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TIME-VARYING SPECTRUM ESTIMATION OF UNIFORMLY MODULATED PROCESSES
BY MEANS OF SURROGATE DATA AND EMPIRICAL MODE DECOMPOSITION

Azadeh Moghtaderi, Patrick Flandrin and Pierre Borgnat

École Normale Suṕerieure de Lyon, Laboratoire de Physique
46 alĺee d’Italie 69364 Lyon Cedex 07, France

ABSTRACT

We propose a new estimate of the time-varying spectra of uni-
formly modulated processes. The estimate is based on a re-
sampling scheme which incorporates empirical mode decom-
positions and surrogate data techniques. The performance of
the method is studied via simulations.

Index Terms— Bandlimited signals, spectral analysis,
stochastic processes, time-frequency analysis

1. INTRODUCTION

Estimation of the time-varying spectra (TVS) of nonstation-
ary processes remains a challenging problem. This is because
(i) many different types of nonstationarity exist and(ii) in con-
trast with the stationary ergodic case, time averaging cannot
be used as a substitute for ensemble averaging to reduce fluc-
tuations in estimates. Although no “universal solution” isex-
pected to exist for all types of nonstationarity, specific ap-
proaches can be developed for restricted classes.

In this paper, we focus on the class of uniformly modu-
lated processes (UMPs). Theoretically, UMPs have a simple
mathematical form, since they can be decomposed into a sta-
tionary process multiplied by a modulating function. More
pragmatically, UMPs have been used successfully as mod-
els of various real-world processes, e.g., in seismology (see
[1], [2] and [3]). We propose here a method for estimating
the TVS of a UMPXXX. The method combines an estimate of
the TVS obtained by BCMOTIFS estimator introduced in [4]
with surrogate data techniques, and proceeds in three steps.
The first step estimates the modulating function ofXXX via an
empirical mode decomposition. The second step determines
the “stationary component” ofXXX; surrogate data techniques
are then used to create additional “virtual” realizations of XXX.
These realizations are then used to compute a more accurate
estimate of the TVS ofXXX which is based on the arithmetic
averaging of BCMOTIFS estimates for each realization.

In Section 2, we briefly review the UMPs, empirical mode
decompositions, and surrogate data techniques. In Sections 3
and 4, we describe in detail the estimation method sketched
in the previous paragraph. Finally, in Section 5, we examine
the performance of the method on simulated data.

2. PRELIMINARIES

2.1. Uniformly modulated processes
Let XXX = {Xt}t∈Z be a discrete-time,R-valued, zero-mean,
finite-variance nonstationary process. We say thatXXX is a
uniformly modulated process(UMP) if there exists a zero-
mean stationary processYYY = {Yt}t∈Z with spectrumSYYY

and a sequence{Ct}t∈Z of positive real numbers, such that
Xt = CtYt for eacht ∈ Z. We refer toCt as themodulating
functionof XXX, andYYY is thestationary componentof XXX. We
assume that the modulating function is “slowly–varying” in
comparison withYYY . More precisely, the modulating function
is a bandlimited baseband process whileYYY is a broadband
process without any low-frequency oscillations.

The time-varying spectrum(TVS) [5] of a UMPXXX is de-
fined byTXXX(t, f) , C2

t SYYY (f) for (t, f) ∈ Z × [−1/2, 1/2].

2.2. Surrogate data techniques
Surrogate datatechniques comprise a type of resampling
technique. Given a single realization of a stochastic process
YYY , surrogate data techniques can produce an arbitrary number
of “virtual” realizations ofYYY , calledsurrogates, with similar
statistical properties. Originally, surrogates were usedto test
for nonlinearity [6]; more recently, they were used in [7, 8]to
test for nonstationarity. In the latter, the rationale is that, given
the same global empirical spectrum, a nonstationary process
differs from a stationary one by some structure in time which
carries over to the “phase” of the spectrum. Randomizing the
phase and keeping the magnitude unchanged leads therefore
to a “stationarized” process, while many other realizations
can be obtained due to randomization of the phase. In a non-
stationary context, this allows the construction of a statistical
reference corresponding to the null hypothesis of stationarity.
However if the process under study is stationary—as it will
be assumed in the following—surrogates can be viewed as
virtual realizations.

2.3. Empirical mode decompositions
Let St be an arbitrary signal. Briefly, theempirical mode de-
composition(EMD) [9] is a model-free and fully data-driven
technique which decomposesSt, comprised of superimposed



oscillations into its zero-mean oscillatory components. This is
achieved by a “fine-to-coarse” recursive scheme: The fastest
local oscillations (identified through neighbouring localex-
trema) are subtracted from the signal, yielding a residual sig-
nal to which the same procedure can be applied. Extracted in
this way, each of the components is referred to as anintrin-
sic mode function(IMF) of St. The recursion stops when the
residual signal has no more oscillation. Denoting IMFs by
M

(i)
t for 1 ≤ i ≤ Imax, we write

St =

Imax∑

i=1

M
(i)
t + ρt, (1)

whereρt is the residual signal. For MATLAB code and fur-
ther details concerning implementation of the EMD, see [10].

3. TIME-VARYING SPECTRUM ESTIMATION BY
MEANS OF SURROGATE DATA

Let XXX be a UMP with modulating functionCt and stationary
componentYYY . In this section, we describe a general technique
to estimateTXXX , based on the use of surrogate data.

Let X = X0,X1, . . . ,XN−1 be a realization ofXXX, and
let Ĉt be a nonzero estimate ofCt for eacht. SetỸt = Xt/Ĉt

for eacht. Provided that eacĥCt estimatesCt accurately (see
Section 4 for details),̃Y = Ỹ0, Ỹ1, . . . , ỸN−1 can be regarded
as a realization ofYYY . We useỸ to obtainJ surrogate data sets
Ỹ j = Ỹ j

0 , Ỹ j
1 , . . . , Ỹ j

N−1, where1 ≤ j ≤ J .

Define X̃ j = Ĉ0Ỹ
j
0 , Ĉ1Ỹ

j
1 , . . . , ĈN−1Ỹ

j
N−1, where

again1 ≤ j ≤ J . We callX̃ j the jth nonstationary surro-
gate dataobtained fromX and regard this data as elements
of the ensemble ofXXX. For each1 ≤ j ≤ J , let T̂ j

XXX
be an

estimate ofTXXX based solely onX̃ j . We take the arithmetic
average of thêT j

XXX
as an estimate ofTXXX , which we call the

averaged surrogate-based estimate:

T̂ av

XXX (t, f) ,
1

J

J∑

j=1

T̂ j

XXX
(t, f), (t, f) ∈ Z × [−1/2, 1/2].

In this paper, we choose eacĥT j

XXX
to be the BCMOTIFS esti-

mator [4, 11]. The rationale behind this choice is as follows:
For general processes, theoretical and simulation resultsin [4]
indicate BCMOTIFS has lower bias and variance than other
estimators of the TVS, especially near the boundaries of the
time-frequency region. In particular, for UMPs, BCMOTIFS
is approximately unbiased [4].

4. MODULATING FUNCTION ESTIMATION

LetXXX andX be as in Section 3, and assume thatXt 6= 0 for
eacht. To proceed with the technique proposed in Section 3,
we must estimate eachCt. In this section, we describe how
Ct andX can be “decoupled,” leading to an estimate ofCt.

DefineX∗
t = log |Xt|, so thatX∗

t = log Ct + log |Yt| for
eacht. Write X ∗ = log |X0|, log |X1|, . . . , log |XN−1|. We

can compute the EMD ofX ∗ to obtain its IMFsM (i)
t , and

write X∗
t as in Eq. (1) whenSt is replaced byX∗

t . Note that
the applicability of EMD method in general, does not require
particular forms of oscillations and therefore appropriate for
the log-transformed signal. Loosely speaking, the assumption
made in Section 2.1 states that the oscillations oflog Ct are
much slower than those inlog |Yt|. As a result the oscillations
of log Ct are accurately described by a set of high-order IMFs
such that for1 ≤ i∗ ≤ Imax we have

log Ct ≈

Imax∑

i=i∗

M
(i)
t + ρt. (2)

Following above, estimatingCt reduces to determiningi∗.
We now describe three approaches to determiningi∗.

Theenergyof theith IMF is defined byE(i) =
∑N−1

t=0 |M
(i)
t |2

for eachi. For typical broadband signals,E(i) is decreasing
in i [12]. Identifying the smallest indexi + 1 such that
E(i+1) > E(i) can therefore provide information about the
value ofi∗. This is called theenergyapproach.

Denote the number of zero crossings of theith IMF by
Z(i). It can be observed that, in the absence of low-frequency
oscillations, broadband signals give rise to a family of IMFs
satisfyingR(i+1) ≈ 2, whereR(i+1) = Z(i)/Z(i+1) when-
ever it is defined. Furthermore, we assume that the random
variablesR(i+1) are approximately equally distributed. We
callR(i+1) theith ratio of zero crossing numbers(ith RZCN).
Hence the smallest indexi + 1 for which R(i+1) is “signifi-
cantly different” from 2 can provide information about the
value of i∗. The question is how to quantify “significantly
different.” To answer this question, we construct 13 processes
(all approximately broadband without low-frequency oscilla-
tions), including(i) nine fractional Gaussian noise processes
with Hurst exponentsH = 0.1, 0.2, . . . , 0.9, (ii) two AR(2)
processes, and(iii) two nonstationary processes, the first being
AR(2) with time-dependent coefficients and the second being
frequency-modulated. For each process, we create 5000 re-
alizations of lengthN = 1000, and compute the EMDs and
RZCN of each. We then compute the empirical distribution of
~R = [~R1

~R2 · · · ~R5000] where denoting theith RZCN of the
bth realization byR(i+1)

b , 1 ≤ i ≤ Ib
max − 1, we have~Rb =

[R
(2)
b R

(3)
b · · · R

(Ib

max)
b ] for 1 ≤ b ≤ 5000. Fig. 1 shows the

empirical distribution of~R computed for each process and
shown in different colors. The result of our simulations en-
courages the idea that, regardless of the type of broadband
process, the distribution of~R remains unchanged. As a result
of this, we may then propose a common threshold test for de-
termining whenR(i+1) is significantly different from2. For
each process, we compute the empirical distribution ofR(i+1)

over all the realizations and for eachi = 1, 2 . . . , Imax−1 re-
spectively where here we assumeImax = 10. In this case, if,
as an example, for a particular realization, we haveImax = 8,
we assumeR(8) = R(9) = R(10) and if Imax = 12, we dis-
cardR(11). We then calculate 5% and 95% significance level
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Fig. 1. Empirical distribution of~R computed for different
processes (different colors). Apart from the expected peakat
2, there exist several smaller but visible peaks. They appear
in the presence of high order IMFs which have small values
of zero crossing numbers.
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Fig. 2. The right and left thresholds (marked by stars) com-
puted for different processes (different colors). Solid lines
indicate averaged left and right thresholds and dashed lines
indicate two standard deviation of the averaged thresholds.

of each distribution, and refer to them asith right and left
thresholdsrespectively. Fig. 2 shows the right and left thresh-
olds for each process (different colors). Any RZCN which is
outside of the two standard deviation of the averagedith left
and right thresholds within 13 process issignificantly differ-
ent from 2. Finally, as mentioned earlier, the smallest index
i+1 whereR(i+1) is significantly different from 2 determines
i∗. The problem is that since the selection of the left and right
thresholds are entirely based on an empirical result, it is al-
ways possible that the smallesti + 1 is a false detection and
not the correcti∗. This approach is called theratio approach.

The energy and ratio approaches can be combined in order
to reduce the number of false detects as follows: For each
1 ≤ i ≤ Imax − 1, we compute each indexi + 1 such that
E(i+1) > E(i). We also evaluate every indexi + 1 where
R(i+1) is significantly different from 2. We then choosei∗ to

be the smallest common index in both approaches. The value
of i∗ is then plugged into Eq. (2) in order to evaluatelog Ct.
The estimated modulating function iŝCt = exp(log Ct). This
combined approach is called theenergy-ratioapproach.

5. NUMERICAL EXAMPLES

Let XXX(k) = {X
(k)
t }t∈Z, 1 ≤ k ≤ 5 be UMPs with modulat-

ing functions

C
(1)
t = e

−
(t−500)2

2(200)2 , C
(2)
t =

√
1 + t/T

C
(3)
t = 2 + sin(2πpt), C

(4)
t = 1.5 + cos(2πqt)

C
(5)
t = 2 − e

−
(t−500)2

2(200)2 ,

whereT = 200, p = 0.002 andq = 0.001. The stationary
components of theXXX(k) are as follows:YYY (1), YYY (2), andYYY (3)

are fractional Gaussian noise with Hurst parametersH = 0.2,
H = 0.5, andH = 0.8, respectively, andYYY (4) andYYY (5) are
the AR(2) processes

Y
(4)
t = 0.2Y

(4)
t−1 + 0.5Y

(4)
t−2 + ζt

Y
(5)
t = 0.8Y

(5)
t−1 − 0.4Y

(5)
t−2 + ǫt.

Here,{ζt}t∈Z and{ǫt}t∈Z are independent white noise pro-
cesses with variance104.

For eachk, we create 5000 realizations of lengthN =
1000 of XXX(k) and compute the EMD for each realization.
We then apply the energy, ratio, and energy–ratio approaches
to each realization and each UMP to evaluatei∗, denoted
i∗,a(k), wherea = 1, 2, 3 indicate energy, ratio and energy–
ratio approaches respectively. Using our theoretical knowl-
edge of the modulating function for each UMP, we picki∗
which gives the minimumL2-distance betweenlog Ct from
Eq. (2) and theoretical log modulating function. We de-
note i∗ obtained from minimumL2-distance byi†(k). Ta-
ble 1 shows the number of times in 5000 where we have
obtainedi∗,a(k) = i†(k), i∗,a(k) = i†(k) + 1, i∗,a(k) =
i†(k) − 1, or |i∗,a(k) − i†(k)| > 1. It is clear from Table
1 that the energy–ratio approach outperforms the other two
approaches. We now takeXXX(4) for further analysis. Let
X = X0,X1, . . . ,XN−1 be a realization ofXXX(4) andX ∗

the log-transform ofX . We compute the EMD ofX ∗ to
obtain its IMFs and then evaluateE(i) andR(i+1) for eachi.
Fig. 3 shows the plot ofE(i), 1 ≤ i ≤ Imax, (top plot) and
R(i+1), 1 ≤ i ≤ Imax − 1, (bottom plot) whereImax = 9
in this example. Applying the energy approach we determine
that there are 4 indexesi + 1 wherei = 3, 5, 7, 8 which sat-
isfiesE(i+1) > E(i). On the other hand, applying the ra-
tio approach, we find out that there are three indexesi + 1
for i = 6, 7, 8 whereR(i+1) is significantly different from 2.
These indexes are marked by red triangles in Fig 3. Applying
the energy–ratio approach, we see that the first common index
between the two approaches isi∗ = 8.

Using i∗ = 8, we evaluateĈt (see Section 4). The esti-
mateĈt is then used to createJ = 50 nonstationary surrogate



Energy Ratio Energy–Ratio
a = 1 a = 2 a = 3

i∗,a(1) = i†(1) 2361 1926 3193
i∗,a(1) = i†(1) + 1 1353 918 717
i∗,a(1) = i†(1) − 1 583 484 891
|i∗,a(1) − i†(1)| > 1 703 1672 199
i∗,a(2) = i†(2) 1866 1420 2697
i∗,a(2) = i†(2) + 1 1181 735 948
i∗,a(2) = i†(2) − 1 658 495 949
|i∗,a(2) − i†(2)| > 1 1295 2350 406
i∗,a(3) = i†(3) 1919 1339 2710
i∗,a(3) = i†(3) + 1 1386 902 985
i∗,a(3) = i†(3) − 1 373 521 910
|i∗,a(3) − i†(1)| > 1 1322 2238 395
i∗,a(4) = i†(4) 2636 1893 3316
i∗,a(4) = i†(4) + 1 1100 980 643
i∗,a(4) = i†(4) − 1 232 492 740
|i∗,a(4) − i†(4)| > 1 1032 1635 301
i∗,a(5) = i†(5) 2615 1487 3598
i∗,a(5) = i†(5) + 1 1056 902 637
i∗,a(5) = i†(5) − 1 295 363 529
|i∗,a(5) − i†(5)| > 1 1034 2248 236

Table 1. Comparison between energy, ratio and energy–ratio
approaches using the theoreticallog Ct for 5 UMPs.
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Fig. 3. E(i), i = 1, 2, . . . , 9 (top) andR(i+1), i = 1, 2, . . . , 8
(bottom). The red triangles mark the indexes which satisfy
the conditions in energy (top) and ratio (bottom) approaches.

dataX̃ j , 1 ≤ j ≤ 50 (see Section 3). Using 50 nonstation-
ary surrogate data, we then estimateTXXX using the averaged
surrogate-based estimatêT av

XXX (see Section 3). Fig. 4 shows
the performance of this estimator in comparison with the BC-
MOTIFS estimator forX .

6. CONCLUSION

In this paper, we proposed a new scheme to estimate the time-
varying spectra of uniformly modulated processes. The esti-
mate proceeds by computing “virtual” realizations, using sur-
rogate data and empirical mode decompositions. Simulation
results suggest that the new estimator performs well, and af-
fords a significant improvement over BCMOTIFS.

Fig. 4. Theoretical TVS ofXXX(4) (top), estimate of the TVS
usingX (middle), estimate of the TVS using̃X j , 1 ≤ 1 ≤
50 (bottom). The parameters used in BCMOTIFS estimator
areNW = 4, K = 7 andB = 201.
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