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ABSTRACT

An operational framework is developed for testing stationar-
ity relatively to an observation scale. The proposed method
makes use of a family of stationary surrogates for defining the
null hypothesis of stationarity. As a further contributionto the
field, we demonstrate the strict-sense stationarity of surrogate
signals and we exploit this property to derive the asymptotic
distributions of their spectrogram and power spectral density.
A statistical hypothesis testing framework is then proposed to
check signal stationarity. Finally, some results are shownon
a typical model of signals that can be thought of as stationary
or nonstationary, depending on the observation scale used.

Index Terms— Time-frequency analysis, stationarity
test, surrogate, spectrogram, probability density function

1. INTRODUCTION

Time-frequency representations provide a powerful tool for
nonstationary signal analysis and classification, and cover a
wide range of applications [1]. Considering stationarity is
central in many signal processing applications, which raises
the operationally important issue of how testing stationarity.
Recently, the authors have made use of a family of stationary
surrogate signals for defining the null hypothesis of station-
arity and, based upon this information, to derive tests operat-
ing in the time-frequency domain. Two classes of approaches
have been considered in [2, 3]. The first one uses suitably
chosen distances between local and global spectra. The sec-
ond one is implemented as a one-class classifier, where time-
frequency features are extracted from the surrogates to gener-
ate a learning set for stationarity. In [4], time-frequencylearn-
ing machines have been used to test stationarity, based on one-
class support vector machine and the set of surrogates. This
approach takes full advantage of the use of the whole time-
frequency representations of surrogates, compared with the
arbitrary time-frequency features considered previously. Un-
fortunately, all these methods are often hampered by the large
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number of surrogates required to analyze and test stationar-
ity, resulting in an increased computation time and memory
space. This drawback comes mainly from the relative lack of
knowledge about the statistical properties of surrogates and of
their time-frequency distributions.

In the spirit of [5], where the authors studied the proba-
bility density function (pdf) of the spectrogram of correlated
Gaussian signals, we derive here the asymptotic pdf of the
spectrogram of surrogates. It allows us to propose a statistical
test for detecting nonstationarity without any need to generate
surrogates. This work does not only provide important new
insights in time-frequency analysis of the surrogate signals,
but it also offers a means to understand the theoretical back-
ground. The remainder of the paper is organized as follows.
In Sect. 2, the general framework of the proposed approach is
outlined, detailing the time-frequency rationale of the method
and motivating the use of surrogate data for characterizingthe
null hypothesis of stationarity. The strict-sense stationarity of
surrogate signals is also demonstrated here. This propertyis
exploited in Sect. 3 to derive an asymptotic statistical model
for their spectrogram. A statistical hypothesis testing frame-
work is then proposed to check signal stationarity. Some sim-
ulation results are shown in Sect. 4 on a typical model of
signals that can be thought of as stationary or nonstationary,
depending on the observation scale.

2. STATIONARIZATION VIA SURROGATES

Stationarity refers to a strict invariance of statistical proper-
ties with respect to time shifts. This theoretical definition can
be loosely relaxed so as to encompass stationarity over some
limited interval of observation. In order to test this property, it
has been proposed in [2, 3] that a reference of stationarity be
defined directly from the signal itself. The procedure consists
of generating a family of stationarized signals which have the
same psd as the initial signal. For an identical marginal spec-
trum over the same observation interval, nonstationary pro-
cesses are expected to differ from stationary ones by some
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Fig. 1. Spectrogram of the FM signal (12) in the case whereT = T0 (left), and empirical mean of the spectrogram of its
surrogates (right).

structured organization in time, hence in their time-frequency
distribution. Surrogate data technique [6] is an appropriate
solution to generate a family of stationarized signals, since it
destroys the time-varying structures in the signal phase while
keeping its power spectral density (psd) unchanged. In prac-
tice, this is achieved by keeping unchanged the magnitude of
its Fourier transform, and replacing its phase by a i.i.d. one.
More formally, let us consider the continuous-time signalx(t)
with Fourier transformX(f) such that1

X(f) =

∫

x(t) e−j2πft dt. (1)

The surrogate signalss(t) of x(t) are constructed from the
magnitudeA(f) = |X(f)| as follows:

s(t) =

∫

A(f) ejΨ(f) ej2πft df (2)

with Ψ(f) an i.i.d. phase. See illustration in Fig. 1. Let
ΦΨ(u) = E[ejΨu] be the characteristic function ofΨ. We
will assume in the sequel that

ΦΨ(k) = 0, ∀k ∈ Z
∗. (3)

Simple examples are random variables uniformly distributed
over [−π, π], ΦΨ(u) = sinc(πu), or the sum ofM indepen-
dent such random variables for whichΦΨ(u) = sinM

c (πu).
Finally, it is noteworthy that the sum of two independent ran-
dom variables where at least one verifies (3) also verifies (3).

2.1. Strict-sense stationarity

Recently in [3], the authors have demonstrated that surrogates
are wide-sense stationary signals, that is, their first and second
order moments are time-shift invariant. We shall now estab-
lish the strict-sense stationarity of surrogates, which isone of

1Since a stochastic process cannot be represented as a standard Fourier
integral, note that the Cramer representation should be considered. However,
the use of Fourier transform will be preferred for notational simplicity.

the main contributions of this study. Let us derive the time-
shift invariance of theL + 1 order cumulant

c(t; t1, . . . , tL) =

cum(s(t)ǫ0 , s(t + t1)
ǫ1 , . . . , s(t + tL)ǫL)

whereǫi = ±1 andxǫi = x∗ whenǫi = −1. We suggest the
reader to refer, e.g., [7], for a detailed description of thetools
related to high-order analysis of complex random processes.
Using the multilinearity of the cumulants, we have

c(t; t1, . . . , tL) =
∫

A(f0) · · ·A(fL)κ(f) ej2πt
P

L

i=0
ǫifi ej2π

P

L

i=1
ǫitifidf

with f = (f0, . . . , fL) and

κ(f ) = cum(ejǫ0Ψ(f0), . . . , ejǫLΨ(fL)).

Note that if one variablefi in f is different from the others,
the corresponding random variableejǫ0Ψ(fi) is independent
from the others andκ(f) = 0. Consequently the joint cumu-
lant of the surrogate simplifies to

c(t; t1, . . . , tL) =

κL+1

∫

A(f)L+1 ej2πft
P

L

i=0
ǫi ej2πf

P

L

i=1
ǫiti

whereκL+1 = cum(ejǫ0Ψ, . . . , ejǫLΨ). Application of the
Leonov-Shiryaev formula to this cumulant leads to

κL+1 =
∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π

ΦΨ(
∑

i∈B ǫi) (4)

whereπ runs through the list of all partitions of{0, . . . , L}
andB runs through the list of all blocks of the partitionπ.
This expression can be simplified using assumption (3) and
noting that

∑

i∈B ǫi ∈ Z. ConsequentlyΦΨ(
∑

i∈B ǫi) is non
zero, and necessary equal to 1, only if

∑

i∈B ǫi = 0.

• In the case whereL is even, whateverπ, at least one
block B ∈ π has an odd cardinal. For this block, we
have

∑

i∈B ǫi ∈ Z
∗ and, consequently,κL+1 = 0.



• If L is odd, the product in (4) is non zero, and necessar-
ily equals 1, only when all the blocksB of the partition
verifies

∑

i∈B ǫi = 0. Since
∑

B

∑

i∈B ǫi =
∑L

i=0 ǫi,

this product is non zero if, and only if,
∑L

i=0 ǫi = 0.

As a conclusion, high-order cumulants of the surrogate
signals(t) are non-zero only if

∑L

i=0 ǫi = 0. This implies
thats(t) is a circular complex random signal. Moreover, sub-
stitution of the constraint in (4) leads to

c(t; t1, . . . , tL) = κL+1

∫

A(f)L+1 ej2πf
P

L

i=1
ǫiti df (5)

which proves that surrogates are strict-sense stationary.

2.2. Polyspectra

The previous expression of the cumulant makes it possible to
compute theL order polyspectra of surrogate signals. The
polyspectra is defined as theL-dimension Fourier transform
of the cumulants, namely,

S(f1, . . . , fL)

=

∫∫

c(t; t1, . . . , tL) e−j2π
P

L

i=1
fiti dt1 . . . dtL

= κL+1

∫

A(f)L+1

(

L
∏

i=1

∫

e−j2π(fi−ǫif)tidti

)

df

= κL+1

∫

A(f)L+1

(

L
∏

i=1

δ(fi − ǫif)

)

df

Hence, the only non-zero values of the polyspectra are located
over the line{(ǫ1f, . . . , ǫLf), f ∈ R} with

S(ǫ1f, . . . , ǫLf) = κL+1A(f)L+1 (6)

ForL = 1, note that the above equation leads to the surrogate
psdS(f) = A(f)2, which is obviously equal to the psd of
the original signal. This result also shows that, among sta-
tionary signals, surrogates are only specific via their second-
order characteristics. This justifies the use of second-order
statistics, in the next section, to test stationarity.

The above properties have been derived in the continuous
time case. They could have been considered in the discrete
time case, which justifies their use as described below.

3. TESTING STATIONARITY WITH SURROGATES

The purpose of this section is to derive a test statistics to eval-
uate the stationarity of any discrete time signalx(n). This
composite test is based on the comparison of the second-order
characteristics of the spectrogram ofx(n) with the spectro-
gram of its surrogates.

3.1. Asymptotic distribution of the spectrogram

We define the spectrogramS(n, k) of theN -length surrogate
signals(n) as

S(n, k) =

∣

∣

∣

∣

∣

∑

ℓ

s(ℓ)w

(

ℓ − n

K

)

e−j2π ℓk

K

∣

∣

∣

∣

∣

2

(7)

wherew(u) vanishes for|u| > 1, andK < N the length of
the discrete Fourier transform. The signals(n) being strictly
stationary, the statistical properties ofS(n, k) are independent
of n. For this reason, we will focus in the sequel on

S(0, k) =

∣

∣

∣

∣

∣

∑

ℓ

s(ℓ)w

(

ℓ

K

)

e−j2π ℓk

K

∣

∣

∣

∣

∣

2

(8)

The above expression coincides with the modified peri-
odogram ofs(n), whose asymptotic distribution has been ex-
tensively studied in the literature. In [8], Theorem 5.2.7,the
asymptotic distribution ofS(0, k) asK tends to infinity is de-
rived under the assumption thats(n) is strictly stationary with
absolutely summable cumulants of all orders.

The strict-sense stationarity ofs(n) has been proved
above. The absolute summability of the cumulants is essen-
tially required as a sufficient condition for the existence of the
polyspectra which, as seen in the previous section, are per-
fectly defined for surrogates. Consequently, we will assume
for sufficiently largeK that the distribution ofS(n, k) can be
approximated by the asymptotic distribution ofS(0, k). In
particular, givenn, theS(n, k) are (asymptotically) indepen-
dent fork ± l 6= 0 [K] andk 6= 0 [K]. Moreover, we have

S(n, k) ∼ η2
w A(k)2 χ2

2 (9)

whereA(k)2 is the psd ofs(n) andη2
w =

∑

ℓ w(ℓ/K)2.

3.2. Test statistics

Let us now define a “normalized” instantaneous powerPn(s)
as follows

Pn(s) =
∑

k

S(n, k)

η2
w A(k)2

(10)

Independence with respect tok and (9) implies that the
marginal distribution ofPn is χ2

2K . Choosing parameterK
sufficiently large, we can use the standard approximation ofa
chi-square distribution

Tn(s) =
Pn(s) − 2K√

4K
∼ N (0, 1). (11)

As a consequence, we propose to reject the hypothesis of
stationarity forx(n) if the normal distribution hypothesis
of Tn(x) is rejected. This can be implemented via the
Kolmogorov-Smirnov test, here applied to undersampled val-
ues ofTn(x) with respect ton in order to ensure their ap-
proximate independence. The correlation time delay ofx(n)
and the length of the windoww(n) should be considered to
perform this downsampling efficiently.
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Fig. 2. Histograms ofS(n, k)/η2
wA(k)2 (left) andTn (right) constructed from5000 surrogate signals. Both are superimposed

to the statistical models (9) and (11), respectively.

4. ILLUSTRATION

To test our method, we used the same FM signal as in [2].
While not covering all the situations of nonstationarity, this
signal gives meaningful examples. It is modeled by

x(n) = sin 2π(f0n+m sin(2πn/N0))+e(n), n ∈ N (12)

with m ≤ 1, f0 the central frequency of the FM,N0 its period,
ande(n) a zero-mean white Gaussian noise. Based on the
relative values ofN0 and the signal durationN , three cases
can be distinguished, see [2] for more details:

• N ≫ N0: The signal contains a great number of oscil-
lations. This periodicity indicates a stationary regime.

• N ≈ N0: Only one oscillation is available. The signal
can be considered as nonstationary.

• N ≪ N0: With a small portion of a period, there is no
significative change in the frequency of the signal. It
can be considered as stationary.

In our experiment, the signal durationN was set to1024.
The central frequencyf0 and the parameterm were fixed to
0.25 and0.1, respectively. Signal-to-noise ration was set to
10 dB. Spectrograms were computed with a Hamming win-
dow of duration256 samples. The relevance of the statistical
modeling (9) is illustrated in Fig. 2 forN = N0, where the
χ2

2 fit is superimposed to the histogram ofS(n, k)/η2
wA(k)2

constructed from5000 surrogate signals. Fig. 2 also supports
the claim that the pdf ofTn defined in (11) is reasonably well
approached by the Gaussian pdfN (0, 1).

One hundred realizations of the FM signal (12) were fi-
nally tested in the following cases:N0 = N/10, N0 = N
andN0 = 10N . The Kolmogorov-Smirnov test always re-
jected the hypothesis of stationarity in the second case, atsig-
nificance level0.05, while accepting it in the other two cases.

5. CONCLUSION

A new statistical framework was proposed for characterizing
stationarity from a time-frequency viewpoint. A key point
of the method is that the hypothesis of stationarity is defined

statistically by a class of surrogate signals which all share the
same average spectrum as the analyzed signal. We demon-
strated the strict-sense stationarity of surrogates and weex-
ploited this property to derive the asymptotic distributions of
their spectrogram and power spectral density. A statistical hy-
pothesis test was finally presented to check signal stationarity.
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