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Abstract—In this work we present a simple toy-model that
is able to explain certain empirical observations reportedin a
set of previous papers by Hohnet al. [1]–[3] about the wavelet
spectrum of real traffic traces. Therein, the authors found that
the wavelet spectrum is substantially invariant to flow scrambling
and truncation, suggesting that super-flow structures above the
transport layer — i.e., sessions — can be ignored for modeling
the packet arrival process. Based on the proposed toy-model,
we offer an interpretation framework that goes in the opposite
direction, wherein sessions, not transport-layer flows, should be
taken as the main structural entities in simplified on/off models.

I. I NTRODUCTION

The problem of modeling Internet traffic has attracted
considerable interest in the research community since more
than a decade. Although to date there is no commonly accepted
model, two fundamental properties of Internet traffic have
found extensive empirical evidence: Long-Range Dependence
(LRD) of the aggregate traffic, and the ubiquituous presenceof
heavy-tailed (HT) distributions at different levels of granularity
(origin-destination pairs, Layer-4 flows, sessions, etc.). More-
over, HT is widely accepted as the principal cause of LRD
[4, p. 225], following the fundamental result by Taqqu [5, p.
26]. Still the problem of identifying a parsimoniousstructural
model for Internet traffic remains open. The difficulty lies
in the intrinsic complexity, heterogeneity and variability of
modern Internet traffic.

Since the introduction of the wavelet analysis [6] it has
become common practice to consider the wavelet spectrum
as a key characteristic of the traffic process. The motivation
for such approach lies in the fact that the temporal correlation
structure of the traffic process plays a role in some engineering
tasks, e.g. buffer dimensioning — at least for a limited horizon
of timescales [7]. A popular way to represent the wavelet
spectrum is by means of the so-called Log-Diagram plot (“LD
plot”) [6]. As a matter of fact, the adherence of a model to the
empirical LD plot of a real traffic trace has become a popular
criterion to demonstrate thegoodnessof the model1.

1Furthermore, the model ingredients that can emulate arealistic LD plot
are sometimes taken as explanatory of the dynamics at play inreal traffic,
with some confusion between the evocative and explanatory nature of the
model — see e.g. discussion in [8].

In [2] the Cluster Point Process (CPP) was proposed as a
simple parsimonious model for Internet traffic at the packet
level. The CPP model is based on a two-layer hierarchy,
where packet arrivals are grouped intoclusters. The packets-
in-cluster pattern — a renewal process with Gamma distributed
interarrivals was assumed in [2] — dictates the correlation
structure at small timescales, while the distribution of the clus-
ter size shapes the wavelet spectrum at large scales (typically
LRD). In this way the CPP model can emulate the whole
LD observed in real traces. The central aspect of CPP is
that the clusters are assumed fully independent — they arrive
according to a Poisson process.

The same authors devoted a series of papers to investigate
the structure of Internet traffic with particular focus on the
correlation between packets, flows andsessions[1]–[3]. It is
important to remark that in all those works the flow classifi-
cation follows strictly the canonical definition based on the IP
5-tuple ([source,destination]× [address,port], protocol). As a
result, the notion offlowcoincides with transport-layer entities,
i.e. TCP connections and UDP streams (hereafter referred to
as “L4-flows”). The methodology adopted in those works is
based on the notion of “semi-experiments”, described in the
following. First, the packets are grouped into L4-flows based
on the 5-tupla (classification), thus identifying a two-layer
hierarchy — packets and L4-flows. Then, transformations are
imposed to L4-flows such as truncation, arrival time reshuf-
fling, and packet scrambling. Each type of transformation de-
stroys specific components of the (unknown) structure present
in the real trace. In this way it is possible to identify which
structural components are responsible for the characteristic
LD plot observed in the original process, and which ones
instead are superfluous — at least with respect to the goal
of reproducing a “realistic” LD.

The main finding of [1]–[3] is that inter-flow correlation
can be eliminated — by flow reshuffling — without impacting
the “important” correlation properties of the traffic aggregate,
i.e. its LD profile. This suggests that super-flow structures
above the transport layer — which we callsessionshereafter
— are superfluous and can be ignored in the final model.
Notably, this does not mean that such higher structures are
not present in real traffic, but only that they are ininfluential



for modeling the packet arrival process.. In other words, itis
not the existence of sessions that is questioned, but only their
role in a parsimonious model.

In this work we critically revise this conclusion. More
specifically, we do not contrast the two-layer model approach
— packets and clusters, as in CPP [2] — but argue against
the identification of the main structural entity (cluster) with
L4-flows. Our arguments contain also an implicit criticism to
the modelling methodology based on LD emulation.

Curiously, the key of our arguments lies in some empirical
observations reported in [1]–[3] that the authors did not com-
pletely explain therein — we review them in detail in the next
section. In this work we build an ultra-simplified “toy-model”
that is able to consistently reproduce and explain all those
observations. Based on such model, we achieve the opposite
conclusion as in [1]–[3]: we find that the natural definition
of cluster object shifts from L4-flows to a highersession
level. In other words, our toy-model provides an alternative
interpretation framework wheresessions, not L4-flows are the
key structural entitiesin a two-layer hierarchical model. We
believe that such result — although still in a preliminary stage
— should motivate a re-orientation of the traffic modeling
research agenda towards a better understanding of super-flow
structures above the transport layer.

The rest of this work is organized as follows. In§II we
review some earlier works on wavelet analysis of real traces,
highlighting a set of empirical observations left unexplained
therein. In§III we present preliminarily some aspects of LD
plots for on/off processes. In§IV we introduce formally our
model and demonstrate analytically that it can consistently
explain all the previous observations. We also validate our
results via simulations. In§V we justify the key model
ingredients. In§VI we discuss the consequences of the model,
taken as a virtual interpretation framework for real traffic.
Finally, in §VII we draw the conclusions and identify some
points for future research.

II. REVIEW OF PREVIOUS WORKS

Here we review some key observations made in [1]–[3]. The
flow definition therein is based on the canonical IP 5-tupla plus
a timeoutT : a sequence of IP packets with a common 5-tupla
value and interarrival times smaller thanT (e.g. 60 sec) are
classified as belonging to the sameflow, or more preciselyL4-
flow. The count process of packet and flow arrivals in fixed-
length time bins are denoted byX and Y respectively (the
time index is omitted for a more compact notation). The LD
of a generic processZ will be denoted byL(Z). The authors
observe empirically that:

(i) L(X) is biscaling: it scales linearly with slopehx at
large time-scales (LRD) while is approximately flat (i.e.,
it scales linearly with a very small slope) at small time
scales, with an intermediate knee at scaleqx.

(ii) L(Y ) is similar to L(X): biscaling as well, with same
slope at large scales but different knee point, i.e.hy =
hx andqy > qx.

(iii) Invariance to scrambling: the qualitative behaviourof
L(X) does NOT change significantly if the flow arrivals
are randomly scrambled, i.e. flows are relocated accord-
ing to Poisson while keeping the same flow size.

(iv) Invariance to truncation: the qualitative behaviour of
L(X) does NOT change significantly if the flow size
is truncated while keeping the same flow arrival times
— note that the processY can be considered as an
extreme case of truncation, where the flow size is set
to one packet.

(v) Effect of joint truncation and scrambling:L(X) changes
significantly and becomes almost flat if the flows are
scrambledand truncated

In particular, observation (iii) is used in [1]–[3] to arguethat
theL4-flowarrival structure is NOT necessary to reproduce the
characteristic LD plot ofX(t), and therefore for the purpose of
modeling the packet arrival process there is no need to consider
super-flow structures, i.e.sessions. This does not mean that
sessions are absent from real traffic, but only that they can be
ignored for modelling the traffic at the packet level.

In the following we present a simple synthetic toy-model
that offers an explanation for all the above observations, but
leads to an opposite conclusion with respect to the roles
of flows and sessions. As our model is based on a simple
extension of the basic packetizedM/G/∞ process, in the
next section we provide a preliminary view of such process
and of its LD spectum.

III. PRELIMINARIES: LD PLOTS OFM/G/∞ PROCESS

We start considering a classicalM/G/∞ process where
sessionsarrive according to a Poisson process of intensity
λs. In the packetized version each session generates quanta
of information (i.e., packets) at fixed rateλp = 1/Tp. In the
fluid version, sessions have a constant continuous transmission
rate equal tor (without loss of generality we setr = 1). We
are interested in the LD behaviour of the aggregate process,
denoted byX(t). Let us consider a discrete version where
the time axis is divided into bins of lengthb (typically a
few milliseconds), so thatX(t) counts the total amount of
information sent in thet-th time bin by all active flows.

Taqqu’s Theorem [5, p. 26] predicts that when the ses-
sion sizes are heavy-tailed (HT) distributed theasymptotic
behaviour ofX(t) at large time-scales is Long Range Depen-
dent (LRD) and asymptotically Self-Similar (SS). The Hurst
parameterH and the session tail indexa (a ≤ 2) are linked
by a simple equation:

H = (3 − a)/2. (1)

Remark that this result is valid only in the limit of large time-
scales. Taqqu’s theorem does not give any indication about the
boundary of the large scales region, i.e. the onset of LRD —
this issue is addressed in a separate recent contribution [9].

In the following we plot the LD of several realizations
of M/G/∞ process. LD are computed by the routine
LDestimate available from [10] with three vanishing mo-
ments. In a first set of simulations we consider the fluid version
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(a) Paretoa = 1.25.
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(b) Paretoa = 1.6.
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(c) exp-neg
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Fig. 1: LD for fluidM/G/∞ with different session size distribution. The mean sessionsize is constant for all four experiments.
Sampling interval (j = 1) b = 100 ms. Number of flowsN = 105. Reference slopes were added manually. The vertical line
indicates the scale of mean flow duration.
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Fig. 2: LD for fluidM/G/∞ with session size distribution pareto, tail indexα = 1.25, for different values of location parameter
k. Sampling interval (j = 1) b = 100 ms. Number of flowsN = 105. Reference slopes were added manually. The vertical
line indicates the scale of mean session duration.

of the process for different session size distributions. Note that
in the following simulations the length of the total observation
period D is several orders of magnitude larger than the
mean session duration, which ensures that the LRD region is
observable (see [9]). For HT we have used Pareto distributions
with CDF F (x) = 1 − (k/x)α, meanE(x) = kα/(α − 1),
with tail index 1 < α < 2 and location parameterk > 0.

In Fig. 1 we plot the LD ofM/G/∞ for different session
distributions with the same mean value: paretoα = 1.25,
paretoα = 1.6, exp-neg and uniform. In Fig. 2 we consider
pareto distributions with same tail index (α = 1.25) and
different mass locationk — hence differen mean size. In
all plots two different regions are clearly visible. At large
time-scales (L -region) the LD spectrum is consistent with the
theory: flat for light-tail distributions (Fig. 1c,1d) and close to
a straight line in the heavy-tail cases (Fig. 1a,1b), with slope
in agreement with eq. (1). At lower time-scales (M -region) the
LD is straight with slopeβ = 2 in all cases. The existence of
this region was already noted in [11]. According to [12] this
is due to the discontinuities of the transitions between theon
and off states of individual sessions, which leads to a trivial
form of self-similarity at those timescales.

Fig. 2 reports the LD plots associated to session size
distributions with the same tail-index but different mean,i.e.
different mass location parameterk. It is evident that the
change-point between theM - andL -region (denote byqML),

i.e. the onset of the LRD domain, depends on the location of
the distribution mass: the longer are the sessions, the larger
is the timescaleqML at which LRD starts to be visible. In a
separate recent work it is shown that the onset of LRD must
be larger than the mean session duration (see [9, eq. (18)]),
a result that in consistent with the plots in Fig. 1 and Fig. 2.
Consequently, if the length of the observation periodD is too
short, one could not observe theL -region. This observation
has some fundamental implications for the LRD analysis of
real traffic traces (see discussion in [9]).

So far we have considered fluid sessions (continuous trans-
mission). We now turn to packetized sessions (discrete trans-
mission) where the packets-in-session arrivals are taken as
Poisson for the sake of simplicity. Note that the packetized
M/G/∞ process is equivalent to a special case of the CPP
model. The impact of packetization on the wavelet spectrum
is limited to small time-scales, where the LD becomes flat.
This leads to a the emergence of a third region, namely the
S-region (small scales) below theM -region. Fig. 3 shows
the complete LD for a packetizedM/G/∞ processs with
exponential session size. The three regions are clearly visible:

• Small scales: LD is flat due to the Poisson structure of
packets-in-session.

• Medium scales: LD is linear with slopeβ = 2; the SS
property in this region is due to the discontinuity of the



Fig. 3: The three timescale regions for a packetizedM/G/∞
process with exp-neg activity periods.

on/off transitions (see [12]).
• Large scales: LD depends on the tail behaviour of the

session size: LRD for heavy-tailed pareto, flat for light-
tail exponential (as in Fig. 3).

IV. A TOY-MODEL

We consider a CPP process (or equivalently packetized
M/G/∞) similar to that introduced in the previous section.
The sessions (clusters) identify periods of activities by individ-
ual users, therefore they are assumed independent and arrive as
Poisson. Within each session, packets arrive as Poisson with
rate λp. The flows are derived from the set of sessions as
explained below.

We randomly classify the sessions into two classes, namely
S0 and S1, with probablityφ. For simplicity we assume an
equal probability classification, i.e.φ = 0.5. By taking the
packet count process for each class separately we identify the
two sub-processesX0 and X1, with X = X0 + X1. Note
that the child processesX0 andX1 are also CPP, and inherit
the same session tail-index of the mother processX . In other
words we have (randomly) decomposed the original process
into two equivalentsub-processes. All three processes have
exactly the same temporal correlation structure at all time-
scales, hence the same LD.

We now move to build the flows. The count process for the
flows will be denoted byY . For the classS0 we simply map
each session into a single flow. For the classS1 we fragment
each session into a number of distinct flows. We consider here
the extreme case whereeach individual packet is mapped into
a distinct flow (maximal fragmentation). It is important to
remark that we are considering here only the two extreme
cases of session-to-flow mapping — one flow per session
and one flow per packet — for the sake of simplicity and
ease of explanation. The central features of the model should
not change if more articulated, intermediate fragmentation
schemes are considered. Later in§V we will motivate such

Fig. 4: LD plot of a biscaling process W and W+P.

construction and discuss how it relates to concrete aspectsof
real traffic, protocols and applications in the modern Internet.

For each classS0 andS1 we define the associated flow count
processY0 and Y1, respectively. By constructionY1 = X1,
while Y0 is Poisson. Clearly, it holds thatY = Y0 + Y1.

In the rest of this section we show that such simple model
is consistent with the set of observations listed previously
in §II. In other words, if one applies the same analysis
procedure of [1]–[3] — semi-experiment transformations and
LD computation — to our toy-model, all those observations
would hold.

A. Notation

It is convenient to introduce a few elements of notation
for LD plots. We denote byP the Poisson process. Given a
generic count processW (e.g.W = X orW = Y ) we denote
by L(W ) its LD spectrum. If two processesWi andWj yield
the same LD modulo a vertical offset we say that they are
LD-equivalent. We will adopt the symbol “∼=” to indicate this
condition. Hence:

L(Wi) = L(Wj) ⇔Wi
∼= Wj (2)

If two processesWi and Wj are combined into the sum
processW , we write:W = Wi + Wj (the symbol “+” in-
dicates superposition in this context). If the processW can be
constructed as the superposition ofk independent realizations
of the processWi, we write W = kWi. Conversely, if the
processWi is derived from a mother processW by means
of some form ofrandom decimation, e.g. per-flow sampling
with factor ψ < 1, we write Wi = ψW . In both cases —
composition and random decimation — the processesW and
Wi yield the same LD behaviour except for a vertical offset
of log2(k) or log2(ψ) respectively, thereforeWi

∼= W .
Now consider the particular case thatW has the typical

biscaling LD observed in the traces: linear with slopelw << 1
(i.e., almost flat) at scales below a certain knee-pointqw, and
linearly scaling with slopehw above the knee-point. If another
processS has the same biscaling behaviour with the same
slopeslh = lw and hs = hw but a different location of the
knee, i.e.qs 6= qw, then we say thatW andS areLD-similar
and writeW ∼ S. Note the difference between the notion
of LD-equivalence(symbol “∼=”) and LD-similarity (symbol
“∼”): LD-equivalence implies that the spectrum of the two



process is exactly the same at all scales (modulo a vertical
shift), while with LD-similarity this holds true only at the
extremes of the scale range, with an intermediate region of
possibly different behaviour.

It is easy to show (see geometrical construction in Fig.
4) that if W is biscaling with almost flat spectrum at low
timescales, then adding a Poisson component leads to a similar
LD spectrum, formally:

W is biscaling withlw << 1 ⇒W ∼W + P. (3)

Such simple notation is sufficient to demonstrate formally
the effects of the semi-experiments on our toy-model, which
is the goal of this work, and we do not elaborate it further2.

B. Derivation of LD-similarity

By means of the notation introduced above we now proceed
to demonstrate the observations (i)-(iv) stated above.

LD similarity for X and Y . By construction, it holds that:

Y = Y0 + Y1 = Y0 +X1 = P +X1 (4)

where we have usedY1 = X1 (by the maximal fragmentation
in classS1) andY0 = P . Recall that the child processX1 is
LD-equivalent toX , hence we derive:

Y =
1

2
X + P ∼

1

2
X ∼= X. (5)

This proves the LD-similarityX ∼ Y , i.e. observation (i).
Moeover, since in eq. (5) the energy ofP (only one point
per session) is much lower than the energy of1

2X (one point
per packet), the latter dominates in the sum and thereforeY
is (almost) equivalent to12X , hence toX .

Invariance to flow scrambling. The scrambling transfor-
mation relocates each flow according to a Poisson process.
We will use the notationX̃ to denote the process resulting
from the application of flow scrambling toX . Scrambling the
mother process is equivalent to scrambling each of the two
child components:

X̃ = X̃0 + X̃1. (6)

By construction the flows inX0 already Poisson distributed,
therefore the scrambling transformation does not have any
statistical impact, i.e.X̃0 = X0. Instead the flow scrambling
turns the processX1 into Possion: each individual packet is
marked as a flow and therefore relocated, henceX̃1 = P . With
these positions eq. (6) leads to:

X̃ = X0 + P =
1

2
X + P ∼

1

2
X. (7)

Since 1
2X

∼= X (decimation), eq. (7) leads immediately to
the LD-similariy X̃ ∼ X , which proves the observation (ii).

2In principle such notation could be refined and extended, in combination
with elements of geometric construction of LD, so as to develop a sort of
“LD calculus”.

Note that the energy of both components in the last term of
eq. (7) is the same as there was no decimation.

Invariance to flow truncation. This transformation trun-
cates the size of individual flows: only the firstm packets
of each flow are kept, while the remaining ones (if any) are
removed. We will use the notationX

(m)
to denote a process

resulting from them-truncation ofX . The extraction of the
Y process can be seen as an extreme case of flow truncation,
where all but the first packets of each flow are removed, i.e.
Y = X

(1)
. As done above, we separate the effects of flow

truncation for the two child components:

X
(m)

= X0
(m)

+X1
(m)

. (8)

By constructionX1 contains only single-packet flows, hence
the truncation is ineffective and we obtain:

X
(m)

= X0
(m)

+X1 = X0
(m)

+
1

2
X. (9)

The effect of flow truncation ontoX0 is twofold. First, it
subtracts energy toX0

(m)
(less points) thus letting the other

component prevail in eq. (9). Second, it removes the scaling
at very large timescales, as it truncates the tail of the session
size distribution. This again results inX1 dominating the LD
at large scales. Whenm = 1, thenX0

(1)
becomes Poisson,

and eq. (9) leads to

X
(1)

= P +
1

2
X ∼

1

2
X ∼= X (10)

thus we end up with the LD-similarityX
(1)

∼ X which
proves observation (iii).

Impact of joint scrambling AND truncation. We have
seen that our toy-model embeds two distinct sub-process with
equal LD behaviour. Each of the considered transformations
(scrambling and truncation) impacts only one of the two
components, transforming it into Poisson. Therefore both trun-
cation (withm = 1) and scrambling, if indivudally applied,
lead to a similar LD profile as the original process. It is easyto
see that if both are applied jointly, then the process degenerates
into Poisson, and LD becomes flat. This is consistent with
observation (iv).

C. Simulation results

In Fig. 5 we show the LD plots obtained via simulations
with our toy-model. We have considered two different session
size distributions: exp-neg and pareto. In each case, we report
the LD of the original processX along with the LD resulting
after truncation and scrambling. It can be seen that all curves
yield the same biscaling behaviour of the original processX .

V. M APPING TO REALITY

In order to give credibility to the toy-model presented
above, we need to identify the real-world phenomena that
could be responsible for the model ingredients, and particularly
the session-into-flows fragmentation. It turns out that several



(a) session size exp-neg (λs = 1/5). (b) session size pareto (k = 1, a = 1.25).

Fig. 5: LD plots of the original process (Xp) and its derivations after flow scrambling (Xp,pois) and truncation (Xp,trun).

different kinds of activities in the modern Internet generate
sessions split into different flows.

Scanning and unwanted traffic. A scanning source pro-
duces a “session” of packets towards different addresses and/or
ports, therefore each packet is classified in a separate L4-flow.
As a matter of fact, in the Internet there is a lot of scanning
traffic - and unwanted traffic in general. Notably, the traces
used in [1]–[3] date after the “explosion” of scanning traffic
that is documented in [13]. In another work, we have found
that such traffic has an impact on global rate (and delay)
statistics, introducing large spikes, some of which appear
regularly and periodically (see [14]). More in general, the
impact of unwanted traffic on the wavelet spectrum of real
traces is a point that deserves further study.

Peer-to-peer.Many P2P applications produce sessions rich
in small flows. For instance, in file-sharing P2P applications
the same content, typically a large file, is split into many
small chunks — often of fixed size — and transferred via
smaller connections from/to different hosts. In Skype, voice
calls between two parties are routed over one or more middle-
nodes. The middle-node can be dynamically changed during
the call, which leads a single voice stream to be split into
different L4 connections.

WEB. In general a complex web page consists of several
elements that can be transferred simultaneously in different
TCP connections, either due to the use of HTTP 1.0 or
because the objects are located at different specialized servers
(advertisements, images, etc.). Note that in [15] it has been
reported that also thenumber of flowswithin WEB sessions
is HT, a point that is fully consistent with our toy model.

All such applications are central to the modern Internet.
There is ample evidence that P2P and WEB are responsible for
a major share of the global Internet traffic. Therefore session
splitting into small flows should be regarded nowadays as the
norm, rather than the exception.

Recall that we have illustrated our toy-model with respect

to only the most extreme form of fragmentation, i.e. flows of a
single packet. This approach greatly simplifies the model be-
cause avoids the introduction of a probabilistic fragmentation
scheme — note that maximal fragmentation is deterministic –
and therefore help in focusing on the fundamental aspects of
the model. In the real Internet single-packet flow fragmentation
is produced only by scanning, while web and P2P obviously
produce flows of non-trivial size. It is easy to see that the
central properties of our toy-model — most prominently LD
invariance to flow scrambling and truncation — would still
hold if more articulated probabilistic fragmentation schemes
are considered, for example with flows size distributed accord-
ing to some probabilistic law, to better represent the behavior
of real applications.

VI. I MPLICATIONS

The power of our toy-model resides in the following aspects.
First, it can consistently explain the full set of empirical
observations that were presented in [1]–[3] — to the best of
our knowledge no other model exists that does so. Second, it
is extremely simple and parsimonious, which accounts to its
generality. Third, its generative components are reminiscent of
real phenomena found in modern Internet traffic, as discussed
in §V.

Despite its explicative power, we do not claim at this stage
that our toy-model should be taken as representative of the
real traffic process. More research and further analysis of the
real traces is required to assess how much of the toy-model
ingredients are found in real traffic — indeed the ultimate
goal of the present contribution is to motivate further workin
this direction. Nevertheless, our toy-model provides a possible
explanatory framework that is original in its own, and might
indicate a reasoning path towards unveiling some aspects of
modern Internet traffic that would be overlooked if one accepts
the idea that L4-flows should be the central entities in traffic
models.



In order to present our arguments, we follow a reasoning
approach based on “virtual experiments”: we invite the reader
to consider a “virtual Internet”, wherein the traffic is generated
according to our toy-model. In such “virtual Internet”, theLD
of the captured trace would be given by the curveXp in Fig.
5b. Now consider a practitioner, Alice, willing to synthesize
a CPP traffic model from the traces. She would then need
to derive the empirical distribution of session size. Notably,
the choice of the CPP model class is correct, as the toy-
model is ultimately a version of CPP. The problem lies in
the identification of theclusters. The easiest approach is to
assume that clusters correspond to L4-flows, since these canbe
easily classified via simple 5-tupla matching. Inspired by the
results of [1]–[3], Alice would probably follow this approach,
and use the empirical distribution of L4-flows as a proxy for
cluster distribution. The traffic model obtained in this way
would be equivalent to theXp,pois, whose LD is given in
Fig. 5b. The close similarity between the LD of the captured
trace and that obtained with the synthetic model — see LD of
Xp andXp,pois in Fig. 5b — would comfort her that taking
L4-flows as clusters is sufficient to capture the “important
characteristics” of the traffic. Therefore she would conclude
that L4-flows are the central entities of (virtual) Internettraffic,
and that inter-flow correlations — or equivalently super-flow
structures, i.e. sessions — do not need to be taken into account
for modeling purposes. This is indeed the logical path followed
in the earlier cited works [1]–[3].

In the context of our “virtual Internet” we know that
such conclusion iswrong, because we have built the traffic
generation process (i.e. the toy-model) around sessions, not
L4-flows. The key question now is: What are the consequences
of such modeling error ? The answer depends on the intended
use of the model.

To illustrate, let us consider a very basic problem in data
network engineering, namely buffer analysis. We consider a
queuing system with a single server of capacityC (pack-
ets/sec) and infinite buffer. We feed the processXp (our toy-
model) andXp,pois (after L4-flow scrambling, or equivalently
Alice’s model) to this queuing system, and measure the waiting
time of each packet. The server capacityC is set so as to
obtain an average loadρ = 0.5 (recall thatXp andXp,pois

have the same average packet rate). The distribution of the
waiting time for both processes are plotted in Fig. 6. It
is evident that the performance of the queuing system is
dramatically different for the two processes. By eliminating
the inter-flow correlation within (some of) the sessions, the
aggregate packet-level process becomes less correlated, which
leads to dramatically lower waiting times. In this case, a CPP
model based on L4-flows as clusters instead of sessions would
lead to a gross engineering error. More in general, the direct
comparison between Fig. 6 and Fig. 5b provides an illustrative
example of two processes —Xp and Xp,pois in our case
— that have similar LD but very different system behaviour.
This should suggest some caution in using LD-similarity as a
goodness criterion for traffic models.

Another potential consequence of mis-taking L4-flows for

Fig. 6: Empirical CCDF of the waiting time for the process
Xp (curveq1) andXp,pois (curveq2) with ρ = 0.5. The LD
for the same processes were given in Fig. 5b.

clusters relates to the empirical observability of LRD in
practice. In [9] it is shown that the observability of the LRD
region in the packetized M/G/∞ process — or more exactly in
one realization of limited duration — depends on the duration
of the observation periodrelative to the mass of the cluster
duration. Now, the duration of a real trace is typically limited
to 2-3 hours due to stationarity constraint. The problem here
is to decide what entity must be taken as “cluster”: L4-flows
or sessions ? As a matter of fact, the HT property has been
observed in both sessions size (see e.g. [15]) as well as L4-flow
size. However this issue has an impact on theobservability
of the theoretical relationship between HT and LRD in real
traces: as sessions are generally longer than L4-flow, if their
mean duration exceeds a certain (unknown) value then it might
be simply impossible to observe the Taqqu’s Theorem at work
in a real trace of a few hours. In other words, it remains to
be seen whether the theoretical onset of LRD is within the
stationarity limit of real traffic traces once that sessionsare
taken as clusters. See [9] for a discussion on this point.

VII. C ONCLUSIONS

We have proposed a simple toy-model that is capable
to consistently explain a number of empirical observations
reported in some previous works, based on the analysis of
real traces. Indeed, given its simplicity, it is remarkablethat
it has the power to evocate consistently the whole set of LD
patterns resulting from the semi-experiments. We have also
presented a possible mapping of the model ingredients to real
phenomena in the Internet. Despite its evocative power with
respect to LD properties we do not claim at this stage that such
ultra-simplified model is representative of real Internet traffic,
and more work is needed to achieve a more realistic — and
likely less parsimonious — model to be used in practice.

The main contribution of our toy-model is that it provides
the basis of a novel interpretation framework where higher-
layer sessions, rather than transport-layer flows, should be



considered as the central entities in traffic modeling — at
least for the CPP model class. We hope in this way to
contribute the discussion within the networking community
about the role of sessions and flows, and at the same time
motivate further research on characterizing the sessions,as
done e.g. in [15]. This is clearly more difficult because there
is not simple mechanism to classify sessions, while L4-flows
can be identified directly by the IP 5-tupla. On the other
hand, keeping the focus on L4-flows appears increasingly less
natural in the modern Internet scenario, wherein applications
and services are evolving in such a way that the coupling
between application-level activities and L4-flows becomes
progressively weaker.

Along the way we have touched a number of issues that still
deserve further investigations, like the role of LD evocation in
model assessment and the observability of HT-LRD relation
in real traces.

In the progress of this work we intend to follow two comple-
mentary directions. On one hand, we are interested in studying
more articulated variants of the toy-model with more realis-
tic (probabilistic) fragmentation/composition schemes between
L4-flows and sessions. On the other hand, we intend to
investigate possible methods to classify sessions (advancing
e.g. the work in ) and leverage assess quantitatively the
mapping between sessions and L4-flows in real traces. For
that, we would need to advance the
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