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We propose a new estimate of the time-varying spectra of uniformly modulated processes. The estimate is based on a resampling scheme which incorporates empirical mode decompositions and surrogate data techniques. The performance of the method is studied via simulations.

INTRODUCTION

Estimation of the time-varying spectra (TVS) of nonstationary processes remains a challenging problem. This is because (i) many different types of nonstationarity exist and (ii) in contrast with the stationary ergodic case, time averaging cannot be used as a substitute for ensemble averaging to reduce fluctuations in estimates. Although no "universal solution" is expected to exist for all types of nonstationarity, specific approaches can be developed for restricted classes.

In this paper, we focus on the class of uniformly modulated processes (UMPs). Theoretically, UMPs have a simple mathematical form, since they can be decomposed into a stationary process multiplied by a modulating function. More pragmatically, UMPs have been used successfully as models of various real-world processes, e.g., in seismology (see [START_REF] Herbst | Periodogram analysis and variance fluctuation[END_REF], [START_REF] Fujita | On a model of earthquake ground motions for response analysis and some examples of analysis through experiment[END_REF] and [START_REF] Dargahi-Noubary | Special ratio discriminant and information theory[END_REF]). We propose here a method for estimating the TVS of a UMP X X X. The method combines an estimate of the TVS obtained by BCMOTIFS estimator introduced in [START_REF] Moghtaderi | Multitaper Methods for Time-Frequency Spectrum Estimation and Unaliasing of Harmonic Frequencies[END_REF] with surrogate data techniques, and proceeds in three steps. The first step estimates the modulating function of X X X via an empirical mode decomposition. The second step determines the "stationary component" of X X X; surrogate data techniques are then used to create additional "virtual" realizations of X X X. These realizations are then used to compute a more accurate estimate of the TVS of X X X which is based on the arithmetic averaging of BCMOTIFS estimates for each realization.

In Section 2, we briefly review the UMPs, empirical mode decompositions, and surrogate data techniques. In Sections 3 and 4, we describe in detail the estimation method sketched in the previous paragraph. Finally, in Section 5, we examine the performance of the method on simulated data.

PRELIMINARIES

Uniformly modulated processes

Let X X X = {X t } t∈Z be a discrete-time, R-valued, zero-mean, nonstationary process. We say that X X X is a uniformly modulated process (UMP) if there exists a zeromean stationary process Y Y Y = {Y t } t∈Z with spectrum S Y Y Y and a sequence {C t } t∈Z of positive real numbers, such that X t = C t Y t for each t ∈ Z. We refer to C t as the modulating function of X X X, and Y Y Y is the stationary component of X X X. We assume that the modulating function is "slowly-varying" in comparison with Y Y Y More precisely, the modulating function is a bandlimited baseband process while Y Y Y is a broadband process without any low-frequency oscillations.

The time-varying spectrum (TVS) [START_REF] Mélard | Contributions to evolutionary spectral theory[END_REF] 

of a UMP X X X is de- fined by T X X X (t, f ) C 2 t S Y Y Y (f ) for (t, f ) ∈ Z × [-1/2, 1/2].

Surrogate data techniques

Surrogate data techniques comprise a type of resampling technique. Given a single realization of a stochastic process Y Y Y , surrogate data techniques can produce an arbitrary number of "virtual" realizations of Y Y Y , called surrogates, with similar statistical properties. Originally, surrogates were used to test for nonlinearity [START_REF] Theiler | Testing for nonlinearity in time series: the method of surrogate data[END_REF]; more recently, they were used in [START_REF] Xiao | Testing stationarity with timefrequency surrogates[END_REF][START_REF] Xiao | Testing stationarity with surrogates-a one-class SVM approach[END_REF] to test for nonstationarity. In the latter, the rationale is that, given the same global empirical spectrum, a nonstationary process differs from a stationary one by some structure in time which carries over to the "phase" of the spectrum. Randomizing the phase and keeping the magnitude unchanged leads therefore to a "stationarized" process, while many other realizations can be obtained due to randomization of the phase. In a nonstationary context, this allows the construction of a statistical reference corresponding to the null hypothesis of stationarity. However if the process under study is stationary-as it will be assumed in the following-surrogates can be viewed as virtual realizations.

Empirical mode decompositions

Let S t be an arbitrary signal. Briefly, the empirical mode decomposition (EMD) [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF] is a model-free and fully data-driven technique which decomposes S t , comprised of superimposed oscillations into its zero-mean oscillatory components. This is achieved by a "fine-to-coarse" recursive scheme: The fastest local oscillations (identified through neighbouring local extrema) are subtracted from the signal, yielding a residual signal to which the same procedure can be applied. Extracted in this way, each of the components is referred to as an intrinsic mode function (IMF) of S t . The recursion stops when the residual signal has no more oscillation. Denoting IMFs by

M (i)
t for 1 ≤ i ≤ I max , we write

S t = Imax i=1 M (i) t + ρ t , (1) 
where ρ t is the residual signal. For MATLAB code and further details concerning implementation of the EMD, see [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF].

TIME-VARYING SPECTRUM ESTIMATION BY MEANS OF SURROGATE DATA

Let X X X be a UMP with modulating function C t and stationary component Y Y Y . In this section, we describe a general technique to estimate T X X X , based on the use of surrogate data. Let X = X 0 , X 1 , . . . , X N -1 be a realization of X X X, and let C t be a nonzero estimate of C t for each t. Set Ỹt = X t / C t for each t. Provided that each C t estimates C t accurately (see Section 4 for details), Ỹ = Ỹ0 , Ỹ1 , . . . , ỸN-1 can be regarded as a realization of Y Y Y . We use Ỹ to obtain J surrogate data sets

Ỹ j = Ỹ j 0 , Ỹ j 1 , . . . , Ỹ j N -1 , where 1 ≤ j ≤ J. Define X j = C 0 Ỹ j 0 , C 1 Ỹ j 1 , . . . , C N -1 Ỹ j N -1
, where again 1 ≤ j ≤ J. We call X j the jth nonstationary surrogate data obtained from X and regard this data as elements of the ensemble of X X X. For each 1 ≤ j ≤ J, let T j X X X be an estimate of T X X X based solely on X j . We take the arithmetic average of the T j X X X as an estimate of T X X X , which we call the averaged surrogate-based estimate:

T av X X X (t, f ) 1 J J j=1 T j X X X (t, f ), (t, f ) ∈ Z × [-1/2, 1/2].
In this paper, we choose each T j X X X to be the BCMOTIFS estimator [START_REF] Moghtaderi | Multitaper Methods for Time-Frequency Spectrum Estimation and Unaliasing of Harmonic Frequencies[END_REF][START_REF] Moghtaderi | Evolutionary spectrum estimation for uniformly modulated processes with improved frequency resolution[END_REF]. The rationale behind this choice is as follows: For general processes, theoretical and simulation results in [START_REF] Moghtaderi | Multitaper Methods for Time-Frequency Spectrum Estimation and Unaliasing of Harmonic Frequencies[END_REF] indicate BCMOTIFS has lower bias and variance than other estimators of the TVS, especially near the boundaries of the time-frequency region. In particular, for UMPs, BCMOTIFS is approximately unbiased [START_REF] Moghtaderi | Multitaper Methods for Time-Frequency Spectrum Estimation and Unaliasing of Harmonic Frequencies[END_REF].

MODULATING FUNCTION ESTIMATION

Let X X X and X be as in Section 3, and assume that X t = 0 for each t. To proceed with the technique proposed in Section 3, we must estimate each C t . In this section, we describe how C t and X can be "decoupled," leading to an estimate of C t .

Define

X * t = log |X t |, so that X * t = log C t + log |Y t | for each t. Write X * = log |X 0 |, log |X 1 |, . . . , log |X N -1 |.
We can compute the EMD of X * to obtain its IMFs M (i) t , and write X * t as in Eq. ( 1) when S t is replaced by X * t . Note that the applicability of EMD method in general, does not require particular forms of oscillations and therefore appropriate for the log-transformed signal. Loosely speaking, the assumption made in Section 2.1 states that the oscillations of log C t are much slower than those in log |Y t |. As a result the oscillations of log C t are accurately described by a set of high-order IMFs such that for 1 ≤ i * ≤ I max we have

log C t ≈ Imax i=i * M (i) t + ρ t . (2) 
Following above, estimating C t reduces to determining i * .

We now describe three approaches to determining i * . The energy of the ith IMF is defined by

E (i) = N -1 t=0 |M (i) t | 2
for each i. For typical broadband signals, E (i) is decreasing in i [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF]. Identifying the smallest index i + 1 such that E (i+1) > E (i) can therefore provide information about the value of i * . This is called the energy approach.

Denote the number of zero crossings of the ith IMF by Z (i) . It can be observed that, in the absence of low-frequency oscillations, broadband signals give rise to a family of IMFs satisfying R (i+1) ≈ 2, where R (i+1) = Z (i) /Z (i+1) whenever it is defined. Furthermore, we assume that the random variables R (i+1) are approximately equally distributed. We call R (i+1) the ith ratio of zero crossing numbers (ith RZCN). Hence the smallest index i + 1 for which R (i+1) is "significantly different" from 2 can provide information about the value of i * . The question is how to quantify "significantly different." To answer this question, we construct 13 processes (all approximately broadband without low-frequency oscillations), including (i) nine fractional Gaussian noise processes with Hurst exponents H = 0.1, 0.2, . . . , 0.9, (ii) two AR(2) processes, and (iii) nonstationary processes, the first being AR(2) with time-dependent coefficients and the second being frequency-modulated. For each process, we create 5000 realizations of length N = 1000, and compute the EMDs and RZCN of each. We then compute the empirical distribution of

R = [ R 1 R 2 • • • R 5000 ] where denoting the ith RZCN of the bth realization by R (i+1) b , 1 ≤ i ≤ I b max -1, we have R b = [R (2) b R (3) b • • • R (I b max ) b
] for 1 ≤ b ≤ 5000. Fig. 1 shows the empirical distribution of R computed for each process and shown in different colors. The result of our simulations encourages the idea that, regardless of the type of broadband process, the distribution of R remains unchanged. As a result of this, we may then propose a common threshold test for determining when R (i+1) is significantly different from 2. For each process, we compute the empirical distribution of R (i+1) over all the realizations and for each i = 1, 2 . . . , I max -1 respectively where here we assume I max = 10. In this case, if, as an example, for a particular realization, we have I max = 8, we assume R (8) = R (9) = R (10) and if I max = 12, we discard R (11) . We then calculate 5% and 95% significance level of each distribution, and refer to them as ith right and left thresholds respectively. Fig. 2 shows the right and left thresholds for each process (different colors). Any RZCN which is outside of the two standard deviation of the averaged ith left and right thresholds within 13 process is significantly different from 2. Finally, as mentioned earlier, the smallest index i+1 where R (i+1) is significantly different from 2 determines i * . The problem is that since the selection of the left and right thresholds are entirely based on an empirical result, it is always possible that the smallest i + 1 is a false detection and not the correct i * . This approach is called the ratio approach.

The energy and ratio approaches can be combined in order to reduce the number of false detects as follows: For each 1 ≤ i ≤ I max -1, we compute each index i + 1 such that E (i+1) > E (i) . We also evaluate every index i + 1 where R (i+1) is significantly different from 2. We then choose i * to be the smallest common index in both approaches. The value of i * is then plugged into Eq. ( 2) in order to evaluate log C t . The estimated modulating function is C t = exp(log C t ). This combined approach is called the energy-ratio approach.

NUMERICAL EXAMPLES

Let X X X (k) = {X (k) t } t∈Z , 1 ≤ k ≤ 5 be UMPs with modulat- ing functions C (1) t = e - (t-500) 2 2(200) 2 , C (2) t 
= 1 + t/T C (3) t = 2 + sin(2πpt), C (4) t 
= 1.5 + cos(2πqt) C (5) t = 2 -e - (t-500) 2 2(200) 2 ,
where T = 200, p = 0.002 and q = 0.001. The stationary components of the X X X (k) are as follows: Y Y Y (1) , Y Y Y (2) , and Y Y Y (3) are fractional Gaussian noise with Hurst parameters H = 0.2, H = 0.5, and H = 0.8, respectively, and Y Y Y (4) and Y Y Y (5) are the AR(2) processes

Y (4) t = 0.2Y (4) 
t-1 + 0.5Y

t-2 + ζ t Y (5) t = 0.8Y (5) t-1 -0.4Y (5) t-2 + ǫ t . (4) 
Here, {ζ t } t∈Z and {ǫ t } t∈Z are independent white noise processes with variance 10 4 .

For each k, we create 5000 realizations of length N = 1000 of X X X (k) and compute the EMD for each realization. We then apply the energy, ratio, and energy-ratio approaches to each realization and each UMP to evaluate i * , denoted i * ,a (k), where a = 1, 2, 3 indicate energy, ratio and energyratio approaches respectively. Using our theoretical knowledge of the modulating function for each UMP, we pick i * which gives the minimum L 2 -distance between log C t from Eq. ( 2) and theoretical log modulating function. We denote i * obtained from minimum L 2 -distance by i † (k). Table 1 shows the number of times in 5000 where we have obtained i * ,a (k

) = i † (k), i * ,a (k) = i † (k) + 1, i * ,a (k) = i † (k) -1, or |i * ,a (k) -i † (k)| > 1.
It is clear from Table 1 that the energy-ratio approach outperforms the other two approaches. We now take X X X (4) for further analysis. Let X = X 0 , X 1 , . . . , X N -1 be a realization of X X X (4) and X * the log-transform of X . We compute the EMD of X * to obtain its IMFs and then evaluate E (i) and R (i+1) for each i. Fig. 3 shows the plot of E (i) , 1 ≤ i ≤ I max , (top plot) and R (i+1) , 1 ≤ i ≤ I max -1, (bottom plot) where I max = 9 in this example. Applying the energy approach we determine that there are 4 indexes i + 1 where i = 3, 5, 7, 8 which satisfies E (i+1) > E (i) . On the other hand, applying the ratio approach, we find out that there are three indexes i + 1 for i = 6, 7, 8 where R (i+1) is significantly different from 2. These indexes are marked by red triangles in Fig 3 . Applying the energy-ratio approach, we see that the first common index between the two approaches is i * = 8.

Using i * = 8, we evaluate C t (see Section 4). The estimate C t is then used to create J = 50 surrogate Table 1. Comparison between energy, ratio and energy-ratio approaches using the theoretical log C t for 5 UMPs. i) , i = 1, 2, . . . , 9 (top) and R (i+1) , i = 1, 2, . . . , 8 (bottom). The red triangles mark the indexes which satisfy the conditions in energy (top) and ratio (bottom) approaches. data X j , 1 ≤ j ≤ 50 (see Section 3). Using 50 nonstationary surrogate data, we then estimate T X X X using the averaged surrogate-based estimate T av X X X (see Section 3). Fig. 4 shows the performance of this estimator in comparison with the BC-MOTIFS estimator for X .

CONCLUSION

In this paper, we proposed a new scheme to estimate the timevarying spectra of uniformly modulated processes. The estimate proceeds by computing "virtual" realizations, using surrogate data and empirical mode decompositions. Simulation results suggest that the new estimator performs well, and affords a significant improvement over BCMOTIFS. 
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 1 Fig. 1. Empirical distribution of R computed for different processes (different colors). Apart from the expected peak at 2, there exist several smaller but visible peaks. They appear in the presence of high order IMFs which have small values of zero crossing numbers.
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 2 Fig. 2. The right and left thresholds (marked by stars) computed for different processes (different colors). Solid lines indicate averaged left and right thresholds and dashed lines indicate two standard deviation of the averaged thresholds.
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 3 Fig. 3. E(i) , i = 1, 2, . . . , 9 (top) and R (i+1) , i = 1, 2, . . . , 8 (bottom). The red triangles mark the indexes which satisfy the conditions in energy (top) and ratio (bottom) approaches.
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 4 Fig. 4. Theoretical TVS of X X X (4) (top), estimate of the TVS using X (middle), estimate of the TVS using X j , 1 ≤ 1 ≤ 50 (bottom). The parameters used in BCMOTIFS estimator are N W = 4, K = 7 and B = 201.