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Abstract—In this work we present a simple toy-model that In [2] the Cluster Point Process (CPP) was proposed as a
is able to explain certain empirical observations reportedin a  simple parsimonious model for Internet traffic at the packet
set of previous papers by Hohnet al. [1]-[3] about the wavelet |ayg| The CPP model is based on a two-layer hierarchy,
spectrum of real traffic traces. Therein, the authors found hat . .
the wavelet spectrum is substantially invariant to flow scranbling Where packet arrivals are grouped 'mms_ters The paqke?s-
and truncation, suggesting that super-flow structures abog the in-cluster pattern — a renewal process with Gamma distitut
transport layer — i.e., sessions — can be ignored for modelin interarrivals was assumed in [2] — dictates the correlation
the pf?cket a}rrtival ptrot(':essf' Based ;Thtfse DFOPOStehd toy-m:tdel structure at small timescales, while the distribution @ thus-
we offer an Interpretation tfrramewor! at goes In e opposte H H
irection, wherein sessions, not ransportayer flow, sl be % 5175 ShAPES (he wavelet spectium at arge scales Mypica
taken as the main structural entities in simplified on/off malels. : ) -

LD observed in real traces. The central aspect of CPP is
I. INTRODUCTION that the clusters are assumed fully independent — theyearriv
according to a Poisson process.

The problem of modeling Internet traffic has attracted The same authors devoted a series of papers to investigate
considerable interest in the research community since Mm@ structure of Internet traffic with particular focus oreth
than a decade. Although to date there is no commonly accepgefrelation between packets, flows asessiong1]-[3]. It is
model, two fundamental properties of Internet traffic havighportant to remark that in all those works the flow classifi-
found extensive empirical evidence: Long-Range Deperelengtion follows strictly the canonical definition based oe tR
(LRD) of the aggregate traffic, and the ubiquituous preserfices_typle ([source,destination] [address,port], protocol). As a
heavy-tailed (HT) distributions at different levels of gdarity  result, the notion oflow coincides with transport-layer entities,
(origin-destination pairs, Layer-4 flows, sessions, etdgre- je. TCP connections and UDP streams (hereafter referred to
over, HT is widely accepted as the principal cause of LRRs “| 4-flows”). The methodology adopted in those works is
[4, p. 225], following the fundamental result by Taqqu [5, Prased on the notion of “semi-experiments”, described in the
26]. Still the problem of identifying a parsimoniostuctural  following. First, the packets are grouped into L4-flows lwhse
model for Internet traffic remains open. The difficulty liesgn the 5-tupla (classification), thus identifying a twoday
in the intrinsic complexity, heterogeneity and variailof njerarchy — packets and L4-flows. Then, transformations are
modern Internet traffic. imposed to L4-flows such as truncation, arrival time reshuf-

Since the introduction of the wavelet analysis [6] it hagling, and packet scrambling. Each type of transformation de
become common practice to consider the wavelet spectrgffoys specific components of the (unknown) structure ptese
as a key characteristic of the traffic process. The motimatigh the real trace. In this way it is possible to identify which
for such approach lies in the fact that the temporal coiiat structural components are responsible for the charatiteris
structure of the traffic process plays a role in some enginger D plot observed in the original process, and which ones
tasks, e.g. buffer dimensioning — at least for a limited honi  instead are superfluous — at least with respect to the goal
of timescales [7]. A popular way to represent the wavelgf reproducing a “realistic” LD.
spectrum is by means of the so-called Log-Diagram plot (LD The main finding of [1]-[3] is that inter-flow correlation
plot”) [6]. As a matter of fact, the adherence of a model to thean be eliminated — by flow reshuffling — without impacting
empirical LD plot of a real traffic trace has become a populg@ie “important” correlation properties of the traffic aggaee,

criterion to demonstrate thgoodnesf the model. i.e. its LD profile. This suggests that super-flow structures
above the transport layer — which we ca#issionshereafter
1Furthermore, the model ingredients that can emulateadistic LD plot __ are superfluous and can be ignored in the final model.

are sometimes taken as explanatory of the dynamics at plagaintraffic, . .
with some confusion between the evocative and explanatatyre of the NOtany! this does not mean that such h'gher structures are

model — see e.g. discussion in [8]. not present in real traffic, but only that they are ininfluahti



for modeling the packet arrival process.. In other worddsit (iii) Invariance to scrambling: the qualitative behavioofr

not the existence of sessions that is questioned, but oaily th £(X) does NOT change significantly if the flow arrivals

role in a parsimonious model. are randomly scrambled, i.e. flows are relocated accord-
In this work we critically revise this conclusion. More ing to Poisson while keeping the same flow size.

specifically, we do not contrast the two-layer model apphnoac(iv) Invariance to truncation: the qualitative behaviour o

— packets and clusters, as in CPP [2] — but argue against £(X) does NOT change significantly if the flow size

the identification of the main structural entity (clusterittw is truncated while keeping the same flow arrival times
L4-flows. Our arguments contain also an implicit criticisan t — note that the proces¥ can be considered as an
the modelling methodology based on LD emulation. extreme case of truncation, where the flow size is set

Curiously, the key of our arguments lies in some empirical ~ to one packet.
observations reported in [1]-[3] that the authors did naheo (v) Effect of joint truncation and scrambling( X ) changes
pletely explain therein — we review them in detail in the next  significantly and becomes almost flat if the flows are
section. In this work we build an ultra-simplified “toy-mdtle scrambledand truncated
that is able to consistently reproduce and explain all thoseln particular, observation (iii) is used in [1]-[3] to argthat
observations. Based on such model, we achieve the oppotitel4-flowarrival structure is NOT necessary to reproduce the
conclusion as in [1]-[3]: we find that the natural definitiortharacteristic LD plot of{ (¢), and therefore for the purpose of
of cluster object shifts from L4-flows to a higheession modeling the packet arrival process there is no need to densi
level. In other words, our toy-model provides an alterrativsuper-flow structures, i.esessions This does not mean that
interpretation framework whersessions, not L4-flows are thesessions are absent from real traffic, but only that they ean b
key structural entitiesn a two-layer hierarchical model. Weignored for modelling the traffic at the packet level.
believe that such result — although still in a preliminarygst In the following we present a simple synthetic toy-model
— should motivate a re-orientation of the traffic modelinghat offers an explanation for all the above observations, b
research agenda towards a better understanding of super-fisads to an opposite conclusion with respect to the roles
structures above the transport layer. of flows and sessions. As our model is based on a simple

The rest of this work is organized as follows. §fi we extension of the basic packetizédd/G/co process, in the
review some earlier works on wavelet analysis of real trace®xt section we provide a preliminary view of such process
highlighting a set of empirical observations left unexpéd and of its LD spectum.
therein. In§lll we present preI|m|nar|Iy some aspects of LD IIl. PRELIMINARIES: LD PLOTS OFM/G/00 PROCESS
plots for on/off processes. IfIV we introduce formally our
model and demonstrate analytically that it can consigtentl We start considering a classical/G/oco process where
explain all the previous observations. We also validate ofssionsarrive according to a Poisson process of intensity
results via simulations. IV we justify the key model As- In the packetized version each session generates quanta
ingredients. Ir§VI we discuss the consequences of the modélf information (i.e., packets) at fixed ratg, = 1/7,,. In the
taken as a virtual interpretation framework for real traffidluid version, sessions have a constant continuous trasgmis
Finally, in §VIl we draw the conclusions and identify somegate equal ta- (without loss of generality we set= 1). We

points for future research. are interested in the LD behaviour of the aggregate process,
denoted byX (¢). Let us consider a discrete version where
Il. REVIEW OF PREVIOUS WORKS the time axis is divided into bins of length (typically a

few milliseconds), so tha¥ (¢) counts the total amount of
Here we review some key observations made in [1]-[3]. Thgformation sent in the-th time bin by all active flows.
flow definition therein is based on the canonical IP 5-tuplespl  Tagqu's Theorem [5, p. 26] predicts that when the ses-
a timeoutT": a sequence of IP packets with a common 5-tuplgon sizes are heavy-tailed (HT) distributed tasymptotic
value and interarrival times smaller thdn (eg 60 SeC) are pehaviour ofX(t) at |arge time-scales is Long Range Depen_
classified as belonging to the saiff@w, or more precisely.4-  dent (LRD) and asymptotically Self-Similar (SS). The Hurst

flow. The count process of packet and flow arrivals in ﬁxecbarameterH and the session tail index (a < 2) are linked
length time bins are denoted by andY respectively (the py a simple equation:

time index is omitted for a more compact notation). The LD
of a generic procesg will be denoted byg(Z). The authors H=(3-a)/2 6y

observe empirically that: Remark that this result is valid only in the limit of large &

(i) £(X) is biscaling it scales linearly with slopé:, at scales. Taqqu’'s theorem does not give any indication abeut t
large time-scales (LRD) while is approximately flat (i.e.boundary of the large scales region, i.e. the onset of LRD —
it scales linearly with a very small slope) at small timehis issue is addressed in a separate recent contributjon [9
scales, with an intermediate knee at scale In the following we plot the LD of several realizations

(i) £(Y) is similar to £(X): biscaling as well, with same of M/G/oo process. LD are computed by the routine
slope at large scales but different knee point, hg= LDest i mat e available from [10] with three vanishing mo-
hy andgy, > ¢g. ments. In a first set of simulations we consider the fluid wersi
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Fig. 1: LD for fluid M /G /oo with different session size distribution. The mean sessipa is constant for all four experiments.
Sampling interval { = 1) b = 100 ms. Number of flowsV = 10°. Reference slopes were added manually. The vertical line
indicates the scale of mean flow duration.
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Fig. 2: LD for fluid M /G /oo with session size distribution pareto, tail index= 1.25, for different values of location parameter
k. Sampling interval { = 1) b = 100 ms. Number of flowsV = 10°. Reference slopes were added manually. The vertical
line indicates the scale of mean session duration.

of the process for different session size distributiongeNbat i.e. the onset of the LRD domain, depends on the location of
in the following simulations the length of the total obsdiwa the distribution mass: the longer are the sessions, therarg
period D is several orders of magnitude larger than this the timescaley, . at which LRD starts to be visible. In a
mean session duration, which ensures that the LRD regiorseparate recent work it is shown that the onset of LRD must
observable (see [9]). For HT we have used Pareto distribsitidbe larger than the mean session duration (see [9, eq. (18)]),
with CDF F(z) = 1 — (k/z)%, meanE(x) = ka/(a — 1), a result that in consistent with the plots in Fig. 1 and Fig. 2.
with tail index1 < « < 2 and location parametdr > 0. Consequently, if the length of the observation periads too

In Fig. 1 we plot the LD ofM/G/oo for different session short, one could not observe theregion. This observation
distributions with the same mean value: pareto= 1.25, has some fundamental implications for the LRD analysis of
paretoa = 1.6, exp-neg and uniform. In Fig. 2 we considereal traffic traces (see discussion in [9]).

pareto distributions with same fail indexv (= 1.25) and 5o far we have considered fluid sessions (continuous trans-
different mass locationt — hence differen mean size. Inpyjssion). We now turn to packetized sessions (discretesran
all plots two different regions are clearly visible. At l&g mission) where the packets-in-session arrivals are taken a
time-scales(-region) the LD spectrum is consistent with thesgisson for the sake of simplicity. Note that the packetized
theory_: flat_for _Ilght-tall dlstr|bqtlons (F|g._1c,1d) andjbge 10 M/G /oo process is equivalent to a special case of the CPP
a straight line in the heavy-tail cases (Fig. 1a,1b), witpel model. The impact of packetization on the wavelet spectrum
in agreement with eq. (1). At lower time-scaléé-fegion) the s jimited to small time-scales, where the LD becomes flat.
LD is straight with slopes = 2 in all cases. The existence Ofrhjs |eads to a the emergence of a third region, namely the
this region was already noted in [11]. According to [12] th'%region (small scales) below thil-region. Fig. 3 shows

is due to the discontinuities of the transitions betweendhe o complete LD for a packetized!//G/co processs with

and off states O_f iqdividual ses;ions, which leads to a"ﬂiViexponentiaI session size. The three regions are cleailyleis
form of self-similarity at those timescales.

Fig. 2 reports the LD plots associated to session sizee Small scales: LD is flat due to the Poisson structure of
distributions with the same tail-index but different meaa, packets-in-session.
different mass location parametér It is evident that the « Medium scales: LD is linear with slopg = 2; the SS
change-point between thd- andL-region (denote byj,z.), property in this region is due to the discontinuity of the
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2ot e R ® construction and discuss how it relates to concrete aspécts
real traffic, protocols and applications in the modern imgér
Fig. 3: The three timescale regions for a packetiz&dG /oo For each class, andS; we define the associated flow count
process with exp-neg activity periods. processY; and Y, respectively. By constructiol; = X,

while Yy is Poisson. Clearly, it holds thaf = Y, + Y;.
In the rest of this section we show that such simple model
on/off transitions (see [12]). is consistent with the set of observations listed previpusl
« Large scales: LD depends on the tail behaviour of ttie §ll. In other words, if one applies the same analysis
session size: LRD for heavy-tailed pareto, flat for lighterocedure of [1]-[3] — semi-experiment transformations an

tail exponential (as in Fig. 3). LD computation — to our toy-model, all those observations
would hold.
IV. A TOY-MODEL A. Notation

We consider a CPP process (or equivalently packetizedit is convenient to introduce a few elements of notation
M /G /o) similar to that introduced in the previous sectionfor LD plots. We denote byP the Poisson process. Given a
The sessions (clusters) identify periods of activitiesradivid- generic count procedd” (e.g.W = X or W = Y) we denote
ual users, therefore they are assumed independent ane asrivby £(1) its LD spectrum. If two processé¥; and W, yield
Poisson. Within each session, packets arrive as Poissdn wite same LD modulo a vertical offset we say that they are
rate \,. The flows are derived from the set of sessions a®-equivalent We will adopt the symbol=” to indicate this
explained below. condition. Hence:

We randomly classify the sessions into two classes, namely ~
S, and S;, with probablity ¢. For simplicity we assume an EWi) = £(W;) & W = W; 2)
equal probability classification, i.e» = 0.5. By taking the If two processesiW; and W; are combined into the sum
packet count process for each class separately we idehéfy processiv, we write: W = W, + W, (the symbol %" in-
two sub-processexy and X;, with X = X, + X;. Note dicates superposition in this context). If the procBssan be
that the child processeX, and X; are also CPP, and inheritconstructed as the superpositionkoindependent realizations
the same session tail-index of the mother procEssn other of the procesdV;, we write W = kW,;. Conversely, if the
words we have (randomly) decomposed the original procgs®cessW; is derived from a mother proces¥ by means
into two equivalentsub-processes. All three processes haw# some form ofrandom decimatione.g. per-flow sampling
exactly the same temporal correlation structure at all timawith factor ¢y < 1, we write W; = W. In both cases —
scales, hence the same LD. composition and random decimation — the procedgeand

We now move to build the flows. The count process for thé; yield the same LD behaviour except for a vertical offset
flows will be denoted byy". For the classS, we simply map of log, (k) or logy (1) respectively, thereforél; = W.
each session into a single flow. For the cl&sswe fragment ~ Now consider the particular case théf has the typical
each session into a number of distinct flows. We consider hdrigcaling LD observed in the traces: linear with slépe<< 1
the extreme case wheeach individual packet is mapped into(i.e., almost flat) at scales below a certain knee-pgintand
a distinct flow (maximal fragmentation). It is important tolinearly scaling with slopé.,, above the knee-point. If another
remark that we are considering here only the two extrenmpeocessS has the same biscaling behaviour with the same
cases of session-to-flow mapping — one flow per sessistopesi, = [, and h, = h,, but a different location of the
and one flow per packet — for the sake of simplicity anlinee, i.e.qs # q., then we say thatV’ and S are LD-similar
ease of explanation. The central features of the model dhoahd write W ~ S. Note the difference between the notion
not change if more articulated, intermediate fragmentatiof LD-equivalence(symbol “=") and LD-similarity (symbol
schemes are considered. Later§ivi we will motivate such “~"): LD-equivalence implies that the spectrum of the two



process is exactly the same at all scales (modulo a vertidédte that the energy of both components in the last term of
shift), while with LD-similarity this holds true only at the eq. (7) is the same as there was no decimation.
extremes of the scale range, with an intermediate region of
possibly different behaviour. Invariance to flow truncation. This transformation trun-
It is easy to show (see geometrical construction in Figates the size of individual flows: only the first packets
4) that if W is biscaling with almost flat spectrum at lowof each flow are kept, while the remaining ones (if any) are
timescales, then adding a Poisson component leads to @sintfiémoved. We will use the notatiof(m) to denote a process
LD spectrum, formally: resulting from them-truncation of X. The extraction of the
o ; - Y process can be seen as an extreme case of flow truncation,
Wis biscaling withl,, << 1= W~ W+ P 3) th(Jere all but the first packets of each flow are removed, i.e.
y = X", As done above, we separate the effects of flow
Such simple notation is sufficient to demonstrate formallyuncation for the two child components:
the effects of the semi-experiments on our toy-model, which —m) ——(m)

. . ) ~—(m)
is the goal of this work, and we do not elaborate it further X" =5 X (8)

B. Derivation of LD-similarity By constructionX; contains only single-packet flows, hence

By means of the notation introduced above we now procegbe truncation is ineffective and we obtain:

to demonstrate the observations (i)-(iv) stated above. o™y x, =™y Ly 9)
2

LD similarity for X and Y. By construction, it holds that: The effect of flow trt(mg:ation ontaX, is twofold. First, it
subtracts energy t&, ~ (less points) thus letting the other
Y=Yo+¥ =Y+ X =P+X, ) component prevail in eq. (9). Second, it removes the scaling
where we have useH; = X; (by the maximal fragmentation at very large timescales, as it truncates the tail of thei@ess
in classS;) andY, = P. Recall that the child procesk; is Size distribution. This again results ii; dominating the LD
LD-equivalent toX, hence we derive: at large scales. Whem = 1, then Yo(l) becomes Poisson,
1 1 and eq. (9) leads to
. o ) ) ) X ' =P+-X~_-X2=X (10)
This proves the LD-similarityX ~ Y, i.e. observation (i). 2 2
Moeover, since in eq. (5) the energy &f (only one point
per session) is much lower than the energy%xxf (one point
per packet), the latter dominates in the sum and theréfore

is (almost) equivalent t(%X, hence toX.

thus we end up with the LD-similaritt "’ ~ X which
proves observation (iii).

Impact of joint scrambling AND truncation. We have
. . . seen that our toy-model embeds two distinct sub-process wit
In_varlance o flow scrambling. The scrambhn.g transfor- equal LD behaviour. Each of the considered transformations
mation relocates each flow according to a Poisson proce@%rambling and truncation) impacts only one of the two

We will use t_he _notationf( o denoFe the process _resumngcomponents, transforming it into Poisson. Therefore breth-t
from the application of flow scrambling t& . Scrambling the cation (withm — 1) and scrambling, if indivudally applied,

mqther process is equivalent to scrambling each of the W0, 5 5 similar LD profile as the original process. It is etasy
child components: see that if both are applied jointly, then the process degdes
X =X, + X;. (6) into Poisson, and LD becomes flat. This is consistent with

. . i o observation (iv).
By construction the flows inX, already Poisson distributed,

therefore the scrambling transformation does not have afy Simulation results

statistical impact, i.eX, = Xo. Instead the flow scrambling In Fig. 5 we show the LD plots obtained via simulations
turns the process(; into Possion: each individual packet iswith our toy-model. We have considered two different sassio
marked as a flow and therefore relocated, hekice= P. With  size distributions: exp-neg and pareto. In each case, watrep

these positions eq. (6) leads to: the LD of the original proces& along with the LD resulting
- 1 1 after truncation and scrambling. It can be seen that allesurv
X=Xo+P=5X+P~3X (7)  yield the same biscaling behaviour of the original proc&ss
Since %X =~ X (decimation), eq. (7) leads immediately to V. MAPPING TO REALITY

the LD-similariy X ~ X, which proves the observation (ii). |n order to give credibility to the toy-model presented
o , _ L above, we need to identify the real-world phenomena that
In principle such notation could be refined and extended omlination

with elements of geometric construction of LD, so as to dgved sort of could be_responsmle for the mOde! 'ngred'ems' and pdﬂtrlt;u
“LD calculus”. the session-into-flows fragmentation. It turns out thatesav
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(a) session size exp-neg{= 1/5).

N=3, Tp=50ms, D=8h, sessions pareto a=1.25, k=1

(b) session size paretd& & 1,a = 1.25).

Fig. 5: LD plots of the original processX(,) and its derivations after flow scramblingf, ,.:s) and truncation X, ;run).

different kinds of activities in the modern Internet gernerato only the most extreme form of fragmentation, i.e. flows of a
sessions split into different flows. single packet. This approach greatly simplifies the model be

Scanning and unwanted traffic. A scanning source pro- cause avoids the introduction of a probabilistic fragmtoita
duces a “session” of packets towards different address¥eran scheme — note that maximal fragmentation is deterministic —
ports, therefore each packet is classified in a separateolw4-fland therefore help in focusing on the fundamental aspects of
As a matter of fact, in the Internet there is a lot of scannirthe model. In the real Internet single-packet flow fragmtoa
traffic - and unwanted traffic in general. Notably, the tracas produced only by scanning, while web and P2P obviously
used in [1]-[3] date after the “explosion” of scanning traffi produce flows of non-trivial size. It is easy to see that the
that is documented in [13]. In another work, we have fountentral properties of our toy-model — most prominently LD
that such traffic has an impact on global rate (and delayvariance to flow scrambling and truncation — would still
statistics, introducing large spikes, some of which appelaold if more articulated probabilistic fragmentation sctes
regularly and periodically (see [14]). More in general, thare considered, for example with flows size distributed etco
impact of unwanted traffic on the wavelet spectrum of re@ig to some probabilistic law, to better represent the brinav
traces is a point that deserves further study. of real applications.

Peer-to-peer.Many P2P applications produce sessions rich
in small flows. For instance, in file-sharing P2P application
the same content, typically a large file, is split into many The power of our toy-model resides in the following aspects.
small chunks — often of fixed size — and transferred viRirst, it can consistently explain the full set of empirical
smaller connections from/to different hosts. In Skype,ceoi observations that were presented in [1]-[3] — to the best of
calls between two parties are routed over one or more midd@sr knowledge no other model exists that does so. Second, it
nodes. The middle-node can be dynamically changed duriisgextremely simple and parsimonious, which accounts to its
the call, which leads a single voice stream to be split inigenerality. Third, its generative components are remamisof
different L4 connections. real phenomena found in modern Internet traffic, as disclisse

WEB. In general a complex web page consists of severial §V.
elements that can be transferred simultaneously in differe Despite its explicative power, we do not claim at this stage
TCP connections, either due to the use of HTTP 1.0 t¢mat our toy-model should be taken as representative of the
because the objects are located at different specializedrse real traffic process. More research and further analysis®f t
(advertisements, images, etc.). Note that in [15] it hambegeal traces is required to assess how much of the toy-model
reported that also theumber of flowswithin WEB sessions ingredients are found in real traffic — indeed the ultimate
is HT, a point that is fully consistent with our toy model. goal of the present contribution is to motivate further wark

All such applications are central to the modern Internehis direction. Nevertheless, our toy-model provides ssitds
There is ample evidence that P2P and WEB are responsibledsplanatory framework that is original in its own, and might
a major share of the global Internet traffic. Therefore sessiindicate a reasoning path towards unveiling some aspects of
splitting into small flows should be regarded nowadays as thedern Internet traffic that would be overlooked if one atsep
norm, rather than the exception. the idea that L4-flows should be the central entities in taffi

Recall that we have illustrated our toy-model with respeatodels.

VI. | MPLICATIONS



In order to present our arguments, we follow a reasoning ‘ ‘
approach based on “virtual experiments”: we invite the ezad % =y
to consider a “virtual Internet”, wherein the traffic is geated
according to our toy-model. In such “virtual Internet”, th®
of the captured trace would be given by the cuXig in Fig.
5b. Now consider a practitioner, Alice, willing to synthesi
a CPP traffic model from the traces. She would then neec
to derive the empirical distribution of session size. Nbtab
the choice of the CPP model class is correct, as the toy
model is ultimately a version of CPP. The problem lies in
the identification of theclusters The easiest approach is to
assume that clusters correspond to L4-flows, since theskecan
easily classified via simple 5-tupla matching. Inspired kg t ‘ ‘ i ‘ ‘ .
results of [1]-[3], Alice would probably follow this approla, oo B B s R e e
and use the empirical distribution of L4-flows as a proxy for
cluster distribution. The traffic model obtained in this wayig. 6: Empirical CCDF of the waiting time for the process
would be equivalent to theX, ,.;s, whose LD is given in X, (curveql) and X, ,.;s (curveq2) with p = 0.5. The LD
Fig. 5b. The close similarity between the LD of the capturefdr the same processes were given in Fig. 5b.
trace and that obtained with the synthetic model — see LD of
X, and X, ,0is in Fig. 5b — would comfort her that taking
L4-flows as clusters is sufficient to capture the “importanfusters relates to the empirical observability of LRD in
characteristics” of the traffic. Therefore she would codelu practice. In [9] it is shown that the observability of the LRD
that L4-flows are the central entities of (virtual) Intertreffic, region in the packetized M/Gé process — or more exactly in
and that inter-flow correlations — or equivalently supewflo one realization of limited duration — depends on the duratio
structures, i.e. sessions — do not need to be taken into atcasf the observation periocelative to the mass of the cluster
for modeling purposes. This is indeed the logical path felld duration Now, the duration of a real trace is typically limited
in the earlier cited works [1]-[3]. to 2-3 hours due to stationarity constraint. The problereher

In the context of our *“virtual Internet” we know thatis to decide what entity must be taken as “cluster”: L4-flows
such conclusion isvrong, because we have built the trafficor sessions ? As a matter of fact, the HT property has been
generation process (i.e. the toy-model) around sessiasts, abserved in both sessions size (see e.qg. [15]) as well aolA-fl
L4-flows. The key question now is: What are the consequencsige. However this issue has an impact on thservability
of such modeling error ? The answer depends on the intendgdhe theoretical relationship between HT and LRD in real
use of the model. traces: as sessions are generally longer than L4-flow, if the

To illustrate, let us consider a very basic problem in dataean duration exceeds a certain (unknown) value then ittmigh
network engineering, namely buffer analysis. We considerb& simply impossible to observe the Taqqu’s Theorem at work
gueuing system with a single server of capadity(pack- in a real trace of a few hours. In other words, it remains to
ets/sec) and infinite buffer. We feed the procéSs(our toy- be seen whether the theoretical onset of LRD is within the
model) andX,, ,.;s (after L4-flow scrambling, or equivalently stationarity limit of real traffic traces once that sessiams
Alice’s model) to this queuing system, and measure the mgaititaken as clusters. See [9] for a discussion on this point.
time of each packet. The server capadityis set so as to
obtain an average load = 0.5 (recall thatX,, and X, ;s
have the same average packet rate). The distribution of thaVe have proposed a simple toy-model that is capable
waiting time for both processes are plotted in Fig. 6. b consistently explain a number of empirical observations
is evident that the performance of the queuing system rsported in some previous works, based on the analysis of
dramatically different for the two processes. By elimingti real traces. Indeed, given its simplicity, it is remarkathlat
the inter-flow correlation within (some of) the sessiong tht has the power to evocate consistently the whole set of LD
aggregate packet-level process becomes less correldtedh wpatterns resulting from the semi-experiments. We have also
leads to dramatically lower waiting times. In this case, @CPpresented a possible mapping of the model ingredients to rea
model based on L4-flows as clusters instead of sessions woplienomena in the Internet. Despite its evocative power with
lead to a gross engineering error. More in general, the dirgespect to LD properties we do not claim at this stage thdt suc
comparison between Fig. 6 and Fig. 5b provides an illus&atiultra-simplified model is representative of real Intermaffic,
example of two processes X, and X, ,.s in our case and more work is needed to achieve a more realistic — and
— that have similar LD but very different system behavioulikely less parsimonious — model to be used in practice.
This should suggest some caution in using LD-similarity as a The main contribution of our toy-model is that it provides
goodness criterion for traffic models. the basis of a novel interpretation framework where higher-

Another potential consequence of mis-taking L4-flows fdayer sessions, rather than transport-layer flows, shoeld b

ECCDF of queueing delay, p=0.5
T ; T T

PaPQ)

VII. CONCLUSIONS



considered as the central entities in traffic modeling — @i5] A. Bianco, G. Mardente; M. Mellia; M. Munafo; L. Muscafio. Web
least for the CPP model class. We hope in this way to User session characterization via clustering technig@é&sbecom 2005.
contribute the discussion within the networking community

about the role of sessions and flows, and at the same time

motivate further research on characterizing the sessiass,

done e.g. in [15]. This is clearly more difficult because ¢her

is not simple mechanism to classify sessions, while L4-flows

can be identified directly by the IP 5-tupla. On the other

hand, keeping the focus on L4-flows appears increasingdy les

natural in the modern Internet scenario, wherein appbcati

and services are evolving in such a way that the coupling

between application-level activities and L4-flows becomes

progressively weaker.

Along the way we have touched a number of issues that still
deserve further investigations, like the role of LD evoaatin
model assessment and the observability of HT-LRD relation
in real traces.

In the progress of this work we intend to follow two comple-
mentary directions. On one hand, we are interested in stgdyi
more articulated variants of the toy-model with more realis
tic (probabilistic) fragmentation/composition schemesaeen
L4-flows and sessions. On the other hand, we intend to
investigate possible methods to classify sessions (ath@nc
e.g. the work in ) and leverage assess quantitatively the
mapping between sessions and L4-flows in real traces. For
that, we would need to advance the
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