
HAL Id: ensl-00475781
https://ens-lyon.hal.science/ensl-00475781v2

Submitted on 1 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multipliers for Floating-Point Double Precision and
Beyond on FPGAs

Sebastian Banescu, Florent de Dinechin, Bogdan Pasca, Radu Tudoran

To cite this version:
Sebastian Banescu, Florent de Dinechin, Bogdan Pasca, Radu Tudoran. Multipliers for Floating-
Point Double Precision and Beyond on FPGAs. Highly Efficient Accelerators and Reconfigurable
Technologies, Jun 2010, Tsukuba, Japan. �ensl-00475781v2�

https://ens-lyon.hal.science/ensl-00475781v2
https://hal.archives-ouvertes.fr


Multipliers for Floating-Point Double Precision and Beyond
on FPGAs

LIP Research Report RR2010-15

Sebastian Banescu2, Florent de Dinechin1, Bogdan Pasca1, Radu Tudoran2
1LIP, projet Arénaire ENS de Lyon

46 allée d’Italie, 69364 Lyon Cedex 07, France
Email: {Florent.de.Dinechin,Hong.Diep.Nguyen,Bogdan.Pasca}@ens-lyon.fr

2Computer Science Department
Technical University of Cluj-Napoca, Romania

Email: {Sebastian.Banescu,Radu.Tudoran}@cs.utcluj.ro

Abstract—The implementation of high-precision floating-point
applications on reconfigurable hardware requires large multipli-
ers. Full multipliers are the core of floating-point multipliers.
Truncated multipliers, trading resources for a well-controlled
accuracy degradation, are useful building blocks in situations
where a full multiplier is not needed.

This work studies the automated generation of such multipliers
using the embedded multipliers and adders present in the DSP
blocks of current FPGAs. The optimization of such multipliers
is expressed as a tiling problem, where a tile represents a
hardware multiplier, and super-tiles represent combinations of
several hardware multipliers and adders, making efficient use
of the DSP internal resources. This tiling technique is shown to
adapt to full or truncated multipliers.

It addresses arbitrary precisions including single, double but
also the quadruple precision introduced by the IEEE-754-2008
standard and currently unsupported by processor hardware. An
open-source implementation is provided in the FloPoCo project.

Index Terms—FPGA, multiplier, truncated multiplier, floating-
point, quadruple precision

I. INTRODUCTION

FPGA integration still follows Moore’s Law, and FPGAs
have been shown to exceed CPU performance in single-
precision (or SP, a 32 bit format) and then double-precision
(or DP, a 64-bit format including a 52-bit mantissa) [16].

DP arithmetic is popular for commodity and compatibility
with software. However, demand for more accuracy is grow-
ing, especially in scientific computing [6], and the IEEE-754-
2008 revision of the Standard for Floating-Point Arithmetic
[10] has introduced a higher precision floating-point format:
quadruple precision (QP), a 128-bit format including a 112-bit
mantissa. So far no general purpose processor offers hardware
floating-point units supporting this format. Proprietary core
generators such as LogiCore [1] from Xilinx and Megawizard
[2] from Altera currently do not scale to QP either.

This article focuses on techniques for building multipliers
larger than double precision. There is a special motivation for
a QP floating-point multiplier, and one contribution of this
work is indeed such a multiplier, however the applications of
this work go well beyond that. Multiplication is a pervasive
operation, and in an FPGA it should be adapted to its context
as soon as this may save resources:

• In many applications, one needs to multiply numbers of
different bit-width.

• Truncated multipliers [17] discard some of the lower
bits of the mantissa to save hardware resources. For a
floating-point multiplier, the impact of this truncation
can be kept small enough to ensure last-bit accuracy (or
faithful rounding) instead of IEEE-754-compliant correct
rounding. This small accuracy lost may be compensated
by a larger mantissa size. However, it is also perfectly
acceptable in situations where a bound on the relative
error of the multiplication is enough to ensure the numer-
ical quality of the result. This is for instance the case of
polynomial approximation of functions: it is possible to
build high-quality functions out of truncated multipliers
[4]. In other words, the present work is an important step
towards efficient implementations of elementary func-
tions up to quadruple precision on FPGAs.

• The Karatsuba technique [3], [5], trading multiplications
for additions, can also be used on multipliers, truncated
or not.

• Squarers are also a special case of multipliers that present
optimization opportunities [5].

A contribution of this article is, in Setion III the automation
of the tiling technique used manually in [5] – and indeed
the automatically-generated multipliers sometimes surpass the
hand-crafted ones published there. It is based on a fine
modelization of the capabilities of existing DSP blocks. An-
other contribution is, in Section IV, a novel algorithm for
truncated multiplication using embedded multipliers. For QP,
the multipliers obtained using this technique save 23 DSP
blocks on Virtex4 and 15 DSP blocks on Virtex5.

The operators presented here are freely available as part of
the FloPoCo project1.

II. BACKGROUND

A. Large multipliers using DSP blocks

Recent FPGAs embed a large number of Digital Signal
Processing (DSP) blocks, which include small multipliers. The

1www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/



straightforward way of performing large multiplications using
these multipliers is to first decompose the large multiplication
into a sum of smaller multiplications matching the embedded
multipliers. Let α, β be two integer parameters representing
the size in bits of each input to an embedded multiplier.

Let A and B be two integers to multiply, of respective sizes
nα bits and mβ bits. The product AB may be written:

AB =

nα−1∑
i=0

ai2
i ×

mβ−1∑
i=0

bi2
i

=

i<n,j<m∑
i,j=0

2αi+βjAiBj

where Ai and Bi are chunks of α and β bits of A and B
respectively.

This requires the computation of nm subproducts of size
α × β, and their summation with the proper weights 2αi+βj .
This technique requires nm DSP blocks to implement an
nα + mβ bit multiplier. An automation of this process has
been presented in [8] (for α = β) and in [15] (for α 6= β
as in Virtex-5/6). Both works focus on the alignment of
the subproducts in order to reduce the number of levels of
multioperand adder tree. None of these works make use of
the internal DSP adders nor address pipelined multipliers.
Moreover, as presented in [5], this decomposition process is
suboptimal when α 6= β.

Previous studies [3], [5] have also shown that the Karatsuba
technique may reduce the DSP count when α = β, e.g. from 4
to 3 DSPs when n = m = 2, or from 9 to 6 when n = m = 3,
at the expense of more logic.

B. Relevant DSP features

All DSP blocks contain multipliers. For Xilinx VirtexII-IV
and Spartan3 the multiplier size is 18×18 bits signed (or 17×
17 bits unsigned). Virtex-5 and Virtex-6 contain rectangular
multipliers of 18× 25 bits signed (or 17× 24 bits unsigned).
With respect to section II-A, α = β = 17 for VirtexII-IV and
Spartan3. For Virtex-5/6 the values for the two parameters are
α = 17, β = 24.

In addition to the multiplier, the Xilinx DSP also contains an
adder/subtracter unit that can be used to sum two subproducts
coming from neighbouring DSPs, possibly with a 17-bit shift.
This feature, in combination with four levels of internal
registers, may be used to sum up to four shifted subproducts
in a pipelined way entirely within four DSP blocks.

The Altera StratixII DSP block contains 4 18 × 18-bit un-
signed multipliers that can also be configured to perform eight
9×9-bit multiplications. Newer generations (StratixIII and IV)
allow for an extra configuration performing six 12 × 12-bit
products using the same hardware. A configurable addition tree
allows for the four 18× 18-bit subproducts to be summed to
perform one 36× 36-bit multiplication. This adder tree seems
to allow a for a similar degree of flexibility as the Xilinx DSP.
However, unlike Xilinx’, Altera tools currently require Altera-
specific primitives to exploit modes where the subproducts do

wFx + 1

Fit ×

wFy + 1

wFx + wFy + 2

Fy1

NormalizeUpdate

wFx + wFy + 1

Fx

Exc

Update

RoundUpdate
wFR2

22

+
max(wE)

EyEx

wER

+

+
wER

ExcxExcy
wEx wEy

Sx Sy

SR ExcR ER FR

Fig. 1. Architecture of a flexible floating-point multiplier

not have equal weights. This requires more development, and
for lack of time we therefore focus on Xilinx FPGAs in the
rest of this article.

C. Flexible floating-point multiplication

The floating-point format used in this work is parameterized
by exponent size wE and mantissa fraction size wF . It is simi-
lar in spirit to the IEEE-754 format, but adapted to the context
of FPGAs: It does not support subnormals (the possibility of
increasing independently the exponent size makes subnormals
less relevant in FPGA computing) and encodes exceptions
(zero, infinities and Not a Number) in two separate bit to avoid
the overhead of coding/decoding them in the exponent field as
in the IEEE-754 format.

In addition, we support multiplying numbers of different
formats. Let us consider X and Y two floating-point numbers
respectively in (wEX

, wFX
) and (wEY

, wFY
) formats. The

product, noted R, should be on (wER
, wFR

) format:

XY = (−1)SX2EX−biasX1.FX × (−1)SY 2EY −biasY 1.FY

= (−1)SX+SY 2EX−biasX+EY −biasY (1.FX × 1.FY )

R = (−1)SXY 2
�wER

(EXY +biasR) ◦wFR
(1.FR)

The simplified data-path of the fully parametrized floating-
point multiplier is presented in Figure 1. There are several
differences with respect to the classical version found in
textbooks [7], [12] and implemented in most libraries [11], [9],
[14] where wEX

= wEY
= wER

and wFX
= wFY

= wFR
.

Firstly, for wFX
6= wFY

the mantissa product requires a
rectangular multiplier. Moreover, the result mantissa has to be
rounded to wFR

bits (◦wFR
). Secondly, the underflow/overflow

conditions change due to the new exponent range. If the
exponent result is not representable on wER

bits than the
exception bits have to be respectively updated (�wER

). Finally,
the mantissa multiplier will be built using the automated tiling
technique which we now present.

III. TILING

Let us consider our multiplication operands A and B on
u and v bits respectively. Our purpose it to multiply A and



B making efficient use of the DSP resources. The technique
consists in tiling a u×v rectangular multiplication board using
a minimal number of such multipliers. Starting from the tiled
multiplication board, the circuit equation is obtained using a
simple rewriting technique.

Tiling, as a reformulation technique for this optimization
problem, has been first introduced in [5], where only rect-
angular tiles were considered. We show in this work that
considering more complex tiles allows the tiling technique to
optimize the use not only of the multipliers, but also of the
adders within DSP blocks.

We take as running example Figure 2(b) (from [5]) in
order to introduce tiling for a DP mantissa multiplication on a
Virtex5 FPGA. The rectangles denoted by M1 to M8 are the
eight Virtex5 multiplier tiles used to perform the multiplication
(17×24 bits). The central 10×10-bit multiplication might be
either performed in logic if the DSP count is a big constrain,
either partially using one DSP block.

Each rectangle represents the product between a range of
bits of X and Y . For example M1 = X0:23× Y0:16. For each
rectangle, the ranges of X and Y correspond to its projection
on the X and Y axis respectively. A rectangle has a weighted
contribution to the final product, the weight being equal to
the sum of its upper right corner coordinates (e.g. the weight
of the M4 tile is 217+34). The presented rewriting technique
yields:

XY =
(
M1 + 217M2 + 234M3 + 251M3

)
S0

+224
(
M8 + 217M7 + 234M6 + 251M5

)
S1

+248 MLogic

We have parenthesized the equation in order to make full use
of the Virtex5 internal DSP adders (see section II-B). Due to
the fixed 17-bit shifts between the operands, each sub-sum S0

and S1 may be computed entirely using DSP block resources.
This reduces the number of inputs of the final multi-operand
adder to three.

Such a parenthesing involving only 17-bit shifts is graphi-
cally descried as a super-tile. Figure 3 shows some super-tiles
corresponding to the DSP capabilities of Virtex 4 and 5/6.
These super-tiles (and all their subsets) don’t require additional
hardware to perform the full product. In addition, larger super-
tiles can be obtained by coupling the black and white circles of
adjacent super-tiles. This corresponds to using the cascading
adder input of the DSP blocks. Actually, all the possible super-
tiles may be generated by the primitives shown on Figure 4.

On Stratix, the large adders inside the DSP block that can
be used to add up to four 18x18-bit partial products having
the same magnitude. This corresponds to a line of tiles parallel
to the main diagonal. However, as previously stated, we are
currently unable to obtain the predicted performance out of
the Altera Quartus tools. This could be solved by using Alter-
specific primitives, but would require much more development
work.

0
0

16

33

163358

58

X

Y
34

0

0

24

41

58 34 17

41 24

17

M1

M2

M3M4
M5

M6

M7
M8

X

Y

34

0

0

24

41

58 34 17

41 24

17

M1

M2

M3

M4

M5M6M7

X

Y

(a) Xilinx (b) Tiling in [5] (c) Proposed
Fig. 2. 53-bit multiplication using Virtex-5 DSP48E. The dashed square is
the 53x53 multiplication.

Virtex4

Virtex5

Fig. 3. Some super-tiles exactly matching DSP blocks

A. Design Decisions

In the previous example, there remains an untiled 10-bit ×
10-bit square. Should this be implemented as logic, or as an
underutilized DSP block? This is a trade-off between logic and
DSP blocks, and as such the decision should be left to the user.
This situation is very common, for instance there is also an
untiled part in Figure 2(c). We have therefore decided to offer
the user the possibility to select a ratio between DSP count and
logic consumption. This ratio is as a number in the [0, 1] range.
Larger values for the ratio favour DSP oriented architecture
whereas lower values favour logic oriented architectures. The
total number of multipliers used is a function of the input
widths, ratio and FPGA target.

In order to exploit this user-provided ratio accurately, we
have modelled the logical equivalence of a DSP block for
various FPGA families, inside FloPoCo’s Target hierarchy.

B. Algorithm

The construction of a tentative multiplier configuration
consists of three steps.

1) Generate a valid partition of the large multiplication into
smaller partial products or tiles.

2) Group these tiles as super-tiles in order to reduce
the number of operands of the large multiplier’s final
adder. The super-tiles are built using the regrouping
primitives presented in Figure 4. Two successive tiles
can be regrouped if their their black and white circles
correspond to one of the regrouping primitives. When
building super-tiles we also balance their sizes in order
to reduce operator pipeline depth and the number of
synchronization registers.

3) Compute the approximate cost of the configuration.
This cost includes: the DSPs, the slices needed for



computing the rest of the multiplication, and the cost of
the multioperand adder used to compute the final result.

Configurations may be compared according to this cost. The
best one will be chosen, and its VHDL generated.

Choosing among all possible configurations takes an ex-
ponential number of steps with respect to the size of the
multiplication board O((u × v)δ), where u and v are the
dimensions of the multiplication and δ is the number of DSPs.
Although this would ensure we find the optimal configuration,
the exponential complexity prevents from obtaining results in
reasonable time. Hence, we prune exploration branches using
the following criteria:

• Tiles do not overlap. In step 1, we only consider tilings
which align tile edges. This reduces the number of tilings
to O(2δ) for Virtex4 and O(3δ) for Virtex5.

• Configurations symmetrical to already existing ones are
pruned.

• Configurations where large holes appear inside the tiling
are also pruned.

C. Reality check

We have used the presented algorithm in order to gen-
erate mantissa multipliers for DP (53bit) and QP (113bit)
floating-point. Table I presents the synthesis results obtained
for both the mantissa multiplier and the complete floating-
point multiplier, on Virtex4 (xc4vfx100-12-ff1152) and Vir-
tex5 (xc5vfx100T-3-ff1738) FPGAs using Xilinx ISE 11.4.
The results of this work are compared to Xilinx Logicore core
generator, a double precision operator presented in [5] and
combinatorial results obtained from [15]. With respect to the
results presented in [5] we manage to offer an DP mantissa
multiplier operator that saves 2 DSP blocks at the expense
of some logic while running at a similarly high frequency.
With respect to [15] we offer high performance operators while
reducing the number of DSP blocks. The biggest difference is
for DP, where their decomposition technique infers 12 DSPs,
out of which several are underutilized. With respect to Xilinx
Logicore, we manage to save DSP blocks without big penalties
in logic consumption. For example, for Virtex4 we are able to
save 6 DSPs for approximately 330 slices.

IV. TILING TRUNCATED MULTIPLIERS

Truncated multipliers reduce resources, delay, or power
consumption [17], [13]. Let us consider two integers A and B
on u and v bits respectively with AB on n = u+ v bits. The
idea is to save the computation of some of the less significant
columns in the multiplication array (see the greyed-out rows
in Figure 5(a)) so that the error of the integer multiplication
remains small enough. More precisely, given a target precision

Virtex5Virtex4

Fig. 4. Super-tiling primitives

×

∑
B
A

u

k
d

n− k

v

(a) truncated multiplication

u

v

(b) truncated board

Fig. 5. Truncated multiplication and the corresponding tiling multiplication
board

weight k, we build a multiplier that returns a result faithfully
rounded on n− k bits. Faithful rounding means that the total
error is smaller that the weight of the last bit of the result:
Etotal ≤ 2k.

A. Faithfully accurate multipliers

Let us first determine the maximum number of columns,
denoted by d, that may be removed (see Figure 5(a)).

The error Etotal has two components, Etotal = Eapprox +
Eround, where Eapprox is the approximation error introduced
by the truncation of the d columns, and Eround is the error
of rounding the n− d-bit intermediate result to n− k bits.

To ensure that Etotal ≤ 2k, we need to distribute our
2k error budget between the two error sources. By adding
a single one to the multiplier array (the grey dot on Figure
5(a)) before summing it to an n−d-bit number, the truncation
of this number to n−k bits implements round to nearest, thus
ensuring Eround ≤ 2k−1. The remaining 2k−1 are allocated
to Eapprox.

The sum of the first d discarded columns is in the interval
0 ≤ Eapprox ≤

∑d
i=1 i2

i−1 = (d−1)2d+1 (see Figure 5(a)).
An offset correction bit can reduce this error by almost half
by centering it [17]. Combined with the previous constraint
Eapprox < 2k−1, this provides us a relation of the form d =
f(k). Table II shows how the number of discarded columns
varies for common floating point formats.

TABLE II
TRUNCATED MULTIPLIERS PROVIDING FAITHFUL ROUNDING FOR

COMMON FLOATING POINT FORMATS

Precision k Discarded (d)
Single 23 18

Double 52 46
Quadruple 112 105

B. FPGA Fitting

The theoretical saves in complexity entailed by truncated
multiplications approaches 50%. The entailed saves have two
components: the size of the computed subproducts and the
size of the operands in the multioperand reduction scheme.
The truncation technique applied to a multiplication performed
using DSP blocks is presented in Figure 6(a). The architecture



TABLE I
COMPARISON OF MULTIPLIER IMPLEMENTATIONS

(wE , wF ) Tool, FPGA, Freq. Mantissa multiplier (wF + 1) × (wF + 1) Complete floating-point multiplier
(11,52) ours, Virtex4, 400MHz 11cycles @ 368MHz, 595sl., 10DSP 16cycles @ 338MHz, 729sl. 10DSP

(15,112) ours, Virtex4, 400MHz 18cycles @ 358MHz, 1741sl., 49DSP 25cycles @ 319MHz, 2125sl., 49DSP

(15,112) Virtex4,[15] 0cycles @ 76MHz, 1100sl., 49DSP

(11,52) ours, Virtex5, 400MHz 9cycles @ 407MHz, 530LUT 506REG 9DSP 14cycles @ 407MHz, 804LUT 804REG 9DSP

(11,52) ours, Virtex5, 400MHz 8cycles @ 407MHz, 919LUT 872REG 6DSP 13cycles @ 407MHz, 1184LUT 1080REG 9DSP

(11,52) Virtex5, [5] Fig.2(b) 4cycles @ 369MHz, 243LUT 400REG 8DSP

(11,52) Virtex5,[15] 0cycles @ 111MHz, 200LUT 12DSP

(15,112) ours Virtex5, 400MHz 13cycles @ 407MHz, 2070LUT 2062REG 34DSP 20cycles @ 355MHz, 2978LUT 2815REG 34DSP

(15,112) Virtex5,[15] 0cycles @ 90MHz, 1000LUT 35DSP

(11,52) Logicore, Virtex4 18cycles @ 400MHz, 279sl., 16DSP 22cycles @ 321MHz, 561sl. 16DSP

(11,52) Logicore, Virtex5 Fig.2(a) 12cycles @ 450MHz, 229LUT 280REG 10DSP 18cycles @ 319MHz, 339LUT 482REG 10DSP

M2

M3 M1

k

d

M4

(a) wasteful

M2

M3 M1

k

d

M4

(b) better

M2

M3 M1

k

d

(c) compensated

Fig. 6. Truncation applied to multipliers. Left: Classical truncation technique
applied to DSPs. Center: Improved truncation technique. M4 is computed
using logic. Right: FPGA optimized compensation technique. M4 is not
computed.

consumes 4 DSPs to compute the subproducts M1-M4. The
greyed out parts of these subproducts are then discarded before
performing the final addition. Out of the 4 DSPs used, 2
are softly underutilized (M1 and M2) and one is greatly
underutilized (M4). A better architecture that performs M4 in
logic is presented in figure 6(b). This architecture saves one
DSP block at the expense of the logic used to perform M4,
which can be itself truncated.

However, on both Figure 6(a) and 6(b), the monolithic DSP
blocks compute all the bits of M1 and M2. As these bits come
for free, we may take them into account, as it will reduce
EApprox and possibly allow us to increase d. This requires
adders extending beyond n− d, but those are for free if they
are inside the DSP blocks.

We therefore want to tile the truncated multiplier such that
the error entailed by discarding the untiled part meets the
previously defined error budget. In this way, the bits not
computed at the left of k will be compensated by the ones
computed at the right, as illustrated on Figure 6(c).

C. Architecture generation algorithm

A two phase algorithm was implemented in order to gener-
ate truncated multiplier using the previously presented tiling
technique. The first phase tiles the multiplication board starting
from bottom left using δ = bAreaboard/Areatilec DSPs
where Areaboard is the area of a multiplication board similar
in shape to that in Figure 5(b) (size is dependent on k) and
Atile = α × β. By construction, the approximation error of
this tiling, EApprox, will be larger than 2k−1.

The second phase reduces EApprox so that it becomes
smaller than 2k−1. In order to do this, we rely on pipelined

soft-core multipliers (pipelined multipliers using logic-only).
EApprox can be reduced by tiling some high-weighted yet
untiled bits. Taking Figure 7 as running example, these are the
untiled bits situated further away (Euclidean distance) from the
origin (top right corner).

The second phase of the algorithm finds at each step
the furthest point from the origin. If this point is adjacent
to an already existing soft-core multiplier , it increases the
respective dimension of this multiplier. Otherwise, an 1 × 1
bit soft-core multiplier is instantiated at that point. If the soft-
core multiplier size is equal to that of a DSP block, it is
replaced by such a block. Next, the error produced by the new
configuration is evaluated. The second phase iterates until the
2k−1 approximation error budget is met. Figure 7 shows how
the size these soft-core multipliers increases. When a valid
configuration is met, its hardware cost is evaluated, and stored
if minimal. If possible, a new tiling is explored and cost is re-
evaluated.

We remark that with respect to the classical truncation
algorithm, not all the bits at the left of the virtual truncation
line are computed. In fact, the bits computed for free at the
right of this line compensate them. The extra cost of this
architecture comes from the few extra bits of the operands
in the final multi-operand addition.

Figure 8 shows some possible tilings for large precision
truncated multipliers. Table III presents synthesis results for
DP and QP. Using our improved truncate multiplier technique
we are able to reduce significantly reduce the number of
DSPs with respect to classical multiplications. For example,
on Virtex4 for DP we are able to reduce DSP count from 10 to

B

0
0

u− 1 A
d

v − 1

d

δ DSP
tiling

truncation
line

Virtual

Fig. 7. Tiling truncated multiplier using DSPs and soft-core multipliers



(a) SP (b) DP (c) QP (d) SP (e) DP (f) QP

Fig. 8. Mantissa multipliers for SP,DP,QP, Virtex4 (left) and Virtex5 (right) ensuring faithful rounding. The grey tiles represent soft-core multipliers

TABLE III
TRUNCATED MULTIPLIER RESULTS

FPGA Prec. Latency, Freq. Resources

Virtex5
DP 6 cycles @ 414MHz 320LUT 302REG 5DSP

QP 20 cycles @ 334MHz 2497LUT 2321REG 19DSP

QP 14 cycles @ 245MHz 2249LUT 1576REG 19DSP

Virtex4 DP 11 cycles @ 368MHz 358sl. 7DSP

QP 21 cycles @ 368MHz 1735sl. 26DSP

7 DSPs while also reducing slice count and for QP we reduce
from 49 to 26 at without any slice penalty. On Virtex5, the
reductions are from 6 to 5 for and roughly half the LUTs and
REGs for DP and from 34 to 19 at a small increase in logic
resources.

V. CONCLUSION

This article addresses the construction large precision multi-
pliers working at high frequencies, from specifications includ-
ing operand size, deployment target, running frequency, and
optimization directives.

By automating the tiling technique presented in [5], we are
able to offer a fully parametrized multiplier operator generator
which is capable of generating operators that sometime surpass
the hand-crafted ones.

We have also extended this technique to the generation of
faithful truncated multipliers, and applied it to build faithfully
rounded floating-point multipliers. The savings entailed by this
approach are significant, and this type of multiplier could
be preferred when IEEE-754 compliance is not mandatory.
Moreover, these multipliers can be applied to the polynomial
evaluation used to build high-quality functions for FPGAs [4],
where only an error bound is required for the final result.

Future work includes finalizing an Altera version for both
regular and truncated tiling multipliers, and extending tiling-
based approaches to squarers and Karatsuba multipliers.

REFERENCES

[1] ISE 11.4 CORE Generator IP.
[2] MegaWizard Plug-In Manager.
[3] J.-L. Beuchat and A. Tisserand. Small multiplier-based multiplication

and division operators for Virtex-II devices. In Field-Programmable
Logic and Applications, 2002.

[4] F. de Dinechin, M. Joldes, and B. Pasca. Automatic generation of
polynomial-based hardware architectures for function evaluation. In
Application-specific Systems, Architectures and Processors. IEEE, 2010.

[5] F. de Dinechin and B. Pasca. Large multipliers with fewer DSP blocks.
In Field Programmable Logic and Applications. IEEE, Aug. 2009.

[6] F. de Dinechin and G. Villard. High precision numerical accuracy in
physics research. Nuclear Inst. and Methods in Physics Research, A,
559:207–210, 2006.

[7] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann
Publishers, 2004.

[8] S. Gao, N. Chabini, D. Al-Khalili, and P. Langlois. Optimised realisa-
tions of large integer multipliers and squarers using embedded blocks.
IET Computers & Digital Techniques, 1(1):9–16, 2007.

[9] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna. Analysis of high-
performance floating-point arithmetic on FPGAs. In Reconfigurable
Architecture Workshop, 2004.

[10] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic,
IEEE Std 754-2008. 2008.

[11] J. Liang, R. Tessier, and O. Mencer. Floating point unit generation
and evaluation for FPGAs. Field-Programmable Custom Computing
Machines, page 185, 2003.

[12] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of
Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[13] M. J. Schulte, K. E. Wires, and J. E. Stine. Variable-Correction
Truncated Floating Point Multipliers. In Asilomar Conference on
Signals, Circuits and Systems, pages 1344–1348, 2000.

[14] R. Scrofano, G. Govindu, and V. K. Prasanna. A Library of Parameteriz-
able Floating-Point Cores for FPGAs and Their Application to Scientific
Computing. In Engineering of Reconfigurable Systems and Algorithms,
pages 137–148. CSREA Press, 2005.

[15] S. Srinath and K. Compton. Automatic generation of high-performance
multipliers for FPGAs with asymmetric multiplier blocks. In Field
Programmable Gate Arrays, pages 51–58, New York, NY, USA, 2010.
ACM.

[16] K. Underwood. FPGAs vs. CPUs: trends in peak floating-point per-
formance. In Field Programmable Gate Arrays, pages 171–180. ACM,
2004.

[17] K. E. Wires, M. J. Schulte, and D. McCarley. FPGA Resource Reduction
Through Truncated Multiplication. In Field-Programmable Logic and
Applications, pages 574–583. Springer-Verlag, 2001.


