: ǫapprox = |τ(y) − p(y)| < 2−wF−2, and the total rounding error in the
evaluation: ǫtrunc = |r − p(y)| < 2−wF−2.

Therefore, the degree d is chosen to ensure ǫapprox < 2−wF−2. As such, d is a function of
k and wF .

This way we obtain 2k polynomials, whose coefficients are stored in a ROM with 2k entries
addressed by
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A = e0f−1f−2 · · · f−k+1. Here e0 is the exponent parity, and the remaining bits are i or j as
above.

The reduced argument Y that will be fed to the polynomials is built as follows.

• In the even case we have 1.f−1 · · · f−wF

= 1 + 0.f−1 · · · f−k+1 + 2−k+10, f−k · · · f−wF
.

• In the odd case, we need the square root of 2 × 1.F
= 1f−1.f−2 · · · f−wF

= 1 + f−1.f−2 · · · f−k+1 + 2−k+20, f−k · · · f−wF
.

As we want to build a single fixed-point architecture for both cases, we align both cases:

y = 2−k+2 × 0, 0f−k · · · f−wF
in the even case, and

y = 2−k+2 × 0, f−k · · · f−wF
0 in the odd case.

Figure 1 presents the generic architecture used for the polynomial evaluation. The re-
mainder of the evaluation is described in [4].

5 Results, comparisons, and some handcrafting

Table 3 summarizes the actual performance obtained from the polynomial square root at the
time of writing (the reader is invited to try it out from the FloPoCo SVN repository). All
these operators have been tested for faithful rounding, using FloPoCo’s testbench generation
framework [5].

The polynomials are obtained completely automatically using the polynomial evaluator
generator [4], and we still believe that there is some room for improvement. In particular, the
heuristics that define the coefficient sizes and the widths of the intermediate data do not yet
fully integrate the staircase effects in the costs, due to the discrete sizes of the multipliers and
of the embedded memories. For illustration, compare the two first lines of Table 3. The first
was obtained one year ago, as we started this work by designing by hand a single-precision
square root using a degree-2 polynomial. In this context, it was an obvious design choice
to ensure that both multiplications were smaller than 17 × 17 bits. Our current heuristic
misses this design choice, and consumes one DSP more, without even saving on the BRAM
consumption. For similar reasons, the actual synthesis result differs from our estimated cost,
although the overall cost (BRAM+DSP) is similar.

f−k...f−wF 0

0f−k...f−wF

1

0

Evaluator

Horner

e0f−1...f−k+1

. . .
. . .

D
an

an−1

a0

ROM

Coef.

A
×

+

×

+

trunc
trunc

trunc
trunc

R

Figure 1: Generic Polynomial Evaluator
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We also hand-crafted a correctly rounded version of the single-precision square root, adding
the squarer and correction logic described in Section 2. One observes that it more than
doubles the DSP count and latency for single precision (we were not able to attain the same
frequency but we trust it should be possible). For larger precisions, the overhead will be
proportionnally smaller, but disproportionnate nevertheless. Consider also that the correctly
rounded multiplicative version even consumes more slices than the iterative one. Indeed, it
only has the advantage of latency.

Another optimization that concerns larger polynomials evaluators is the use of truncated
multipliers wherever this may save DSP blocks (and still ensure faithful rounding of course).
This is currently being explored. As we already mentionned, this optimization will benefit
the square root, but also all the other functions that we are going to build around the generic
polynomial generator.

6 Conclusion and future work

This article discussed the best way to compute a square root on a recent FPGA, trying in
particular to make the best use of available embedded multipliers. It evaluates several possible
multiplicative algorithms, and eventually compares a state-of-the-art pipelining of the classical
digit recurrence, and an original polynomial evaluation algorithm. For large precisions, the
latter has the best latency, at the expense of an increase of resource usage. We also observe
that the cost of correct rounding with respect to faithful rounding is quite large, and therefore
suggest sticking to faithful rounding. In the wider context of FloPoCo, a faithful square root
is a useful building block for coarser operators, for instance an operator for

√
x2 + y2 + z2

(based on the sum of square presented in [5]) that would be faithful itself.

Considering the computing power they bring, we found it surprisingly difficult to exploit
the embedded multipliers to surpass the classical digit recurrence in terms of latency, perfor-
mance and resource usage. However, as stated by Langhammer [12], embedded multipliers
also bring in other benefits such as predictability in performance and power consumption.

Future works include a careful implementation of a high-radix algorithm, and a similar
study around division. The polynomial evaluator that was developed along this work will be
used in the near future as a building block for many other elementary functions, up to double
precision.

Stepping back, this work asks a wider-ranging question: does it make any sense to invest in
function-specific multiplicative algorithms such as the high-radix square root (or the iterative
exp and log of [8], or the high-radix versions of Cordic [17], etc)? Or won’t a finely tuned
polynomial evaluator, computing just right at each step, be just as efficient in all cases? The
answer seems to be yes for software implementations of elementary functions [16, 3], but
FPGA have smaller multiplier granularity, and logic.
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