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Multitaper Estimation of Frequency-Warped Cepstra
with Application to Speaker Verification

Johan Sandberg, Maria Hansson-Sandsten,Member, IEEE,Tomi Kinnunen, Rahim Saeidi,Student Member, IEEE,
Patrick Flandrin,Fellow, IEEE,and Pierre Borgnat,Member, IEEE

Abstract—Usually the mel-frequency cepstral coefficients are
estimated either from a periodogram or from a windowed
periodogram. We state a general estimator which also includes
multitaper estimators. We propose approximations of the vari-
ance and bias of the estimate of each coefficient. By using Monte
Carlo computations, we demonstrate that the approximations are
accurate. Using the proposed formulas, the peak matched multi-
taper estimator is shown to have low mean square error (squared
bias + variance) on speech-like processes. It is also shown to
perform slightly better in the NIST 2006 speaker verification
task as compared to the Hamming window conventionally used
in this context.

Index Terms—Cepstral analysis, MFCC, Multiple windows,
Multitapers, Speech analysis, Speaker verification

I. I NTRODUCTION

T HE cepstrum was introduced by Bogert, Healy and Tukey
in the early sixties [1]. It is defined as the inverse Fourier

transform of the log-spectrum of a stationary random process
[2]. The cepstrum has become a fundamental tool in many
applications, such as speech and audio processing [3]. In
these applications, a psycho-acoustically motivated frequency
warping transformation is usually applied to the spectrum
before the logarithm and the inverse Fourier transform, such
as in the popular mel-frequency cepstral coefficients (MFCCs)
[3]. The results presented in this letter will hold for any
frequency warped cepstrum, including the ordinary cepstrum,
but we will still use the term “MFCC” for brevity.

Typically, the spectrum for MFCC computation is estimated
using the periodogram, i.e. squared magnitude of the Fourier
transformation of the data. The periodogram suffers from large
bias and large variance, altogether causing large estimation
errors in the cepstral coefficients. The bias can be reduced
by windowing the time series with, for example, a Hamming
window [4]. The windowed periodogram has low bias in
general, but it still suffers from high variance. Therefore, one
may consider using a so-calledmultitaper spectral estimator
instead. A multitaper spectral estimator is an average of

J. Sandberg and M. Hansson-Sandsten are with the Mathematical Statistics,
at the Centre for Mathematical Sciences, Lund University, Box 118, SE-221
00 Lund, Sweden (e-mail:{sandberg, sandsten}@maths.lth.se).

T. Kinnunen and R. Saeidi are with the Speech and Image Processing Unit,
Department of Computer Science and Statistics, Universityof Eastern Finland,
FIN-80101 Joensuu, Finland (e-mail:{tkinnu, rahim}@cs.joensuu.fi).

P. Flandrin and P. Borgnat are with Laboratoire de Physique,École Normale
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windowed periodograms using different orthogonal windows
(aka tapers), e.g. theThomson[5], the sine [6], and thepeak
matchedmultitapers [7]. The multitaper spectrum estimator is
known to have low variance, but has not gained much attention
in MFCC estimation [8]. One reason may be that the statistical
properties of the multitaper MFCC estimator have previously
not been investigated. It is our purpose to address this issue
in this letter.

In Section II of this letter we state the general form of
an MFCC estimator, which will include the MFCC computed
from the periodogram, the windowed periodogram, the Bartlett
and the Welch method, as well as multitaper spectrum esti-
mators. The statistical properties of the cepstrum computed
from the periodogram are well known [2], [9], [10]. However,
the bias and variance of the cepstrum or of the MFCCs
computed from the multitaper spectrum estimator have not
been, to the best of our knowledge, studied so far. In Section
III-A, we therefore derive approximate expressions for the
bias and variance of our general MFCC estimator. From a
statistical viewpoint, this is an important result, since one
may argue that it is hazardous to use an estimator without
knowing its bias and variance. In Section III-B, we compare
the approximations with Monte Carlo computations which
show that our approximations are accurate.

The approximate formulas for the bias and variance that
we derive are then used in Section IV to compare the mean
square error (MSE = squared bias + variance) of different
MFCC estimators, including the Hamming window, the Thom-
son multitapers, the sine multitapers and the peak matched
multitapers on speech-like random processes. Our results show
that the multitaper MFCC estimators have much lower MSE
than the commonly used Hamming window estimator. Finally,
we demonstrate the effectiveness of multitaper MFCC estima-
tion over the conventional Hamming window based MFCC
extraction, in a speaker verification context. The results,in
the framework of NIST 2006 speaker recognition evaluation
(SRE), are presented in Section V.

II. T HE GENERAL NON-PARAMETRIC MFCC ESTIMATOR

In speech applications, one frame of data (∼ 30 ms) can be
modeled as a stationary Gaussian random process. Thus, let
x = [x(0) . . . x(n−1)]T be a part of a real-valued Gaussian
zero-mean stationary random process in discrete time with a
strictly positive spectrums(f), 0 ≤ f < 1. It is assumed that
the covariance function of the process is zero for time-lags
greater thann. Our aim is to estimate the MFCC,cM ∈ R

m,
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of this process, which is defined as:

cM ,
1

m
Φ

H log(Ms) (1)

where log operates element-wise,M ∈ R
m×n is a frequency

warping filter bank, the superscriptH denotes conjugate
transpose,Φ is them-by-m Fourier matrix with the(a, b):th
element:

Φ ,

{

e−i2π(a−1)(b−1)/m
}

ab
,

and s = [s(0/n) s(1/n) s((n − 1)/n)]T is the spectrum
vector, which is symmetrical, i.e.s(k/n) = s((n − k)/n).
The filter bankM is chosen such thatMs possesses the same
symmetry as the spectrum vectors. Due to this symmetry,
(1) is real-valued and can efficiently be computed using the
discrete cosine transform (DCT). Note thatcM reduces to the
ordinary cepstrum ifM is chosen to be then-by-n identity
matrix.

In this letter, we will consider the following MFCC estima-
tor:

ĉM =
1

m
Φ

H log(Mŝ) (2)

where ŝ is the multitaper spectrum estimator [4], [5], given
by:

ŝ = [ŝ(0) ŝ(1) . . . ŝ(n − 1)]
T with (3)

ŝ(p) =

k
∑

j=1

λ(j)

∣

∣

∣

∣

∣

n−1
∑

t=0

wj(t)x(t)e−i2πtp/n

∣

∣

∣

∣

∣

2

=

k
∑

j=1

λ(j)
∣

∣w
T
j Ψpx

∣

∣

2
, p = 0, . . . , n − 1 (4)

where k multitapers,wj = [wj(0) . . . wj(n − 1)]T , j =
1, . . . , n, are used with corresponding weightsλ(j), and
whereΨp is then-by-n diagonal Fourier matrix defined by:

Ψp , diag

(

[

e−i2πp 0

n e−i2πp 1

n . . . e−i2πp n−1

n

]T
)

.

The multitaper estimate is thus computed as a weighted
average ofk sub-spectra,

∣

∣w
T
j Ψpx

∣

∣

2
, j = 1, . . . , k. This will

reduce the variance of the estimate, since the multitapers are
designed such that the different sub-spectra are approximately
uncorrelated with each other [4], [5], [7].

The estimator reduces to the windowed periodogram ifk =
1 andλ = 1 and if additionally,w1(t) = 1√

n
, it reduces to the

periodogram. It will also account for the Bartlett and the Welch
method by appropriate choice ofwj andλ(j), j = 1, . . . , k.
By selecting the frequency warping matrixM, this estimator
will transform to any frequency warped cepstrum, including
MFCC and the ordinary non-warped cepstrum.

III. B IAS AND VARIANCE OF THE ESTIMATOR

A. Proposed approximation using Taylor expansion

From a statistical perspective, it is of great interest to
compute the bias and variance of a proposed estimator. In this
section we will, for the first time, derive approximate formulas

for the bias,bias [ĉM], and the covariance matrix,V [ĉM], of
the MFCC estimator. From a practical perspective, it seems
reasonable to prefer the estimator with the smallest MSE for
all coefficients:

MSE(ĉM) , E
[

(cM − ĉM)2
]

= bias [ĉM]
2
+ diag (V [ĉM])

(5)

where the square operates element-wise.
To derive the bias and variance of our general MFCC

estimator, we start with the expectation of the multitaper
spectrum estimator, which is given in [4]:

E [ŝ] =







λ
T diag

(

W
T
Ψ0RΨ

H
0 W

)

...
λ

T diag
(

W
T
Ψn−1RΨ

H
n−1W

)






(6)

where R denotes the covariance matrix ofx, the multita-
per vectors are the columns ofW ∈ R

n×k with weights
λ = [λ(1) . . . λ(k)]

T . The(a, b):th element of the covariance
matrix of the multitaper spectrum estimator can be found,
similar to what is done in [4, page 229], as:

V [ŝ] =
{

λ
T
∣

∣W
T
Ψa−1RΨb−1W
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2
λ+

λ
T
∣
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∣
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2
λ

}

ab
(7)

where the absolute and square operator are defined element-
wise.

We consider the following Taylor expansion around the
mean,mz , of a random variablez:

log(z) ≈ log(mz) +
1

mz
(z − mz) −

1

2m2
z

(mz − z)2, (8)

which is an extension of the commonly used formulas for
propagation of uncertainty. SinceE

[

1
mz

(z − mz)
]

= 0, this
approximation gives us

E [log(z)] ≈ log(mz) −
V [z]

2m2
z

.

Applying this element-wise on a random vectorz gives:

E [log(z)] ≈ log(E [z]) −
diag (V [z])

2E [z]
2

where the logarithm, the division and the square operate
element-wise on vectors. This gives us the following approxi-
mation of the expectation of the multitaper cepstrum estimator:

E [ĉM] =
1

m
Φ

HE [log(Mŝ)]

≈
1

m
Φ

H

(

log (ME [ŝ]) −
diag

(

MV [ŝ]MT
)

2 (ME [ŝ])
2

)

. (9)

The bias of the estimator is:

bias [ĉM] ≈
1

m
Φ

H

(

log

(

ME [ŝ]

Ms

)

−
diag

(

MV [ŝ]MT
)

2 (ME [ŝ])
2

)

.

(10)

Based on comparisons with Monte Carlo computations as
described in Section III-B, it is our experience that the last
term in the Taylor expansion in (8) significantly improves the
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approximation of the bias. The approximation of the variance,
however, is sufficiently accurate even when omitting the last
term. Thus, after dropping the last term in (8), we find

V [log(z)] ≈
V [z]

m2
z

.

For a random vectorz, the above expression generalizes into
the following approximation of the covariance matrix:

V [log(z)] ≈
V [z]

E [z] E [z]
T

(11)

where the division is element-wise. Consequently we can
approximate the covariance matrix of the MFCC estimator as:

V [ĉM] = V

[

1

m
Φ

H log (Mŝ)

]

≈
1

m2
Φ

H MV [ŝ]MT

ME [ŝ] E [ŝ]
T

MT
Φ. (12)

Using (10) and (12), we can approximate the MSE of each
of the different coefficients for any given Gaussian random
process and for any given set of multitapers in our general
MFCC estimator by the equation given in (5).

B. Confirmation of the proposed approximate formulas

In this section, we will demonstrate the accuracy of the
proposed approximate formulas (10) and (12) by comparing
them with Monte Carlo computations. The bias and variance
of the MFCC estimator can be Monte Carlo computed for any
given random process that we can simulate realizations of, and
for any given set of multitapers. The number of simulations
is chosen large enough (100 000) for the Monte Carlo error
to be negligible. We choose a Gaussian AR(10)-process with
parameters estimated from a recorded /a/ in the Swedish
word “Hallå”, n = 240, with sampling frequencyfs = 8
kHz, and we choose to use the ordinary mel-scale filterbank
with m = 27 [3]. Computations are made for a Hamming
window and for a peak matched multitaper withk = 12
windows [7]. The result is shown in Fig. 1. In this example, the
approximation is very accurate. Indeed, the approximations are
so close to the true values that it is even difficult to separate
the lines. Similar observations were made also for other AR-
processes using Hanning, rectangular, Thomson, sine, and
peak matched multitapers with different number of tapers and
with and without the mel-scale filterbank. One also notes that
although the bias is, in general, larger for the peak matched
multitaper, the variance is smaller, resulting in a smallerMSE.

The bias and variance depend on the random process, the
multitapers, the mel-filter bank and the coefficient number.
This may be compared with the rough approximations in [2],
where it is stated that the bias of the cepstrum is asymptotically
zero and the variance of the cepstrum isπ2

6n ≈ 0.007 for all
coefficients, wheren = 240 is the frame length.

IV. PERFORMANCE ONSPEECH-LIKE RANDOM PROCESSES

Using the proposed formulas derived in Section III-A,
we can approximate the bias, variance and MSE of each
coefficient in the MFCC estimator for a given random process
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Fig. 1. This figure shows how accurate the proposed approximate formulas
of bias and variance are. In the left plot, the approximationof the bias and
the true bias (Monte Carlo computed) is shown when the MFCC isestimated
using a Hamming window and peak matched multitapers withk = 12 for a
Gaussian AR(10) process. In the right plot, the approximatevariance of the
MFCC estimated using a Hamming window and peak matched multitapers
with k = 12 for a Gaussian AR(10) process is compared to the true variance.
As seen the approximations are accurate.
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Fig. 2. Bias, variance and MSE (squared bias plus variance) of the MFCC
estimator on speech-like random processes when Hamming window and peak
matched multitapers (k = 4, 8, 16) are used.

and for a given multitaper and mel-filterbank. For further
investigation, we take a set of 50 different recordings of the /a/
in the Swedish word “Hallå”,n = 240 andfs = 8 kHz, and
model each of these recordings both as an AR(10) process and
an AR(20) process. Similarly, we choose a set of 50 different
AR(10) processes and a set of 50 different AR(20) processes
with parameters estimated from the /l/ in the same word. For
these four sets of processes, we compute the average bias,
variance and MSE of each coefficient in the MFCC estimator
for the following methods: Hamming window, Thomson mul-
titapers, sine multitapers and peak matched multitapers, all
with k = 2, 4, . . . , 16. The Thomson and sine multitapers are
commonly used, and peak matched multitapers are designed
for peaked spectra, which may be suitable for speech analysis.

Fig. 2 shows the results of the peak matched multitapers
with k = 4, 8 and 16, and the Hamming window, aver-
aged over the set of 50 different AR(10) models of the /a/.
Generally, the bias is larger and the variance lower when
more multitapers are used. This is expected since averaging
over more subspectra corresponds to more smoothing of the
spectrum estimate [5]. Even though it is possible to use
different estimators for different cepstral coefficients,it seems
that peak matched multitapers withk between 8 and 16,
represent a good trade-off between bias and variance for most
cepstral coefficients. We got similar results for the Thomson
and sine multitapers and also for the AR(20) models and for
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the models of the /l/.

V. SPEAKER VERIFICATION EXPERIMENTS

In speaker verification, the MFCCs are usually estimated
using a Hamming-windowed periodogram, although multita-
pers provide smaller MSE on speech-like random process as
seen above. To study whether this advantage carries on to
a full recognition system, we consider the core task of the
NIST 2006 SRE corpus1. It contains conversational telephony
speech from 816 target speakers with 5077 genuine and 48,889
impostor verification trials. The length of speech data for
training and testing is about 2.5 minutes.

Based on the result from Section IV, we chose to com-
pare the conventionally used Hamming window with peak
matched multitapers,k = 12. A more thorough evaluation of
different multitapers and databases will be the topic of future
work. MFCCs are extracted from 30 msec frames (fs = 8
kHz, n = 240). Depending on the method, the frame is
first processed either by a single Hamming window or by
k = 12 peak matched multitapers, followed by 27-channel
mel-frequency warped filterbank, log-compression and DCT.
Twelve cepstral coefficients are retained.RelAtive SpecTrAl
(RASTA) filtering is used for reducing channel effects. Delta
and double delta coefficients are then added followed by voice
activity detection (VAD) and utterance level cepstral meanand
variance normalization (CMVN).

We use a standardGaussian mixture modelwith universal
background model (GMM-UBM) [11] and ageneralized linear
discriminant sequence kernel support vector machine(GLDS-
SVM) [12] for classification. The background modeling data
were taken from the NIST 2004 corpus. For more details of
the system setup, refer to [13], [14].

We use two standard metrics to assess recognition accuracy:
equal error rate (EER) and minimum detection cost function
value (MinDCF). EER corresponds to the threshold at which
the miss rate (Pmiss) and false alarm rate (Pfa) are equal;
MinDCF is the minimum value of a weighted cost function
given by0.1×Pmiss+0.99×Pfa. In addition, we plot detection
error tradeoff (DET) curves which show the full trade-off curve
between false alarms and misses in a normal deviate scale,
see Fig. 3. The accuracies for the Hamming window based
MFCCs estimator and peak matched multitaper estimator are
close to each other in the case of GMM-UBM system. For the
support vector classifier, however, the peak matched multitaper
estimator outperforms the Hamming window based estimator.

VI. CONCLUSIONS

The MFCC can be estimated from a Hamming-windowed
periodogram or by using a multitaper spectrum estimator. We
proposed new approximate formulas for the bias and variance
of these MFCC estimators. Moreover, we demonstrated that
these approximations are accurate. On a set of processes
similar to the phoneme /a/ we showed that the peak matched
MFCC estimate has lower MSE than the popular Hamming
window. The result was the same for the phoneme /l/, indicat-
ing the robustness of the multitaper estimator for speech-like

1http://www.itl.nist.gov/iad/mig/tests/sre/2006/index.html
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Fig. 3. Recognition accuracy on the NIST 2006 speaker recognition corpus.

processes. We also demonstrated that the peak matched MFCC
performs slightly better than the Hamming window MFCC in
the NIST 2006 SRE.
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