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Multitaper Estimation of Frequency-Warped Cepstra
with Application to Speaker Verification

Johan Sandberg, Maria Hansson-Sandd#ember, IEEE ,Tomi Kinnunen, Rahim Saeidtudent Member, IEEE,
Patrick FlandrinFellow, IEEE,and Pierre Borgnatyiember, IEEE

Abstract—Usually the mel-frequency cepstral coefficients are windowed periodograms using different orthogonal windows
estimated either from a periodogram or from a windowed (akataper9, e.g. theThomsor(5], the sine[6], and thepeak
periodogram. We state a general estimator which also inclues  \aichedmultitapers [7]. The multitaper spectrum estimator is
multitaper estimators. We propose approximations of the va- h . .
ance and bias of the estimate of each coefficient. By using Mt !(nown to ha\(e IOW variance, but has not gained much atten_t'on
Carlo computations, we demonstrate that the approximatios are i MFCC estimation [8]. One reason may be that the statistica
accurate. Using the proposed formulas, the peak matched mi  properties of the multitaper MFCC estimator have previpusl
taper estimator is shown to have low mean square error (squ&d not been investigated. It is our purpose to address thi®issu
bias + variance) on speech-like processes. It is also showa t in this letter.

erform slightly better in the NIST 2006 speaker verificatin . .
Fask as cor%pa);ed to the Hamming window Eonventionally used N Section[Dl of this letter we state the general form of
in this context. an MFCC estimator, which will include the MFCC computed
from the periodogram, the windowed periodogram, the Btrtle
and the Welch method, as well as multitaper spectrum esti-
mators. The statistical properties of the cepstrum contpute
from the periodogram are well known [2], [9], [10]. However,
. INTRODUCTION the bias and variance of the cepstrum or of the MFCCs
HE cepstrum was introduced by Bogert, Healy and Tukeyomputed from the multitaper spectrum estimator have not
in the early sixties [1]. It is defined as the inverse Fouridyeen, to the best of our knowledge, studied so far. In Section
transform of the log-spectrum of a stationary random procd8[-A] we therefore derive approximate expressions for the
[2]. The cepstrum has become a fundamental tool in mabias and variance of our general MFCC estimator. From a
applications, such as speech and audio processing [3].shatistical viewpoint, this is an important result, sinceeo
these applications, a psycho-acoustically motivateduleegy may argue that it is hazardous to use an estimator without
warping transformation is usually applied to the spectruimowing its bias and variance. In SectibnTll-B, we compare
before the logarithm and the inverse Fourier transformhsuthe approximations with Monte Carlo computations which
as in the popular mel-frequency cepstral coefficients (ME)ICCshow that our approximations are accurate.
[3]. The results presented in this letter will hold for any The approximate formulas for the bias and variance that
frequency warped cepstrum, including the ordinary cepstruwe derive are then used in Sectibd IV to compare the mean
but we will still use the term “MFCC” for brevity. square error (MSE = squared bias + variance) of different
Typically, the spectrum for MFCC computation is estimateMFCC estimators, including the Hamming window, the Thom-
using the periodogram, i.e. squared magnitude of the Fourgmn multitapers, the sine multitapers and the peak matched
transformation of the data. The periodogram suffers froigea multitapers on speech-like random processes. Our re$ults s
bias and large variance, altogether causing large estimatthat the multitaper MFCC estimators have much lower MSE
errors in the cepstral coefficients. The bias can be reduakan the commonly used Hamming window estimator. Finally,
by windowing the time series with, for example, a Hammingie demonstrate the effectiveness of multitaper MFCC estima
window [4]. The windowed periodogram has low bias inion over the conventional Hamming window based MFCC
general, but it still suffers from high variance. Therefasae extraction, in a speaker verification context. The resiiits,
may consider using a so-calledultitaper spectral estimator the framework of NIST 2006 speaker recognition evaluation
instead. A multitaper spectral estimator is an average (BRE), are presented in Sectigh V.

Index Terms—Cepstral analysis, MFCC, Multiple windows,
Multitapers, Speech analysis, Speaker verification
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of this process, which is defined as: for the bias,bias [¢Mm], and the covariance matri¥, [cng], of
A1y the MFCC estimator. From a practical perspective, it seems
oM = @ log(Ms) (1) reasonable to prefer the estimator with the smallest MSE for

, i all coefficients:
where log operates element-widd € R™*" is a frequency

warping filter bank, the superscripi denotes conjugate MSE(én) = E [(em — ém)?] = bias [én]? + diag (V [ém])

The filter bankM is chosen such th@s possesses the same R

symmetry as the spectrum vecter Due to this symmetry, Els] = : (6)
@@ is real-valued and can efficiently be computed using the ATdiag(W? ¥, _;R¥Y W)

discrete cosine transform (DCT). Note thai reduces to the \yhere R denotes the covariance matrix &f the multita-
ordinary cepstrum ifM is chosen to be the-by-n identity per vectors are the columns &V € R™** with weights

matrix. _ _ _ ~ A=[A1) ... AX(K)]". The(a, b):th element of the covariance
In this letter, we will consider the following MFCC estima-atrix of the multitaper spectrum estimator can be found,

transpose® is the m-by-m Fourier matrix with the(a, b):th 5)
element: where the square operates element-wise.
P L {e—i%(a—l)(b—l)/m} , To derive the bias and variance of our general MFCC
ab estimator, we start with the expectation of the multitaper
ands = [s(0/n) s(1/n) s((n—1)/n)]" is the spectrum spectrum estimator, which is given in [4]:
vector, which is symmetrical, i.es(k/n) = s((n — k)/n). ATdiag(WT @ RUH W)

tor: similar to what is done in [4, page 229], as:
. 1y .
CM = E@ lOg(MS) (2) \Y [é] — {AT ‘WT‘I’a_lR‘I’b_1W|2 A"'
where s is the multitaper spectrum estimator [4], [5], given AT ‘WT\I, RO/ 1W\2>\} )
by: “ - ab
s = [3(0) 3(1) ... &(n — 1)]T with 3) xihseere the absolute and square operator are defined element-
k n—1 2 ' . . .
. We consider the following Taylor expansion around the
~ o . ) —i2mtp/n .
3(p) = Z)\(J) Z w;(t)a(t)e P mean,m., of a random variable:
j=1 t=0
1
b log(z) ~ log(m.) + (z —ms) — (m. — 2)27 8
:Z)\(j)‘ij\Ilpx‘g, p=0,....,.n—1 (4) m; 2m
j=1 which is an extension of the commonly used formulas for
where k& multitapers,w; = [w;(0) ... w;(n — 1)]7, j = Propagation of uncertainty. Si”@‘{m%(z - mz)} = 0, this
1,...,n, are used with corresponding weightgj), and approximation gives us
where ¥, is the n-by-n diagonal Fourier matrix defined by: V[2]
o o E flog(2)] ~ log(m.) — 55
v, £ diag <|:e—127'rp; I ST Sl e } > . . . . N )
Applying this element-wise on a random vectogives:
The multitaper estimate is thus computed as a weighted diag (V[z])

average ok sub—spectraj,wf\Ilpx\z, j=1,..., k. This will E [log(z)] ~ log(E [2]) — 2 [2]°

reduce the variance of the estimate, since the multitapers a

designed such that the different sub-spectra are apprmdiynaWhere the logarithm, the division and the square operate
uncorrelated with each other [4], [5], [7]. element-wise on vectors. This gives us the following approx

The estimator reduces to the windowed periodogran=f mation of the expectation of the multitaper cepstrum egtima
1 and) = 1 and if additionally,w, (t) = —=, it reduces to the
periodogram. It will also account for the Bartlett and theldfie
method by appropriate choice of; andA(j), j =1, ..., k.
By selecting the frequency warping matiM, this estimator

E fen] = - ®'E [log(M3)

Q

%‘PH <10g (ME[8]) — Teg (VIS MT))' )

. ; . 2 (ME [8])?
will transform to any frequency warped cepstrum, including
MFCC and the ordinary non-warped cepstrum. The bias of the estimator is:
P Ry ME [3] diag (MV [s]| M”)
[1l. BIAS AND VARIANCE OF THE ESTIMATOR bias [env] ~ — @ <1og< Ms ) 2(MER)?
A. Proposed approximation using Taylor expansion (10)

From a statistical perspective, it is of great interest tBased on comparisons with Monte Carlo computations as
compute the bias and variance of a proposed estimator.dn thescribed in SectioRII[3B, it is our experience that the las
section we will, for the first time, derive approximate foras term in the Taylor expansion ill(8) significantly improves th



Bias Variance

approximation of the bias. The approximation of the var&gncoos 0.012
. . . elas —OS— Ham. t —S— Ham. t
however, is sufficiently accurate even when omitting the le —x—Hgm.a{:grox. T ram ar:srox.
H . —&— Peak m. ti —&— Peak m. ti
term. Thus, after dropping the last term [D (8), we find 004 Peak m. approx. " ) Peak m. approx.
0.008 \
V] 1
V [log(z)] =~ .
log(2)] ~ 5 :
For a random vectoz, the above expression generalizes in 0.004
the following approximation of the covariance matrix:
V(z B SSasanmn
V [log(z)] =~ AT (11) % 10 20 % 10 20
E [Z] E [Z] Mel-cepstral coefficient Mel-cepstral coefficient

where the division is element-wise. Consequently we C%. 1. This figure shows how accurate the proposed apprdgifoamulas
approximate the covariance matrix of the MFCC estimator as:bias and variance are. In the left plot, the approximatiérine bias and
1 the true bias (Monte Carlo computed) is shown when the MFC&tinated
N H o using a Hamming window and peak matched multitapers Wwith 12 for a
v [CM] =V [Eq’ log (MS)] Gaussian AR(10) process. In the right plot, the approxinvatéance of the
MFCC estimated using a Hamming window and peak matched tapatis
with k£ = 12 for a Gaussian AR(10) process is compared to the true varianc
(12) As seen the approximations are accurate.

L pi_ MV M7
m2~ ME [§] E [§]7 MT
Using [I0) and[(2), we can approximate the MSE of ear“ Bias Variance MSE = Bias? + Variance
of the different coefficients for any given Gaussian rando ,, ) N | L

process and for any given set of multitapers in our genel Hamming ~ - Peakm. k=4 Peakm. k=8
MFCC estimator by the equation given [ (5). ' 00114

Peak m. k:16‘

0.005
B. Confirmation of the proposed approximate formulas

. . . -0.04
In this section, we will demonstrate the accuracy of th m " o m sl o m ”
proposed approximate formulﬁlo) a (12) by Compari| o Mel-cepstral coefficient Mel-cepstral coefficient Mel-cepstral coefficient
them with Monte Carlo computations. The bias and variance
. |

OT the MFCC estimator can be Mont_e Carlo Compm_ed for arg\agimator on speech-like random processes when Hammirgpwiand peak
given random process that we can simulate realizationsdf, anatched multitapersi(= 4, 8, 16) are used.
for any given set of multitapers. The number of simulations

is chosen large enough (100 000) for the Monte Carlo error

to be negligible. We choose a Gaussian AR(10)-process WHRd for a given multitaper and mel-filterbank. For further
parameters estimated from a recorded /a/ in the Swedjghestigation, we take a set of 50 different recordings ef/dl
word “Halla”, n = 240, with sampling frequencyf; = 8 in the Swedish word “Halld’n = 240 and f, = 8 kHz, and
kHz, and we choose to use the ordinary mel-scale filterbagipgel each of these recordings both as an AR(10) process and
with m = 27 [3]. Computations are made for a Hammingyn AR(20) process. Similarly, we choose a set of 50 different
window and for a peak matched multitaper with = 12 AR(10) processes and a set of 50 different AR(20) processes
windows [7]. The resultis shown in Figll 1. In this example thyith parameters estimated from the /I/ in the same word. For
approximation is very accurate. Indeed, the approximatére these four sets of processes, we compute the average bias,
so close to the true values that it is even difficult to segarajariance and MSE of each coefficient in the MFCC estimator
the lines. Similar observations were made also for other ARy the following methods: Hamming window, Thomson mul-
processes using Hanning, rectangular, Thomson, sine, afghers, sine multitapers and peak matched multitapers, a
peak matched multitapers with different number of tapeds ajith 1 = 2, 4,...,16. The Thomson and sine multitapers are
with and without the mel-scale filterbank. One also notes thé’ommonly used, and peak matched multitapers are designed
although the bias is, in general, larger for the peak matchgg peaked spectra, which may be suitable for speech asalysi
multitaper, the variance is smaller, resulting in a sSmaM8E. g [ shows the results of the peak matched multitapers
The bias and variance depend on the random process, {8 " — 4,8 and 16, and the Hamming window, aver-
multitapers, the mel-filter bank and the coefficient numbeéged over the set of 50 different AR(10) models of the /a/.
This may be compared with the rough approximations in [2generally, the bias is larger and the variance lower when
where itis stated that the bias of the cepstrum is asympific 1,416 muyititapers are used. This is expected since averaging
zero and the variance of the cepstrumgis ~ 0.007 for all  4yer more subspectra corresponds to more smoothing of the
coefficients, where: = 240 is the frame length. spectrum estimate [5]. Even though it is possible to use
different estimators for different cepstral coefficientseems
IV. PERFORMANCE ONSPEECHLIKE RANDOM PROCESSES  that peak matched multitapers with between 8 and 16,
Using the proposed formulas derived in Section_TlI-Arepresent a good trade-off between bias and variance for mos
we can approximate the bias, variance and MSE of eac@pstral coefficients. We got similar results for the Thomso
coefficient in the MFCC estimator for a given random processd sine multitapers and also for the AR(20) models and for

. 2. Bias, variance and MSE (squared bias plus variant#&)eoMFCC



the models of the /I/.

V. SPEAKERVERIFICATION EXPERIMENTS

In speaker verification, the MFCCs are usually estimate
using a Hamming-windowed periodogram, although multite
pers provide smaller MSE on speech-like random process
seen above. To study whether this advantage carries on
a full recognition system, we consider the core task of tt
NIST 2006 SRE corpﬂslt contains conversational telephony
speech from 816 target speakers with 5077 genuine and 48,
impostor verification trials. The length of speech data fc
training and testing is about 2.5 minutes.

Based on the result from SectignllV, we chose to con
pare the conventionally used Hamming window with pes
matched multitapers; = 12. A more thorough evaluation of

NIST 2006 core task (1conv4w-1conv4w)

Hamming, GMM-UBM
(EER =9.24, MinDCF = 4.69)
Peak matched (k=12), GMM-UBM
(EER = 9.22, MinDCF = 4.67)
Hamming, GLDS-SVM
(EER =9.24, MinDCF = 4.02)
_ Peak matched (k=12), GLDS-SVM
(EER = 8.93, MinDCF = 3.78)

GMM-UBM
classifier

40

~
~

GLDS-svMm|”

10 o
classifier

Miss probability (in %)

10 20 40

1 2 s
False Alarm probability (in %)

different multitapers and databases will be the topic ofiféit Fig. 3. Recognition accuracy on the NIST 2006 speaker rétiogreorpus.

work. MFCCs are extracted from 30 msec framgs € 8
kHz, n 240). Depending on the method, the frame is

first processed either by a single Hamming window or hyrocesses. We also demonstrated that the peak matched MFCC

k = 12 peak matched multitapers, followed by 27-channglerforms slightly better than the Hamming window MFCC in
mel-frequency warped filterbank, log-compression and DCihe NIST 2006 SRE.

Twelve cepstral coefficients are retaindRielAtive SpecTrAl
(RASTA) filtering is used for reducing channel effects. Relt

and double delta coefficients are then added followed byevoiq,; g p gogert, M. 3. R. Healy

activity detection (VAD) and utterance level cepstral maad
variance normalization (CMVN).

We use a standar@aussian mixture modetith universal
background model (GMM-UBM) [11] and@eneralized linear
discriminant sequence kernel support vector maclileDS-

SVM) [12] for classification. The background modeling data[r
0

were taken from the NIST 2004 corpus. For more details
the system setup, refer to [13], [14].

the miss rate B,s) and false alarm rate&,) are equal;

MiIinDCF is the minimum value of a weighted cost function[7

given by0.1 X Ppiss+0.99 X Pr,. In addition, we plot detection
error tradeoff (DET) curves which show the full trade-offes

between false alarms and misses in a normal deviate scale,
see Fig[B. The accuracies for the Hamming window based
MFCCs estimator and peak matched multitaper estimator akd
close to each other in the case of GMM-UBM system. For the

support vector classifier, however, the peak matched rapéit

estimator outperforms the Hamming window based estimatd®

VI. CONCLUSIONS

[4]
We use two standard metrics to assess recognition accuragy:

equal error rate (EER) and minimum detection cost function

value (MinDCF). EER corresponds to the threshold at whiclf]

(11]

The MFCC can be estimated from a Hamming-windowed
periodogram or by using a multitaper spectrum estimator. \We]
proposed new approximate formulas for the bias and variance
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