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Testing Stationarity with Surrogates:
A Time-Frequency Approach

Pierre Borgnat, Member IEEE, Patrick Flandrin, Fellow IEEE, Paul Honeine, Member IEEE,
Cédric Richard, Senior Member IEEE, Jun Xiao

Abstract—An operational framework is developed for testing
stationarity relatively to an observation scale, in both stochastic
and deterministic contexts. The proposed method is based on
a comparison between global and local time-frequency features.
The originality is to make use of a family of stationary surrogates
for defining the null hypothesis of stationarity and to base on
them two different statistical tests. The first one makes use
of suitably chosen distances between local and global spectra,
whereas the second one is implemented as a one-class classifier,
the time-frequency features extracted from the surrogates being
interpreted as a learning set for stationarity. The principle of the
method and of its two variations is presented, and some results
are shown on typical models of signals that can be thought of as
stationary or nonstationary, depending on the observation scale
used.

Index Terms—Stationarity Test, Time-Frequency Analysis,
Support Vector Machines, One-Class Classification.

I. INTRODUCTION

CONSIDERING stationarity is central in many signal
processing applications, either because its assumption

is a pre-requisite for applying most of standard algorithms
devoted to steady-state regimes, or because its breakdown
conveys specific information in evolutive contexts. Testing for
stationarity is therefore an important issue, but addressing it
raises some difficulties. The main reason is that the concept
itself of “stationarity”, while uniquely defined in theory, is of-
ten interpreted in different ways. Indeed, whereas the standard
definition of stationarity refers only to stochastic processes
and concerns the invariance of statistical properties over time,
stationarity is also usually invoked for deterministic signals
whose spectral properties are time-invariant. Moreover, while
the underlying invariances (be they stochastic or deterministic)
are supposed to hold in theory for all times, common practice
allows them to be restricted to some finite time interval [3], [4],
[5], possibly with abrupt changes in between [6], [7]. As an

Manuscript submitted January 30, 2009; Revised January 28, 2010. P.
Borgnat, P. Flandrin and J. Xiao are with the Physics Department (UMR
5672 CNRS), Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364
Lyon Cedex 07 France. Phone: +33(0)472728160; Fax: +33(0)4727280 80;
E-mail: {Pierre.Borgnat,Patrick.Flandrin,Jun.Xiao}@ens-lyon.fr. P. Honeine is
with Institut Charles Delaunay, Université de Technologie de Troyes, 12 rue
Marie Curie 10010 Troyes Cedex France. Phone: +33(0)25715847 ; Fax:
+33(0)25715699 ; E-mail: Paul.Honeine@utt.fr. C. Richard is with Institut
Charles Delaunay, Université de Technologie de Troyes and Laboratoire
FIZEAU (UMR CNRS 6525), Observatoire de la Côte d’Azur, Université de
Nice Sophia-Antipolis Parc Valrose, 06108 Nice Cedex 02 France Phone: +33
(0)4 92 07 63 94; Fax: +33 (0)4 92 07 63 21; E-mail: cedric.richard@unice.fr.
This work was supported in part by the ENS-ECNU Doctoral Program and
ANR-07-BLAN-0191-01 StaRAC. Part of this paper was first presented at the
15th European Signal Proc. Conf. EUSIPCO-07 (Poznan, PL) [1] and at the
IEEE Stat. Sig. Proc. Workshop SSP-07 (Madison, WI) [2].

example, we can think of speech that is routinely “segmented
into stationary frames”, the “stationarity” of voiced segments
relying in fact on periodicity structures within restricted time
intervals. Those remarks call for a better framework aimed
at dealing with “stationarity” in an operational sense, i.e.,
with a definition that would both encompass stochastic and
deterministic variants, and include the possibility of its test
relatively to a given observation scale.
Several attempts in this direction can be found in the

literature, mostly based on concepts such as local stationarity
[5]. Most of them however share the common philosophy of
comparing statistics of adjacent segments, with the objective
of detecting changes in the data [6], [7] and/or segmenting
it over homogeneous domains [3] rather than addressing the
afore-mentioned issue. Other attempts have nevertheless been
made in this direction too by contrasting local properties with
global ones [4], [8], but not necessarily properly phrased in
terms of hypothesis testing. Among more recent approaches,
we can mention those reported in [9], [10] which share
some ideas with this work, but with the notable difference
that they are basically model-based (whereas ours is not).
Early works [11], [12] proposed a global test of stationarity
based on approximate statistics of evolutionary spectra [13],
which is performed as a two-step analysis of variance. The
assumption of independence of time-frequency bins that are
used is necessary. It is obviously and openly understood to be
wrong, and may lead to stationary decision errors due to biased
estimations. It is therefore the purpose of this contribution to
propose and describe a different approach, using a resampling
method called surrogate data, to obtain robust statistics under
the hypothesis of stationarity given one observation only.
It is aimed at deciding whether an observed signal can be
considered as stationary, relatively to a given observation
scale, and, if not, to give an index as well as a typical scale
of nonstationarity.
In a nutshell, the purpose of this paper is to recast the

question of stationarity testing within an operational frame-
work elaborating on three main ideas: (i) stationarity as an
operational property relying on one observation has to be
understood in a relative sense including some observation scale
as part of its definition; (ii) both stochastic and deterministic
situations should be embraced by the approach so as to meet
common practice; (iii) significance should be given to any test
in order to provide users with some statistical characterization
of the null hypothesis of operational stationarity.
The paper is organized as follows. In Sect. II, the general

framework of the proposed approach is outlined, detailing the
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time-frequency rationale of the method and motivating the
use of surrogate data for characterizing the null hypothesis
of stationarity and constructing stationary tests. A first test,
from which both an index and a scale of nonstationarity can
be derived, is proposed in Sect. III on the basis of spectral
distance measures and of a parametric modeling of surrogates
distributions. A second, non-parametric, test is introduced in
Sect. IV by considering surrogates as a learning set and using
a one-class classifier. In both cases, implementation issues
are discussed, together with some examples supporting the
efficiency of the methods. Finally, some of the many possible
variations and extensions are briefly outlined in Sect. V.

II. FRAMEWORK
Second order stationary processes are a special case of the

more general class of (nonstationary) harmonizable processes,
for which time-varying spectra can be properly defined [ 14].
When the analyzed process happens to be stationary, those
time-varying spectra may reduce to the classical (station-
ary, time-independent) Power Spectrum Density (PSD) when
suitably chosen (this holds true, e.g., for the Wigner-Ville
Spectrum (WVS) [14]). In the case of more general definitions
that can be considered as estimators of the WVS (e.g., spec-
trograms), the key point is that stationarity still implies time-
independence, the time-varying spectra identifying, at each
time instant, to some frequency smoothed version of the PSD.
The basic idea underlying the approach proposed here is there-
fore that, when considered over a given duration, a process
will be referred to as stationary relatively to this observation
scale if its time-varying spectrum undergoes no evolution. In
other words, stationarity in this acceptance happens if the local
spectra at all different time instants are statistically similar to
the global spectrum obtained by marginalization. This idea
has already been pushed forward [4], but the novelty is to
address the significance of the difference “local vs. global”
by elaborating from the data itself a stationarized reference
serving as the null hypothesis for the test (see Sect. II-C).

A. A time-frequency approach
As far as only second order evolutions are to be tested,

quadratic time-frequency (TF) distributions and spectra are
natural tools [14]. Well-established theories exist for justifying
the choice of a given TF representation. In the case of station-
ary processes, the WVS is not only constant as a function of
time but also equal to the PSD at each time instant. From
a practical point of view, the WVS is a quantity that has
however to be estimated. In this study, we choose to make
use of multitaper spectrograms [15] defined as

Sx,K(t, f) =
1
K

K∑

k=1

S(hk)
x (t, f), (1)

where the {S(hk)
x (t, f), k = 1, . . . , K} stand for the K

spectrograms computed with the K first Hermite functions
as short-time windows hk(t):

S(hk)
x (t, f) =

∣∣∣∣

∫
x(s)hk(s − t) e−i2πfs ds

∣∣∣∣
2

. (2)

The reason for this choice is that spectrograms can be both
interpreted as estimates of the WVS for stochastic processes
and as reduced interference distributions for deterministic
signals [14].
In (2), the Hermite functions hk(t) are defined by

hk(t) =
(
(t −D)kg

)
(t)/

√
π1/22kk!,

with g(t) = exp{−t2/2}. In practice, such functions can be
computed recursively, according to

hk(t) = g(t)Hk(t)/
√
π1/22kk!,

where the {Hk(t), t ∈ IN} stand for the Hermite polynomials
that obey the recursion

Hk(t) = 2tHk−1(t) − 2(k − 2)Hk−2(t), k ≥ 2

with the initialization H0(t) = 1 and H1(t) = 2 t. Being
orthonormal and maximally concentrated in TF domains with
elliptic symmetry, they are a preferred family of windows for
the multitaper approach which is adopted here in order to
reduce estimation variance without some extra time-averaging
which would be unappropriate in a nonstationary context. In
practice, the multitaper spectrogram is evaluated only at N
time positions {tn, n = 1, . . . , N}, with a spacing tn+1 − tn
which is an adjustable fraction—typically, one half—of the
temporal width Th of the K windows hk(t).

B. Relative stationarity
The TF interpretation suggesting that suitable representa-

tions should undergo no evolution in stationary situations,
stationarity tests can be envisioned on the basis of some
comparison between local and global features. Relaxing the
assumption that stationarity would be some absolute property,
the basic idea underlying the approach proposed here is that,
when considered over a given duration, a process will be re-
ferred to as stationary relatively to this observation scale if its
time-varying spectrum undergoes no evolution. Quantitatively,
this corresponds to the fact that the local spectra Sx,K(tn, f) at
all different time instants are statistically similar to the global
(average) spectrum

〈Sx,K(tn, f)〉n :=
1
N

N∑

n=1

Sx,K(tn, f) (3)

obtained by marginalization. In practice, fluctuations in local
spectra will always exist, be the signal stationary or not.
The whole point of the paper is therefore to develop a
comprehensive and operational methodology able to assess the
significance of observed fluctuations.

C. Surrogates
Revisiting stationarity within the TF perspective has already

been pushed forward [4], but the novelty is to address the
significance of the difference “local vs. global” by elaborating
from the data itself a stationarized reference serving as the
null hypothesis for the test. Indeed, distinguishing between
stationarity and nonstationarity would be made easier if,
besides the analyzed signal itself, we had at our disposal some
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reference having the same marginal spectrum while being
stationary. Since such a reference is generally not available,
one possibility is to create it from the data. This is the
rationale behind the idea of “surrogate data”, a technique
which has been introduced and widely used in the physics
literature, mostly for testing linearity [16] (up to some proposal
reported in [17], it seems to have never been used for testing
stationarity).
For an identical marginal spectrum over the same ob-

servation interval, nonstationary processes are expected to
differ from stationary ones by some structured organization
in time, hence in their time-frequency representation. A set
of J “surrogates” is thus computed from a given observed
signal, so that each of them has the same PSD as the original
signal while being “stationarized”. In practice, this is achieved
by destroying the organized phase structure controlling the
nonstationarity, if any. To this end, the signal is first Fourier
transformed, and the magnitude of the spectrum is then kept
unchanged while its phase is replaced by a random sequence,
uniformly distributed over [−π,π]. This modified spectrum is
then inverse Fourier transformed, leading to as many stationary
surrogate signals as phase randomizations are operated.
To be more precise, let us assume that the observed signal is

known in discrete-time (x[n], n = 1, . . . , N ) and has a discrete
Fourier transform X [k] such that

x[n] =
1
N

∑

k

X [k]ei2πnk/N .

Expressing X [k] in terms of its magnitude A[k] and phase
Φ[k] such that X [k] = A[k]eiΦ[k], a surrogate s[n] is con-
structed from X [k] by replacing Φ[k] with an i.i.d. phase
sequenceΨ[k] drawn from a uniform distribution over [−π,π]:

s[n] =
1
N

∑

k

A[k]eiΨ[k]ei2πnk/N ,

from which it follows that

s[n]s∗[m] =
1

N2

∑

k

∑

l

A[k]A[l]ei(Ψ[k]−Ψ[l]+2π(nk−ml)/N),

Making explicit the contributions in the above double sum
as:

∑

k

∑

l

G[k, l] =
∑

k



G[k, k] +
∑

l #=k

G[k, l]





and evaluating expectations regarding random quantities, we
end up for the first term with:

1
N2

∑

k

E{A2[k]}ei2π(n−m)k/N (4)

and, for the second one, with
1

N2

∑

k

∑

l #=k

E{A[k]A[l]}ei2π(nk−ml)/NE{ei(Ψ[k]−Ψ[l])}.

Given that the Ψ[k]’s are i.i.d. and uniformly distributed
over [−π,π], their difference has the triangular distribution:

Λ(ψ) =
1

4π2
(1 − |ψ|/2π)

time

si
gn

al

original

time

1 surrogate

time

fre
qu

en
cy

marg.

time

fre
qu

en
cy

time

fre
qu

en
cy

average over 40 surrogates

time

m
ar

g.

time time

Fig. 1. Surrogates. This figure compares the TF structure of a nonstationary
FM signal (1st column), of one of its surrogates (2nd column) and of an
ensemble average over J = 40 surrogates (3rd column). The spectrogram is
represented in each case on the 2nd line, with the corresponding marginal in
time on the 3rd line. The marginal in frequency, which is the same for the
three spectrograms, is displayed on the far right of the 2nd line.

over [−2π, 2π] and, therefore:

E{ei(Ψ[k]−Ψ[l])} =
∫ 2π

−2π
eiψΛ(ψ)dψ = 0.

It follows that the covariance function of the surrogate s[n]
reduces to (4) and, as a function of n−m only, it is therefore
stationary. In the practical case where A[k] is taken as the
magnitude of the Fourier transform of the observed signal
(i.e., of one specific realization of the process x[n]) and kept
strictly unchanged for all phase randomizations, the stationary
covariance of the surrogates identifies furthermore with the
Fourier transform of the (global) empirical spectrum of this
observation.
The effect of the surrogate procedure is illustrated in Fig. 1,

displaying both signal and surrogate spectrograms, together
with their marginals in time and frequency. It clearly appears
from this figure that, while the original signal undergoes a
structured evolution in time, the recourse to phase randomiza-
tion in the Fourier domain ends up with stationarized (i.e.,
time unstructured) surrogate data with identical spectrum.
As compared to more standard uses of surrogate data, we
underline that we are primarily interested here in second order
properties in a transformed domain. In this respect, the fact
that phase randomization not only destroys nonstationarity
features (as expected) but also other properties in the signal
by a well-known Gaussianization effect, does not play the
same dramatic role as, e.g, in testing nonlinearity in some
reconstructed phase-space.

III. A DISTANCE-BASED TEST

Once a collection of stationarized surrogate data has been
synthesized, different possibilities are offered. The first one is
to extract from them some features such as distances between
local and global spectra, and to characterize the null hypothesis
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of stationarity by the statistical distribution of their variation
in time. This first approach is the purpose of this Section.

A. Principle
Given an observed signal x(t) and its (multitaper) spectro-

gram Sx,K(tn, f), it is proposed to compare local and global
frequency features according to

{c(x)
n := D (Sx,K(tn, .), 〈Sx,K(tn, .)〉n) , n = 1, . . . , N},

(5)
where D(., .) stands for some dissimilarity measure (or “dis-
tance”) in frequency.
If we now label {sj(t), j = 1, . . . , J} the J surrogate

signals obtained as described previously and analyze them
the same way, we end up with a new collection of distances
which are a function of both time indices and randomizations,
namely:

{c(sj)
n := D

(
Ssj ,K(tn, .), 〈Ssj ,K(tn, .)〉n

)
, n = 1, . . . , N}

(6)
with j = 1, . . . , J .
As far as the intrinsic variability of surrogate data is con-

cerned, the dispersion of distances under the null hypothesis
of stationarity can be measured by the distribution of the J
empirical variances

{
Θ0(j) = var(c(sj)

n )n=1,...,N , j = 1, . . . , J
}

. (7)

This distribution allows for the determination of a threshold
γ above which the null hypothesis is rejected. The effective
test is therefore based on the statistics

Θ1 = var(c(x)
n )n=1,...,N (8)

and takes on the form of the one-sided test:

d(x) =
{

1 if Θ1 > γ : “nonstationarity";
0 if Θ1 < γ : “stationarity”. (9)

The choice of the threshold γ will be discussed in Sect. III-E
from the distribution of Θ0 obtained with a collection of
surrogates.
Assuming that the null hypothesis of stationarity is rejected,

an index of nonstationarity can furthermore be introduced as
a function of the ratio between the test statistics (8) and the
mean value (or the median) of its stationarized counterparts
(7):

INS :=

√
Θ1

〈Θ0(j)〉j
. (10)

If the signal happens to be stationary, INS is expected to
take a value close to unity whereas, the more nonstationary
the signal, the larger the index.
Finally, it has to be remarked that, whereas the tested

stationarity is globally relative to the time interval T over
which the signal is chosen to be observed, the analysis still
depends on the window length Th of the spectrogram. Given
T , the index INS will therefore be a function of Th and,
repeating the test with different window lengths, we can end
up with a typical scale of nonstationarity SNS defined as:

SNS :=
1
T

arg max
Th

{INS(Th)} , (11)

with Th in the range of window lengths such that the pre-
scribed threshold is exceeded in (9).
The principle of the test having been outlined, its actual

implementation depends on a number of choices that have
to be made and justified, regarding distances, surrogates,
thresholds, etc. Many options are however offered, that are
moreover intertwined. A complete investigation of all possi-
bilities and their combinations will not be envisioned here but,
nevertheless, key features that are important for the test to be
used in practice will be highlighted in the following.

B. Test signals
Setting specific parameters in the implementation is likely to

end up with performance depending on the type of nonstation-
arity of the signal under test. Whereas no general framework
can be given for encompassing all possible situations, two
main classes of nonstationarities can be distinguished, which
both give rise to a clear picture in the time-frequency plane:
amplitude modulation (AM) and frequency modulation (FM).
We will base the following discussions on such classes. In the
first case (AM), a basic, stochastic representative of the class
can be modelled as:

x(t) = (1 + m sin 2πt/T0) e(t), t ∈ T, (12)

with m ≤ 1 and where e(t) is white Gaussian noise, T0 is
the period of the AM and T the observation duration. In the
second case (FM), a deterministic model can be defined as:

x(t) = sin 2π(f0t + m sin 2πt/T0), t ∈ T, (13)

with m ≤ 1 and where f0 is the central frequency of the
FM, T0 its period and T the observation duration. To this FM
model, a white Gaussian noise can be added if one wants to
obtain different realizations of the signal.

C. Distances
Within the chosen time-frequency perspective, the proposed

test (9) amounts to compare local spectra with their average
over time thanks to some “distance” (5), and to decide that
stationarity is to be rejected if the fluctuation of such descrip-
tors (as given by (8)) is significantly larger than what would be
obtained in a stationary case with a similar global spectrum.
The choice of a distance (or dissimilarity) measure is therefore
instrumental for contrasting local vs. global features.
Many approaches are available in the literature [18] that,

without entering into too much details, can be broadly clas-
sified in two groups. In the first one, the underlying inter-
pretation is that of a probability density function, one of
the most efficient candidate being the well-known Kullback-
Leibler (KL) divergence defined as

DKL(G, H) :=
∫

Ω
(G(f) − H(f)) log

G(f)
H(f)

df, (14)

where, by assumption, the two distributions G(.) and H(.)
to be compared are positive and normalized to unity over the
domain Ω. In our context, such a measure can be envisioned
for (always positive) spectrograms thanks to the probabilistic
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Fig. 2. Choosing a distance. The inverse of the maximum value (over Th)
of the index of nonstationarity INS defined in (10) is used as a performance
measure. Comparing the Kullback-Leibler (KL) divergence with the log-
spectral deviation (LSD), a better result (i.e., a lower value) is obtained with
KL (full line) in the FM case (left, with m = 0.03), and with LSD (dashed
line) in the AM case (right, with m = 0.5). A better balanced performance is
obtained when using the combined distance (dots) defined in (16): in the
FM case, this measure performs best, and in the AM case it achieves a
good contrast when λ ≥ 1. In the AM case, the boxplots resulting from
10 realizations of the process are displayed.

interpretation that can be attached to distributions of time and
frequency [14].
A second group of approaches, which is more of a spectral

nature, is aimed at comparing distributions in both shape and
level. One of the simplest examples in this respect is the log-
spectral deviation (LSD) defined as

DLSD(G, H) :=
∫

Ω

∣∣∣∣ log
G(f)
H(f)

∣∣∣∣ df. (15)

Intuitively, the KL measure (14) should perform poorer than
the LSD (15) in the AM case (12), because of normalization.
It should however behave better in the FM case (13), because
of its recognized ability at discriminating distribution shapes.
In order to take advantage of both measures, it is therefore
proposed to combine them in some ad hoc way as

D(G, H) := DKL(G̃, H̃). (1 + λDLSD(G, H)) , (16)

with G̃ and H̃ the normalized versions of G and H , and where
λ is a trade-off parameter to be adjusted. In practice, the choice
λ = 1 ends up with a good performance, as justified in Fig. 2
(the performance measure used in this figure is the inverse of
the maximum value (over Th) of the index of nonstationarity
INS defined in (10), i.e., an inverse measure of contrast).

D. Distribution of Surrogates
The basic ingredient (and originality) of the approach is the

use of surrogate data for creating signals whose spectrum is
identical to that of the original one while being stationarized by
getting rid of a well-defined structuration in time. Since those
surrogates can be viewed as distinct, independent realizations
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Fig. 3. Distribution based on surrogates. The top row superimposes empirical
histograms of the variances (7) based on J = 5000 surrogates (grey) and their
Gamma fits (full line), in the case of a white Gaussian noise without (left)
and with (right) a sinusoidal AM (with m = 0.5). The bottom row compares
the corresponding probability density functions, as parameterized by using
J = 50 (full line) and 5000 (dashed line) surrogates. The values of the test
statistics (8) computed on the analyzed signal are pictured in both cases as
the vertical lines.

of the stationary counterpart of the analyzed signal, the central
part of the test is based on the statistical distribution of the J
variances given in (7).
When using the combined distance suggested above in Sect.

III-C, an empirical study (on both AM and FM signals) has
shown that such a distribution can be fairly well approximated
by a Gamma distribution. This makes sense since, according
to (7), the test statistics basically sums up squared, possibly
dependent quantities which themselves result from a strong
mixing likely to act as a Gaussianizer. An illustration of the
relevance of this modeling is given in Fig. 3, where Gamma
fits are superimposed to actual histograms in the asymptotic
regime (J = 5000 surrogates). Assuming the Gamma model
to hold, it is possible to estimate its 2 parameters directly from
the J surrogates, e.g., in a maximum likelihood sense. In this
respect, Fig. 3 also supports the claim that the “theoretical"
probability density function (more precisely, its estimate in the
asymptotic regime) can be reasonably well approached with
a reduced number of surrogates (typically, J ≈ 50). Finally,
the value of the test (8), computed on the actual signals under
study, is also plotted and shown to stand in the middle of the
distribution in the stationary case while clearly appearing as
an outlier in the considered nonstationary situation.
As a general remark, let us emphasize that modeling the

distribution is important in two (related) respects. First, based
on the results of Fig. 3, this allows for using much less
surrogates than a crude histogram. Second, given the estimated
parameters of the model, it becomes much easier to precisely
define the chosen threshold for the test (see Section III.E). One
could have think of other models for the distribution, such as,
e.g., the simpler situation of a χ2. Experimental attempts in
this direction proved however unsatisfactory, and the specific
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Fig. 4. AM example (m = 0.5). In the case of the same signal (12) observed
over different time intervals (left column), the indices of nonstationarity INS
(right column, full line) are consistent with the physical interpretation accord-
ing to which the observation can be considered as stationary at macroscale
(top row), nonstationary at mesoscale (middle row) and stationary again at
microscale (bottom row). The threshold (dotted line) of the stationarity test
(9) is calculated with a confidence level of 95% and represented in term of INS
as

p
γ/〈Θ0(j)〉j), with J = 50. In the nonstationary case, the position of the

maximum of INS also gives an indication of a typical scale of nonstationarity.

choice of a Gamma model was therefore guided by the fact
that, with two degrees of freedom, it is obviously more flexible
than a χ2, while keeping the idea of resulting from summations
of squared Gaussian-like quantities.

E. Threshold and Reproduction of the Null Hypothesis
Given the Gamma model for the distribution of Θ0 based

on surrogates, it becomes straightforward to derive a threshold
above which the null hypothesis of stationarity is rejected
with a given statistical significance. The effectiveness of the
procedure at reproducing the null hypothesis of stationarity has
been considered elsewhere [19], and it will not be reproduced
here. Based on Monte-Carlo simulations with stationary AR
processes, the main finding of the results reported in [19] is
that an actual number of false positives of about 6.5 % is
observed for a prescribed false alarm rate of 5 %. The test
appears therefore as slightly pessimistic, yet in a reasonable
agreement with what expected.

F. Illustration
In order to illustrate the proposed approach and to support

its effectiveness, a simple example is given in Fig. 4. The
analyzed signal consists of one realization of an AM process
of the form (12). Depending on the relative values of T0 and
T , three regimes can be intuitively distinguished:
1) if T ( T0 (macroscale of observation), many oscilla-
tions are present in the observation, creating a sustained,
well-established quasi-periodicity that corresponds to a
form of operational stationarity;

2) if T ≈ T0 (mesoscale), emphasis is put on the local
evolutions due to the AM, suggesting to rather consider
the signal as nonstationary, with some typical scale;
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Fig. 5. FM example (m = 0.02, f0 = 0.25). The same signal (13)
is observed over different time intervals (left column). As in Fig. 4 the
indices of nonstationarity INS (right column, full line) leads to physical
interpretation according to which the observation can be considered as
stationary at macroscale (top row), nonstationary at mesoscale (middle row)
and stationary again at microscale (bottom row). The threshold (dotted line)
of the stationarity test (9) is calculated with a confidence level of 95%
and represented in term of INS as

p
γ/〈Θ0(j)〉j ), with J = 50. In the

nonstationary case, the position of the maximum of INS also gives an
indication of a typical scale of nonstationarity.

3) if T ) T0 (microscale), no significant difference in
amplitude is perceived, turning back to stationarity.

What is shown in Fig. 4 is that such interpretations of
operational and relative stationarity are precisely evidenced by
the proposed test. One difference between theoretical (second-
order) stationarity of random processes and operational sta-
tionarity that we study, and that aims at being consistent
with the physical and time-frequency interpretation of what
stationarity means, is that both situations where there is no
change in time of second-order statistics (here at microscale),
and situations where there is a regular repetition if the same
feature (here at macroscale of observation) are considered
as being stationary in its operational acceptance. They are
moreover quantified in the sense that, when the null hypothesis
of stationarity is rejected (middle diagram), both an index and
a scale of nonstationarity can be defined according to (10)
and (11). In the present case, the maximum value of INS is
obtained for SNS = Th/T ≈ 0.2, in qualitative accordance
with the 4 AM periods entering the observation window.
At this point, it is worth stressing the fact that allowing

the window length to vary is an extra degree of freedom that
is part of the methodology, since it permits to give sense
to a notion of stationarity relatively to an observation scale.
There is therefore no prior “proper” window length for a given
signal, but varying it allows for the determination of a scale
of stationarity (if any).
In this specific example, the data could have been referred

to as cyclostationary and analyzed by tools dedicated to such
processes [20]. However, it has to be stressed that no such a
priori modeling is assumed in the proposed methodology, and
that the existence of a typical scale of stationarity (related to
the periodic correlation) naturally emerges from the analysis.
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A second example, given in Fig. 5, reports the same analysis
done on a realization of the FM signal of the form (13).
The same dependence on the relative values of T0 and T is
evident and the same three possible behaviors (observation
at macroscale, mesoscale or microscale of the signal) are
obtained. Also, let us further comment about a specificity
of operational stationarity as tested here. For the microscale
T ) T0, the model turns out to be almost a pure sine function
(with some added noise). The time-frequency spectrum of this
signal being constant (a spectral line at frequency f0), this
signal is considered as stationary from an operational point
of view, and relatively to an observation scale T that is much
larger than the period of this sine 1/f0 and much lower than
period of the frequency modulation T0. Finally, let us remark
that the INS in this last case is very small as compared to
the threshold: this is due to the very small variability of a
sine as compared to its surrogates. This feature will be further
commented when turning to the non-parametric test of the next
Section.

G. Comparison to other approaches

Using surrogate data to provide users with some statistical
characterization of the null hypothesis of stationarity raises the
question of simply testing if the phase of the Fourier transform
of x(t) is an i.i.d. sequence, as is the case with surrogates. This
can be performed with classical i.i.d. Portmanteau tests such
as Ljung and Box, and McLeod and Li (see, e.g, in [21]). The
basic property on which these tests are based is that, for large
N , the sample autocorrelation of an i.i.d. N -length sequence
is i.i.d. with Gaussian distribution N (0, 1/N). Experiments
have been conducted using a Ljung and Box statistical test
with significance level of 5%, and applied to 1000 realizations
of the AM and FM test signals described in Sect. III-B. The
hypothesis of i.i.d. phase sequence was accepted/rejected as
reported in Table I, with respective acceptance/rejection rates
that were observed over the 1000 realizations. Except in the
FM case where the period is equal to the observation duration,
the i.i.d. hypothesis is always accepted. It clearly appears
that little information is revealed by this kind of tests, which
does not involve global vs. local time-frequency features,
compared with the proposed framework based on second-
order time-varying spectra. Nevertheless, we can mention
some interesting on-going work [22] based on a Portmanteau
type test for stationarity: comparing it to the present work is
beyond the scope of this paper but this would certainly deserve
consideration in further studies.
Existing works on statistics of evolutionary spectra [13]

raise the question of constructing test statistics to compare
time-frequency characteristics of the signal under study with
what is expected under the null hypothesis. This kind of
strategy has been adopted in many situations, e.g., to detect
time-frequency features of interest [23]. In [11], [12], the
authors proposed a global test of stationarity from approximate
statistics. It consists of a two-step analysis of variance induced
by the chi-squared distribution. As most of works in the area,
the assumption of independence of time-frequency bins that
are used is necessary to derive closed-form tests. This leads

Period AM FM
T0 = T/20 accepted (94%) accepted (94%)
T0 = T accepted (92%) rejected (54%)
T0 = 20T accepted (94%) accepted (90%)

TABLE I
RESULT OF A PORTMANTEAU TEST ON THE PHASE OF THE FOURIER

TRANSFORM OF x(t), FOR THE AM AND FM PROCESSES OF SECT. III-B.
THE PARAMETERS ARE N = T = 1600, SNR = 10DB,m = 0.5 (AM)
AND 0.02 (FM). THE RESULTS REPORTED ARE THE AVERAGE OF 1000

REALIZATIONS.

to poorly informative statistics and, in the present case, to
stationary decision errors. Our resampling method does not
rely on this hypothesis, but considers the spectrograms of
surrogate data globally to provide more informative tests.

IV. A NON-SUPERVISED CLASSIFICATION APPROACH

Besides the distance-based approach described above, we
can adopt an alternative viewpoint rooted in statistical learning
theory by considering the collection of surrogates as a learning
set and using it to estimate the support of the distribution of
stationarized data. Let us make this approach more precise.

A. An overview on one-class classification
In the context considered here, the classification task is

fundamentally a one-class classification problem and differs
from conventional two-class pattern recognition problems in
the way how the classifier is trained. The latter uses only
target data to perform outlier detection. This is often ac-
complished by estimating the probability density function of
the target data, e.g., using a Parzen density estimator [24].
Density estimation methods however require huge amounts
of data, especially in high dimensional spaces, which makes
their use impractical. Boundary-based approaches attempt to
estimate the quantile function defined by Q(α) := inf{λ(C) :
P (C) :=

∫
ω∈C µ(dω) ≥ α} with 0 < α ≤ 1, where C

denotes a subset of the signal space S that is measurable with
respect to the probability measure µ, and λ(C) its volume.
Estimators Cα that reach this infinimum, in the case where
P is the empirical distribution, are called minimum volume
estimators. The first boundary-based approach was probably
introduced in [25], where the authors consider a class of
closed convex boundaries in R2. More sophisticated methods
were described in [26], [27]. Nevertheless, they are based
upon neural networks training and therefore suffer from the
same drawbacks such as slow convergence and local minima.
Inspired by support vector machines, the support vector data
description algorithm proposed in [28] encloses target data
in a minimum volume hypersphere. More flexible boundaries
can be obtained by using kernel functions, that map the
data into a high-dimensional feature space. In the case of
normalized kernel functions, this approach is equivalent to the
one-class support vector machines introduced in [29], which
use a maximum margin hyperplane to separate data from the
origin. The generalization performance of these algorithms
were investigated in [29], [30], [31] via the derivation of
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bounds. In what follows, we shall focus on the support vector
data description algorithm.

B. Support vector data description

Let us assume that we are given a training set {z1, . . . , zJ}
(this may correspond either to the surrogates themselves or
to some features derived from them). The center of the
smallest enclosing hypersphere is the point a∗ that minimizes
the distance from the furthest training data, namely, a∗ =
arg minc maxi=1,...,J ‖zi − a‖. We observe that the solution
of this problem is highly sensitive to the location of just one
point, which may result in a pattern analysis system that is not
robust. This suggests us to consider hyperspheres that balance
the loss incurred by missing a small fraction of target data with
the reduction in radius that results. The following optimization
problem implements this strategy

mina,r,ξ r2 +
∑J

i=1 ξi/νJ
subject to ‖zi − a‖2 ≤ r2 + ξi, ξi ≥ 0, i = 1, . . . , J

(17)
with a parameter ν in ]0, 1] to control the trade-off between
minimizing the radius and controlling the slack variables
defined as ξi = (‖a − zi‖2 − r2)+, see Fig. 6. The exact
role of ν will be discussed next.
We can solve this constrained optimization problem by

defining a Lagrangian involving one Lagrange multiplier for
each constraint:

L(a, r, ξ;α,β) = r2 +
J∑

i=1

ξi/νJ

+
J∑

i=1

αi(‖zi − a‖2 − r2 − ξi) −
J∑

i=1

βiξi,

(18)

with αi, βi ≥ 0. Setting to zero its derivatives with respect to
the primal variables a, r and ξ gives

a∗ =
J∑

i=1

α∗
i zi (19)

where α∗ is the solution of the optimization problem

maxα
∑J

i=1 αi〈zi, zi〉 −
∑J

i,j=1 αiαj〈zi, zj〉
subject to

∑J
i=1 αi = 1, 0 ≤ αi ≤ 1/νJ, i = 1, . . . , J.

(20)
Depending on whether a training data z i lies inside the
hypersphere, on or outside, it can be shown that its Lagrange
multiplier α∗

i in (19) satisfies one of the three conditions:
α∗

i = 0 (inside), 0 < α∗
i < 1/νJ (on), and α∗

i = 1/νJ
(outside). With condition

∑J
i=1 α

∗
i = 1 in (20), we know

that there can be at most νJ training points lying outside the
hypersphere. Furthermore, with the upper bound 1/νJ on α ∗

i ,
we observe that at least νJ training data do not lie inside the
hypersphere.
After discussing the role of the parameter ν, which allows

the user some control over the fraction of points that are
excluded from the hypersphere, we shall now derive the

decision rule for novelty detection. The distance of any point
x from the center a∗ of the hypersphere can be shown to be

‖x − a∗‖ =

√√√√〈x, x〉 − 2
J∑

i=1

α∗
i 〈x, zi〉 +

J∑

i,j=1

α∗
iα

∗
j 〈zi, zj〉

(21)
Equation (21) can be used to calculate the radius r∗ of the
optimal hypersphere, that is, r∗ := ‖zi0 − a∗‖ with i0 the
index of any training data such that 0 < α∗

i0 < 1/νJ . This
allows us to compute the resulting slack values ξi, see the
definition below equation (17). Consider now the test statistics
Θ(x) := ‖x − a∗‖2 − (r∗)2 such that the decision function

d(x) :=
{

1 if Θ(x) > γ : “nonstationarity";
0 if Θ(x) < γ : “stationarity" (22)

outputs 1 if the test point x lies outside the hypersphere of
squared radius (r∗)2 + γ and so is considered novel, and 0
otherwise. The threshold parameter γ has a direct influence
upon the performance of the novelty detector. With probability
greater than 1− δ, we can bound the probability that function
d outputs 1 on a test point drawn according to the original
distribution by [30]

1
γJ

J∑

i=1

ξi +
6R2

γ
√

J
+ 3

√
ln(2/δ)

2J
(23)

where R is the radius of a ball in feature space centered
at the origin containing the support of the distribution. Such
examples are false positives in the sense that they are normal
data identified as novel by the decision function d. Obviously,
we cannot bound the rate of true negatives since we have no
way of guaranteeing what output d returns for data drawn from
a different distribution. The strategy underlying this approach
is however the smaller the hypersphere, the more likely novel
data will fall outside and be identified as outlier.
When a more sophisticated model than the hypersphere

is required to accurately fit the quantile functions, a pos-
sible strategy is to replace each inner product 〈z i, zj〉
in equations (20)–(22) by a kernel function κ(zi, zj) :=
〈φ(zi),φ(zj)〉. An ideal kernel would implicitly map the
data via φ(·) into a bounded spherically-shaped area of a
new feature space. Kernel functions can usually be com-
puted more efficiently as a direct function of the input data,
without explicitly evaluating the mapping φ(·). Classic exam-
ples of kernels are the radially Gaussian kernel κ(z i, zj) =
exp

(
−‖zi − zj‖2/2σ2

0

)
, and the Laplacian kernel κ(zi, zj) =

exp(−‖zi − zj‖/σ0), with σ0 ≥ 0 the kernel bandwidth.
Another example which deserves attention in signal processing
is the q-th degree polynomial kernel defined as κ(z i, zj) =
(1 + 〈zi, zj〉)q , with q ∈ N∗. In [32], we have extended the
framework of the so-called kernel-based methods to time-
frequency analysis, showing that some specific reproducing
kernels allow these algorithms to operate in the time-frequency
domain. This link offers new perspectives in the field of
non-stationary signal analysis, which can benefit from the
developments of pattern recognition and statistical learning
theory.
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Fig. 6. Support vector data description algorithm

C. Testing stationarity
We shall now use support vector data description to estimate

the support of probability density functions of stationary
surrogate signals. The resulting decision rule will allow us
to distinguish between stationary and nonstationary processes.
Let us assume that we are given a training set

{s1(t), . . . , sJ(t)} of surrogate signals generated from the
signal x(t) under investigation. In all the experiments reported
above, time-frequency features were extracted from the nor-
malized multitaper spectrogram of each signal, defined at time
tn by

Sn(f) :=
Sx,K(tn, f)

∑N
n=1

∫ 1
2

0 Sx,K(tn, f) df
(24)

for n = 1, ..., N and 0 ≤ f < 1/2. More precisely, the local
power Pn of each signal and its local frequency content Fn

summarized below were considered:

Pn :=
∫ 1

2

0
Sn(f) df ; Fn :=

1
Pn

∫ 1
2

0
f Sn(f) df. (25)

Finally, for a sake of clarity, only the following two features
comparing local time-frequency behavior to global one were
retained

P := std(Pn)n=1,...,N ; F := std(Fn)n=1,...,N , (26)

where std(·) denotes the standard deviation. The first one is
a measure of the fluctuations over time of the local power
of the signal, whereas the second one operates the same way
with respect to the local mean frequency. For each experiment
reported in Fig. 7, a training set consisting of 200 surrogate
signals was generated from the AM or FM signal x(t) to be
tested. Features P and F were extracted from each signal.
Next, data were mean-centered and normalized so that the
variance of both features was one. Finally, the support vector
data description algorithm was run using the basic linear kernel
κ(zi, zj) = 〈zi, zj〉 and ν = 0.15. The results are displayed
for T0 = T/20, T and 20 T , allowing to consider stationarity

relatively to the ratio between the observation time T and the
modulation period T0. In each figure, the surrogate signals
are shown with dots and the signal to be tested with a black
triangle. The optimum circle having center at c∗ and radius
r∗ is shown in dashed line. The training data lying on or
outside this circle, and thus associated with non-zero Lagrange
multipliers in (19)-(21), are indicated by the circled dots.
The thin circles represent the decision function (22) tuned
to different false positive probabilities, fixed by γ via the
relation (23). To calculate γ, note that we have neglected the
contribution of the last two terms of equation (23) since they
decay to zero as J tends to infinity. Figs. 7(b) and 7(e) show
that the test signals can be considered as nonstationary with a
false positive probability lower than 0.05. In the other figures,
they are clearly identified as stationary signals.
The findings reported in this learning-theory-based study are

clearly consistent with what had been obtained previously with
the distance-based approach. For a small modulation period or
a large observation time, i.e., when T0 ) T , the situation
can be considered as stationary due to the observation of
many similar oscillations over the observed time scale. This
is reflected by the test signal which lies inside the region
defined by the support vector data description algorithm for
the stationary surrogates. For a medium observation time, i.e.,
T ≈ T0, the local evolution due to the modulation is prominent
and the black triangle for the modulated signal is well outside
the stationary region, in accordance with a situation that can be
referred to as nonstationary. Finally, if T0 ( T , the result turns
back to stationarity in the AM case because no significative
change in the amplitude is observed over the considered time
scale. In the FM case, the situation is slightly different, with
the black triangle lying at the border of the surrogates domain.
For the FM case, especially Figs. 7(e) and 7(f), P is negative
and lower than the values of P taken by the surrogates:
this is characteristic of some regularity and constancy in the
amplitude, which has less fluctuations than any corresponding
stationary random process. Indeed, the way stationarity is
tested cannot end up with a better configuration in this case
since, by construction, surrogates of finite length pure tones
undergo necessarily some amplitude fluctuations leading to a
negative, non-zero P index for the (non-fluctuating) test signal.
This can be viewed as a limitation of the method but it should
rather be interpreted as a known bias when the test signal lies
at the border of the surrogates domain and comes along with
a value F close to 0. It could be used as an indication to
discriminate random processes from more deterministic ones.
Interestingly, one can also remark that the location of the
test signal in the (P, F ) plane turns out to provide some
information about the type of nonstationarity, if any: F ,= 0
is characteristic of some FM structure, P > 0 indicates some
AM, P < 0 is associated to a constant (maybe deterministic)
behavior for the amplitude (see [33] for preliminary results in
this direction).

V. CONCLUSION
A new approach has been proposed for testing stationarity

from a time-frequency viewpoint, relatively to a given observa-
tion scale. A key point of the method is that the null hypothesis
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of stationarity (which corresponds to time-invariance in the
time-frequency spectrum) is statistically characterized on the
basis of a set of surrogates which all share the same average
spectrum as the analyzed signal while being stationarized.
Two possible ways of making use of surrogates have been
discussed, based either on a distance-based approach or on
a machine learning technique (one class-SVM). Both ways
are complementary since the first one is parametric whereas
the second one is not. As is usual, a parametric approach
based on a specific model for the distribution is naturally more
efficient in terms of required data size, but it is based on the
assumption that the underlying model is correct, something
which has to be either known a priori or assessed. On the
contrary, a non-parametric approach such as SVM does not
require such assumptions, but it is more demanding in terms
of data size and computation. Moreover, for the distance-based
approach, some analytical studies can be conducted (possibly
in asymptotic situations, see [34]), whereas the SVM approach
allows for more versatile characterization of types of non-
stationarity. As for comparing to early works using asymptotic
analysis of evolutionary spectra [11], [12] to formulate a global
test of stationarity, the assumption of independence between
the time-frequency bins requires that many data in the time-
frequency representations have to be discarded for the test.
Our resampling method with surrogates allow for lightening
this limitation and using all the bins, hence providing a method
that uses all available information.
The basic principles of the method have been outlined, with

a number of considerations related to its implementation, but it
is clear that the proposed framework still leaves room for more
thorough investigations as well as variations and/or extensions.
In terms of time-frequency distributions for instance, one
could imagine to go beyond spectrograms and take advantage
of more recent advances [35]. Two-dimensional extensions
can also be envisioned for testing stationarity in the sense
of homogeneity of random fields, e.g., for texture analysis.
Preliminary results in this direction are given in [36].
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Fig. 7. Time-frequency features (P, F ) in AM (left) and FM (right) situations. From top to bottom, T0 = T/20, T and 20 T , with T = 1600. In each case,
the black triangle corresponds to the (P, F ) pair of one test signal used to derive the surrogates. The latter are plotted as dots which, with support vector
data description, define the minimum-volume domain of stationarity represented here by the dashed curve. The training data lying on or outside this area are
indicated by the circled dots. The thin curves represent the decision functions with false positive probabilities 0.05, 0.1 and 0.15. Other parameters are as
follows — number of tapers: K = 5, length of tapers: Th = 387, modulation indices: (AM) m = 0.5 and (FM) m = 0.02, central frequency f0 = 0.25,
signal-to-noise ratio: SNR = 10 dB.


