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TIME-VARYING SPECTRUM ESTIMATION OF UNIFORMLY MODULATED PROCESSES
BY MEANS OF SURROGATE DATA AND EMPIRICAL MODE DECOMPOSITION

Azadeh Moghtaderi, Patrick Flandrin and Pierre Borgnat

Ecole Normale Sugrieure de Lyon, Laboratoire de Physique
46 allée d'ltalie 69364 Lyon Cedex 07, France

ABSTRACT 2. PRELIMINARIES

We propose a new estimate of the time-varying spectra of un.1. Uniformly modulated processes

formly modulated processes. The estimate is based on a reet X = {X,},c; be a discrete-timeR-valued, zero-mean,
sampling scheme which incorporates empirical mode decomnite-variance nonstationary process. We say iKais a
positions and surrogate data techniques. The performance gniformly modulated proceséJMP) if there exists a zero-

the method is studied via simulations. mean stationary proced8 = {Y;}cz with spectrumSy
Index Terms— Bandlimited signals, spectral analysis, nd & sequenceC’ }.cz of positive real numbers, such that
stochastic processes, time-frequency analysis Xi = C,Y, for eacht € Z. We refer toC; as themodulating

functionof X, andY is thestationary componerdf X. We
assume that the modulating function is “slowly—varying” in
1. INTRODUCTION comparison witl’. More precisely, the modulating function

Estimation of the time-varying spectra (TVS) of nonstation is @ bandlimited baseband process wiiles a broadband
ary processes remains a challenging problem. This is becauBrocess without any low-frequency oscillations.
(i) many different types of nonstationarity exist gfi}iin con- Thetime-varying spectrun(rVs) [5] of a UMP X is de-
trast with the stationary ergodic case, time averaging aann fined byTx (¢, f) = CZSy (f) for (t, ) € Z x [-1/2,1/2).
be used as a substitute for ensemble averaging to reduce fluc-
tuations in estimates. Although no “universal solution&is
pected to exist for all types of nonstationarity, specific ap2-2. Surrogate data techniques
proaches can be developed for restricted classes. Surrogate datatechniques comprise a type of resampling

In this paper, we focus on the class of uniformly modu-technique. Given a single realization of a stochastic msce
lated processes (UMPs). Theoretically, UMPs have a simpl¥, surrogate data techniques can produce an arbitrary number
mathematical form, since they can be decomposed into a staf “virtual” realizations ofY’, calledsurrogates with similar
tionary process multiplied by a modulating function. More statistical properties. Originally, surrogates were usetkst
pragmatically, UMPs have been used successfully as moder nonlinearity [6]; more recently, they were used in [71@&]
els of various real-world processes, e.g., in seismologg (s test for nonstationarity. In the latter, the rationale &tflgiven
[1], [2] and [3]). We propose here a method for estimatingthe same global empirical spectrum, a nonstationary psoces
the TVS of a UMPX. The method combines an estimate ofdiffers from a stationary one by some structure in time which
the TVS obtained by BCMOTIFS estimator introduced in [4] carries over to the “phase” of the spectrum. Randomizing the
with surrogate data techniques, and proceeds in three. steiase and keeping the magnitude unchanged leads therefore
The first step estimates the modulating functionXofia an ~ to a “stationarized” process, while many other realization
empirical mode decomposition. The second step determing@n be obtained due to randomization of the phase. In a non-
the “stationary component” aX’; surrogate data techniques Stationary context, this allows the construction of a statal
are then used to create additional “virtual” realizatiohso  reference corresponding to the null hypothesis of statitna
These realizations are then used to compute a more accurdiewever if the process under study is stationary—as it will
estimate of the TVS ofX which is based on the arithmetic be assumed in the following—surrogates can be viewed as
averaging of BCMOTIFS estimates for each realization.  Virtual realizations.

In Section 2, we briefly review the UMPs, empirical mode
decompositions, and surrogate data techniques. In Se@ion 2.3. Empirical mode decompositions
and 4, we describe in detail the estimation method sketchedet S; be an arbitrary signal. Briefly, thempirical mode de-
in the previous paragraph. Finally, in Section 5, we examineompositionEMD) [9] is a model-free and fully data-driven
the performance of the method on simulated data. technique which decomposgs, comprised of superimposed



oscillations into its zero-mean oscillatory componentsisTs  can compute the EMD of2"™* to obtain its IMFth(i), and
achieved by a “fine-to-coarse” recursive scheme: The fastesrite X as in Eq. (1) wherb; is replaced byX;. Note that
local oscillations (identified through neighbouring loext-  the applicability of EMD method in general, does not require
trema) are subtracted from the signal, yielding a residigal s particular forms of oscillations and therefore approjgriatr

nal to which the same procedure can be applied. Extracted ihe log-transformed signal. Loosely speaking, the assiompt
this way, each of the components is referred to agttin-  made in Section 2.1 states that the oscillationkgfC; are

sic mode functioflMF) of S;. The recursion stops when the much slower than those Ing |Y;|. As a result the oscillations
residual signal has no more oscillation. Denoting IMFs byof log C; are accurately described by a set of high-order IMFs

M for 1 < i < Inax, We Write such that forl < i, < I, We have
Lmax Lonax
St = Z Mt(z) + Pt (1) log C; ~ Z Mt(i) + py. @)

=1

wherep, is the residual signal. For MATLAB code and fur- Following above, estimating; reduces to determining.
ther details Concerning imp|ementati0n of the EMD, See.[10] We now describe three approaches to determimng
Theenergyof theith IMF is defined by = SN 1|32
3. TIME-VARYING SPECTRUM ESTIMATION BY for eachi. For typical broadband signalg]”) is decreasing
MEANS OF SURROGATE DATA in ¢ [12]. Identifying the smallest index + 1 such that
E@+D ~ E@) can therefore provide information about the
Let X be a UMP with mOdUIating funCtiO@t and Stationary value ofi,. This is called th@nergyapproach_
componenk’. In this section, we describe a generaltechnique  penote the number of zero crossings of itie IMF by
to estimatel’x, based on the use of surrogate data. Z®@ It can be observed that, in the absence of low-frequency
Let 2" = Xo, X1,..., Xny—1 be arealization o, and  oscillations, broadband signals give rise to a family of BF
letC, be a nonzero estlmatedt for eacht. SetY, = Xt/(Jt satisfying R(+1) ~ 2, whereR(+1) = z(1) /z(i+1) when-
for eacht. Provided that eacﬁ*t estimateg”; accurately (see ever it is defined. Furthermore, we assume that the random
Section 4 for detailsy? = YO,Yl, ...,Yn_i canberegarded variablesR(i*1) are approximately equally distributed. We
as arealization df . We use? to obtamJ surrogate data sets call R(“+1) theith ratio of zero crossing numbef&th RZCN).
Wi =Yi Y. .. YI{, 1, Wherel < j < J. Hence the smallest index+ 1 for which R¢+Y) is “signifi-
Define 27 = CoYO ,C1Y, : 7”.,CN_1YJ%_1, where cantly different” from 2 can provide information about the
value ofi,. The question is how to quantify “significantly
different.” To answer this question, we construct 13 preess
(all approximately broadband without low-frequency dseil
tions), including(i) nine fractional Gaussian noise processes
with Hurst exponentd? = 0.1,0.2,...,0.9, (ii) two AR(2)
processes, ar(di) two nonstationary processes, the first being
AR(2) with time-dependent coefficients and the second being
1 frequency-modulated. For each process, we create 5000 re-
Y(t, f) = 7 Z v (¢, (t,f) eZ x[-1/2,1/2]. alizations of lengthv. = 1000, and compute the EMDs and
j=1 RZCN of each. We then compute the empirical distribution of
R = [Ry Ry - Rso00] where denoting théh RZCN of the

bth realization byR\' "V, 1 < i < It — 1, we haveR, =

max

againl < j < J. We call 27 the jth nonstationary surro-
gate dataobtained from2” and regard this data as elements
of the ensemble oK. For eachl < j < J, let T be an
estimate ofl’y based solely o2/, We take the arithmetic
average of thd’}, as an estimate df’x, which we call the
averaged surrogate-based estimate

In this paper, we choose ea@ to be the BCMOTIFS esti-
mator [4, 11]. The rationale behind this choice is as follows @) ) | s .
For general processes, theoretical and simulation rasgty 1, B, -+ Ry ™ '] for 1 < b < 5000. Fig. 1 shows the
indicate BCMOTIFS has lower bias and variance than otheempirical distribution of R computed for each process and
estimators of the TVS, especially near the boundaries of thehown in different colors. The result of our simulations en-
time-frequency region. In particular, for UMPs, BCMOTIFS courages the idea that, regardless of the type of broadband
is approximately unbiased [4]. process, the distribution df remains unchanged. As a result
of this, we may then propose a common threshold test for de-
4. MODULATING FUNCTION ESTIMATION termining whenR+1) is significantly different fron2. For
Let X and.2” be as in Section 3, and assume that£ 0 for  each process, we compute the empirical distributioRéf )
eacht. To proceed with the technique proposed in Section 3pver all the realizations and foreath- 1,2. .., I, — 1 re-
we must estimate eaah,. In this section, we describe how spectively where here we assuthg,x = 10. In this case, if,
C, and 2" can be “decoupled,” leading to an estimate’f as an example, for a particular realization, we hiyg, = 8,
DefineX; = log | X;|, so thatX; = log C; +log|Y;| for ~ we assumeR® = R(®) = R and if I,,,,, = 12, we dis-
eacht. Write 2°* = log|Xol,log | X1],...,log|Xy_1|. We  cardR(*"). We then calculate 5% and 95% significance level



x 10 be the smallest common index in both approaches. The value
‘ ' ‘ ‘ ‘ of i, is then plugged into Eq. (2) in order to evaluiig C;.
I The estimated modulating function@$ = exp(log C;). This

w | combined approach is called tkaergy-ratioapproach.

1.5¢ [

H 5. NUMERICAL EXAMPLES

Let X® = {X*},c,, 1 < k < 5 be UMPs with modulat-
ing functions

| P | 1) _ (¢=500)2 )
05 . ! Cy/ =e 2007 C7 =4/1+t/T
C’t(3) = 2 + sin(27pt), C’t(4) = 1.5 4 cos(2mqt)

Frequency of ratio
=

Y B

X \\A 5 _ (t=500)2
0 . A . " C’f( ) =92 — ¢ 2(200)2 ,
0 1 2 3 4 5 6 g

Ratio whereT = 200, p = 0.002 andq = 0.001. The stationary

Fig. 1. Empirical distribution ofR computed for different  components of th& %) are as followsY (), Y2 andy ®)
processes (different colors). Apart from the expected geak are fractional Gaussian noise with Hurst paramekges 0.2,
2, there exist several smaller but visible peaks. They apped = 0.5, andH = 0.8, respectively, an& ) andY ® are
in the presence of high order IMFs which have small valueshe AR(2) processes

of zero crossing numbers.
J v = 0.2y + 057, + ¢

v, = 0.8Y,%) — 0.4Y,%) +¢,.

3.5

Here,{(; }:cz and{e; }+cz are independent white noise pro-
cesses with varianci)?.

For eachk, we create 5000 realizations of length =
1000 of X*) and compute the EMD for each realization.
We then apply the energy, ratio, and energy—ratio appreache
to each realization and each UMP to evalugte denoted
i+.qa(k), wherea = 1,2, 3 indicate energy, ratio and energy—
ratio approaches respectively. Using our theoretical know
‘ ‘ ‘ edge of the modulating function for each UMP, we pigk
4 Ratic o 8 10 which gives the minimuni2-distance betweetg C; from

Eqg. (2) and theoretical log modulating function. We de-
Fig. 2. The right and left thresholds (marked by stars) comqgte ;. obtained from minimun.2-distance byi; (k). Ta-
puted for different processes (different colors). Solite8 ple 1 shows the number of times in 5000 where we have
indicate averaged left and right thresholds and dashed ”n%btainedz’*,a(k) = it (k), iwa(k) = it(k) + 1, ina(k) =
indicate two standard deviation of the averaged thresholds it (k) — 1, or |ixa(k) — i1(k)| > 1. Itis clear from Table

1 that the energy—ratio approach outperforms the other two

of each distribution, and refer to them #h right and left approaches. We now takE® for further analysis. Let
thresholdgespectively. Fig. 2 shows the right and left thresh-2~ = Xy, X1, ..., Xny_1 be a realization ofX *) and 2"*
olds for each process (different colors). Any RZCN which isthe log-transform of2". We compute the EMD of2™* to
outside of the two standard deviation of the averaiadeft  obtain its IMFs and then evaluafel” and R(“*1 for eachi.
and right thresholds within 13 processsignificantly differ-  Fig. 3 shows the plot of2(), 1 < i < I,,.x, (top plot) and
ent from 2 Finally, as mentioned earlier, the smallest indexR(tY, 1 < i < I.« — 1, (bottom plot) wherel,,,. = 9
i+1 whereR(+1 is significantly different from 2 determines in this example. Applying the energy approach we determine
ix. The problem is that since the selection of the left and righthat there are 4 indexés+ 1 where: = 3,5, 7, 8 which sat-
thresholds are entirely based on an empirical result, it-is aisfies E(+1) > E(#) . On the other hand, applying the ra-
ways possible that the smallest- 1 is a false detection and tio approach, we find out that there are three indexesl
not the correct,. This approach is called thatio approach. for i = 6, 7,8 whereR(+1) is significantly different from 2.

The energy and ratio approaches can be combined in ord&hese indexes are marked by red triangles in Fig 3. Applying
to reduce the number of false detects as follows: For eacthe energy—ratio approach, we see that the first common index
1 <4 < Imax — 1, we compute each index+ 1 such that  between the two approachesijs= 8.

EGHD >~ EO®) We also evaluate every indéx+ 1 where Usingi. = 8, we evaluate”; (see Section 4). The esti-
RO+ is significantly different from 2. We then chooseto ~ mateC, is then used to create= 50 nonstationary surrogate

Right and left threshold

15
2



Energy | Ratio | Energy—Ratio
a=1 a=2 a=3 & ~—
(D) = 07 (1) 5361 | 1926 3193 59 / \) : E
iw,a(1) = i1 (1) + 1 1353 | 918 717 Z 02 v :
ix,a(1) =it (1) — 1 583 | 484 891 g =~ B
lis,a(1) —i;(1)] >1 | 703 | 1672 199
ial(2) = 11 (2) 1866 | 1420 2697
i,a(2) = i1 (2) + 1 1181 | 735 948 & 12
ina(2) =i1(2) — 1 658 | 495 949 G A0
liv,a(2) —i3(2)] >1 | 1295 | 2350 406 o= 9
iv,a(3) = i1(3) 1919 | 1339 2710 i
ina(3) =it (3) + 1 1386 | 902 985
i,a(3) = i1 (3) — 1 373 521 910 o
lis,a(3) —it(1)| >1 | 1322 | 2238 395 B 12
w0 (4) = i1 (4) 2636 | 1893 3316 g 0
iv,a(4) = i(4) + 1 1100 | 980 643 g === — Z
ix,a(4) = i3(4) — 1 232 | 492 740 . 200 400 GO0 0D 100D
lis,a(4) —i4(4)|>1 | 1032 | 1635 301 Time
ix,a(5) = 14 (5) 2615 ) 1487 3598 Fig. 4. Theoretical TVS ofX® (top), estimate of the TVS
iv,a(5) = i4(5) + 1 1056 | 902 637 7 ) . s
ina(5) =it (5) — 1 295 363 529 using 2" (middle), estimate of the TVS using™”,1 <1 <
lis,a(5) —i4(5)| > 1 | 1034 | 2248 236 50 (bottom). The parameters used in BCMOTIFS estimator

areNW =4, K = 7andB = 201.
Table 1. Comparison between energy, ratio and energy—ratio

approaches using the theoretitat C, for 5 UMPs. 7. REFERENCES
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Fig.3. E®, i =1,2,...,9 (top) andRO*+V) i =1,2,...,8
(bottom). The red triangles mark the indexes which satisfy[8
the conditions in energy (top) and ratio (bottom) approache

data2’7,1 < j < 50 (see Section 3). Using 50 nonstation- [9]
ary surrogate data, we then estimdte using the averaged
surrogate-based estimdig” (see Section 3). Fig. 4 shows
the performance of this estimator in comparison with the BC'[10]
MOTIFS estimator forZ".

(11]
6. CONCLUSION

In this paper, we proposed a new scheme to estimate the time?!
varying spectra of uniformly modulated processes. The esti
mate proceeds by computing “virtual” realizations, usiag s
rogate data and empirical mode decompositions. Simulation
results suggest that the new estimator performs well, and af
fords a significant improvement over BCMOTIFS.



