
HAL Id: ensl-00476021
https://ens-lyon.hal.science/ensl-00476021

Submitted on 23 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncovering Relations Between Traffic Classifiers and
Anomaly Detectors via Graph Theory

Romain Fontugne, Pierre Borgnat, Patrice Abry, Kensuke Fukuda

To cite this version:
Romain Fontugne, Pierre Borgnat, Patrice Abry, Kensuke Fukuda. Uncovering Relations Between
Traffic Classifiers and Anomaly Detectors via Graph Theory. COST-TMA (Traffic Measurement &
Analysis) Workshop 2010, Apr 2010, Zurich, Switzerland. pp.101-114. �ensl-00476021�

https://ens-lyon.hal.science/ensl-00476021
https://hal.archives-ouvertes.fr


Uncovering Relations Between Traffic Classifiers

and Anomaly Detectors via Graph Theory

Romain Fontugne1, Pierre Borgnat2, Patrice Abry2 and Kensuke Fukuda3

1The Graduate University for Advanced Studies, Tokyo, JP
2Physics Lab, CNRS, ENSL, Lyon, FR

3National Institute of Informatics / PRESTO JST, Tokyo, JP

Abstract. Network traffic classification and anomaly detection have re-
ceived much attention in the last few years. However, due to the the lack
of common ground truth, proposed methods are evaluated through di-
verse processes that are usually neither comparable nor reproducible. Our
final goal is to provide a common dataset with associated ground truth
resulting from the cross-validation of various algorithms. This paper deals
with one of the substantial issues faced in achieving this ambitious goal:
relating outputs from various algorithms. We propose a general method-
ology based on graph theory that relates outputs from diverse algorithms
by taking into account all reported information. We validate our method
by comparing results of two anomaly detectors which report traffic at
different granularities. The proposed method succesfully identified simi-
larities between the outputs of the two anomaly detectors although they
report distinct features of the traffic.

1 Introduction

Maintaining network resources available and secured in the Internet is an
unmet challenge. Hence, various network traffic classifiers and anomaly
detectors (hereafter both called as classifiers) have been recently pro-
posed. However, the evaluation of these classifiers usually lacks rigor,
leading to hasty conclusions [1]. Since synthetic data is rather criticized
and common labeled database (like the datasets from the DARPA In-
trusion Detection Evaluation Program [2]) is not available for backbone
traffic; researchers analyze real data and validate their methods by man-
ual inspection, or by comparison with other methods. Our final goal is
to provide a reference database by labeling the MAWI archive [3] which
is a publicly available collection of real backbone traffic traces. Due to
the difficulties faced in analyzing backbone traffic (e.g. lack of packet
payload, asymmetric traffic), we plan to label the MAWI archive by
cross-validating results from several methods based on different theoreti-
cal backgrounds. This systematic approach permits to maintain updated
database in which recent traffic traces are regularly added, and labels
are improved with upcoming algorithms. This database aims at helping
researchers by providing a ground truth relative to the state of the art.
However, we face several complicated issues to reach our final goal. This
article discusses the difficulties faced in relating outputs provided by dis-
tinct algorithms, and proposes a methodology to achieve it. This is an



important first step for labeling traffic data traces. The main contribu-
tion is to provide a general methodology to efficiently compare outputs
exhibiting various granularities of the traffic. It uncovers the relations
between several outputs by inspecting all information reported by classi-
fiers and the original traffic. Also, the proposed method inherently groups
similar events and permits to label quantity of traffic at once.

1.1 Related work

Usually ground truth is built by hand implying a lot of human work.
Several applications have been proposed to assist humans and speed up
this laborious task [4–6]. For example, GTVS [4] helps researchers by
automating several tasks, and authors claim that a 30 minutes trace
from a gigabyte link can be labeled within days. Since our purpose is to
label a database containing 15 minutes traffic traces taken everyday for
9 years (MAWI archive) manual labeling is unpractical.

Alternatively, specialized network interface drivers have been recently
proposed [1, 7] to label traffic while packets are collected. These drivers
trace each packet and retrieve the corresponding application. Although
these approaches are really promising to compute confident ground truth
from Internet edges, it is not applicable for backbone traffic.

Closer to our work, Moore et al. [8] proposed an application combining
nine algorithms that analyze different properties of the traffic. This ap-
plication successfully achieved an accurate classification on a full payload
packet traces recording both link directions. TIE is also an application
designed to label traffic with several algorithms [9]. It computes sessions

— i.e. flows, bi-directional flows, or traffic related to a host — from the
original traffic and provides them to encapsulated classifiers. The final
label for each session is decided from the labels provided by each classi-
fier. Although these two applications are similar to our work, they do not
solve the general problem of relating outputs from distinct algorithms.
Indeed, both applications restrict classifiers to label only flows, ignoring
all classifiers that operate at other granularities (e.g. packet, host...) and
their benefits. Thus, they only deal with flows and bypass the problem
addressed in this paper. Our work provides a more general approach that
permits to combine results from any classifier. This issue has been only
tackled in previous work; for example, Salgarelli et al. [10] also discuss
the challenges faced by researchers in comparing performances of classi-
fiers and proposed unified metrics to measure the quality of an algorithm.
Although the need of common metrics in evaluating classifiers is crucial,
we stress that these measures are not sufficient to compare classifiers
outputs. For instance, let A and B be two distinct classifiers with the
same true positive score (as defined in [10]: the percentage of flows that
the classifiers labeled correctly) equal to 50% on a certain dataset. Let
assume that the combination of A and B achieve 75% of true positive on
the same dataset, then it will be interesting to know what kind of traffic
A could identify that B could not (and vice versa).



2 Problem statement

Comparing outputs from several classifiers seems at first glance to be
trivial, but in practice, it is a baffling problem. The main issue is that
classifiers report different features of the traffic that are difficult to
systematically compare. Hereafter, we define an event as any classi-
fier decision to categorize a traffic (i.e. alarms from anomaly detec-
tors or labels from traffic classifiers). Formally, an event e is a set of
items e = {tbegin, tend, f1, ..., fh} where tbegin, tend are timestamps re-
spectively standing for the begin and the end of identified traffic, and
other items fi, 0 < i ≤ h correspond to one of the following five traffic
features: {srcIP, dstIP, srcPort, dstPort, protocol}. At least one traf-
fic feature (0 < h) is required to describe identified traffic. For exam-
ple, the event e1 = {tbegin : 90s, tend : 150s, srcPort : 80} refers to
one minute of traffic from source port 80. Also, the same traffic fea-
ture can occur several times in a single event. For example the event
e2 = {tbegin : 30s, tend : 90s, srcPort : 53, protocol : udp, protocol : tcp}
refers to one minute of UDP or TCP traffic from port 53.

2.1 Granularity of events

The traffic granularity of reported events results from the diverse traffic
abstractions, dimensionality reductions and theoretical tools employed
by classifiers. For example, in the case of anomaly detection:
– hash based (sketch) anomaly detectors [11, 12] usually report only

IP addresses and corresponding time bin, no other information (e.g.
port number) describes identified anomalies.

– An anomaly detector based on image processing reports an event as
a set of IP addresses, port numbers and timestamps corresponding
to a group of packets identified in analyzed pictures [13].

– Several intrusion detection systems take advantage of clustering tech-
niques to identify anomalous traffic [14]. These methods classify
flows in several groups and report clusters with abnormal proper-
ties. Thereby, events reported by these methods are sets of flows.

These different kinds of event provide distinct details of the traffic that
are difficult to systematically compare. A simple way is to digest all of
them to a less restrictive form; namely, by examining only the source
or destination IP addresses (assuming that anomaly detectors report at
least one IP address). Comparing only IP addresses permits to determine
that Event 1, Event 2 and Event 3 in Fig. 1 are similar. However, the
port numbers provided by Event 2 and Event 3 indicate that these two
events represent distinct traffics. Consequently, an accurate comparison
of these two events requires to also take into account port numbers, but it
raises other issues. First, a heuristic is needed to make a decision when
port number is not reported (for example in comparing Event 1 and
Event 2 ). Second, fuzzy equality is required to compare Event 4 and
Event 5 of Fig.1. So forth, inspecting various traffic features reported by
events makes the task harder although the accuracy of the comparison
increases.
Similar problems arise in the case of traffic classification where different
entities are labeled:



Fig. 1. Event 1, Event 2 and Event 3 report different traffics from the same host. A
same port scan is reported by two events; Event 4 identifies only a part of it (beginning
of the port range), whereas Event 5 identifies another part (the end of the port range).

– Usually flows are directly labeled (e.g. based on clustering techniques
[15–17]).

– Whereas, BLINC [18] decides a label for a source (IP address, source
port) based on its connection pattern. Also, a recent method [19]
labels directly hosts without any traffic information by collecting
and analyzing information freely available on the web.

Thus, researchers faced difficulties in comparing events standing for flows
with events representing hosts. A common way is to apply the same la-
bel to all flows initiated from the host reported by an event, thus, only
flows are compared [16]. Unfortunately, this manner to compare these
two kinds of traffic classifiers leads to erroneous results. For example,
if an host is reported by a classifier as a web client then all its corre-
sponding flows are casted as HTTP. A simple port-based method also
classifies most of these flows as HTTP but a few of them are labeled
as DNS. In this case we cannot conclude that the port-based method
misclassified DNS flows neither the other classifier failed in classifying
this host. Obviously, the transition between an event representing host
to its corresponding flows introduce errors. More sophisticated mecha-
nisms are required to handle this two concepts (flow and host), whereas
the synergy between them might provides accurate traffic classification.

2.2 Traffic assortment

Recent applications and network attacks tend to be distributed over the
network and composed of numerous flows. Therefore, classifiers label-
ing flows output an excessive number of events for traffic generated by
distributed applications. Regardless the quantity of traffic involved by a
unique attack, or instance of an application, the whole amount of gen-
erated traffic should be handled and annotated as a single entity. Thus,
traffic annotations are clarified and highlight connection pattern of hosts.
In some cases, finding these similarities between events requires to re-
trieve the original traffic. For example, let X be an event corresponding
to traffic emitted from a single host, and Y an event representing traffic
received by another host. X and Y can represent exactly the same traffic
but from two different points of view, one reports the source whereas the
other one reports the destination of the traffic. The only way to verify if
these events are related to each other is to investigate the analyzed traf-
fic. If all traffic reported by X is also reported by Y , then we conclude
that they are strongly related. Obviously, a quantitative measure is also
needed to accurately score their similarities.



3 The proposed method

Fig. 2. Overview of the proposed method.

We propose a method to relate several events of different granularities
by analyzing all their details. The main idea underlying our approach
is to discover events relations among events from original traffic (oracle
in Fig.2) and represent all events and their relations as a graph (graph
generator in Fig.2). Afterwards, coherent groups of similar events are
identified in the graph with an algorithm finding community structure
(community mining in Fig.2).

3.1 Oracle

The oracle is the interface binding specific classifiers outputs to our gen-
eral methodology. Its role is to retrieve the relation between the orig-
inal traffic and the reported events. It accepts a query in the form of
a packet p and returns a list of events, Rp = {ep0, ..., epn}, consist-
ing of all events from every classifiers that are relevant to the query.
Formally, let a packet p be a set of five distinct traffic features and
a timestamp tp, p = {tp, fp1, ..., fp5} then Rp consists of all events
e = {tbegin, tend, f1, ..., fh} where tbegin ≤ tp ≤ tend and ∃fj , fj = fpi,
with 0 < i ≤ 5 and 0 < j ≤ h. Queries are generated for each packet of
the original traffic, thereby the oracle produces the lists of events match-
ing all packets R = {Rp1, ..., Rpm} (m is the total number of packets).

3.2 Graph Generator

The graph generator collects all responses from the oracle and build a
graph highlighting event similarities. Nodes of the graph represent the
events and those appearing in a same list returned by the oracle are con-
nected to each other by edges. Thus, for any edge of the graph (ex, ey)
there is at least one list provided by the oracle, Rpz ∈ R, in which the two
connected edges appear ex, ey ∈ Rpz. Weights of edges quantify the sim-
ilarities of events based on the quantity of traffic they have in common.
Let c(e1, ..., en) be a function returning the number of lists, Rpz ∈ R, in
which all events given as parameters appear together, e1, ..., en ∈ Rpz.
Then the weight of an edge (ex, ey) is computed with the following equa-
tion:

w(ex, ey) = c(ex, ey)/ min(c(ex), c(ey))



w ranges (0, 1], 1 means that events are strongly related whereas values
close to 0 represent weak relationships.
The characteristic of graphs built by the graph generator is that con-
nected components stand for sets of events representing common traffic.
Also, connected components consists of sparse and dense parts, hereafter,
we define a community as a coherent group of nodes representing similar
events.

3.3 Community mining

The next step is to find out community structure [20] to identify co-
herent groups of similar events within connected components of graphs
constructed by the graph generator. Although many kinds of community
structure algorithm have been proposed, we only take an interest in those
based on modularity because there exists versions that perform fast on
sparse graph [21].

Modularity Newman and Girvan proposed a metric for evaluating the
strength of a given community structure [20] based on inter and intra-
community connections; this metric is called the modularity.
The main idea underlying the modularity is that the fraction (or pro-
portion) of edges connecting nodes of a single community is expected to
be higher than the value of the same quantity in a similar graph where
nodes are randomly connected. Let eij be a fraction of edges connecting
nodes of community i to those of community j, such that eii is the frac-
tion of edges within a community i. Thus,

∑
i
eii is the total fraction of

edges connecting nodes of the same community. This value highlights the
connections within communities, a large value represents a good division
of the graph in communities. However, it takes the maximum value 1, for
particularly meaningless case in which all nodes are grouped in a single
community.
Newman et al. enhanced this measure by subtracting from it the value
it would take if edges were randomly placed. We note ai =

∑
j
eij the

fraction of all edges attached to nodes in community i. If the edges are
placed at random, the fraction of edges that link nodes within community
i is a2

i . The modularity is defined as Q =
∑

i
(eii − a2

i ).
If the fractions of edges within communities are similar to those ex-
pected in a randomized graph, then score of the modularity will be 0,
whereas Q = 1 indicates graphs with strong community structure. Since
Q represents the quality of community structure in a graph, researchers
investigated this metric to efficiently partition graph in communities.

Finding communities Blondel et al. proposed an algorithm [21] find-
ing community structure by optimizing the modularity in an agglomer-
ative manner.
Their algorithm starts by assigning a community to each node of the
graph, then the following step is repeated iteratively. For each community
i the gain of modularity obtained by merging it with one of its neighbor



j is evaluated. The merge of i and j is done for the maximum gain,
but only if this gain is positive. Otherwise i is not merged with other
communities. Once all nodes have been examined a new graph is build,
and this process is repeated again until no merge can be done.
The authors claim that the computational complexity of their algorithm
is linear on typical and sparse data. In their experiments Blondel et al.
successfully analyzed a graph with 118 million nodes and 1 billion edges
in 152 minutes. The performances of this algorithm allow us to compare
thousands of events in a really short time frame (order of seconds).

4 Evaluation

4.1 Data and processing

The proposed method is preliminarily evaluated by comparing the results
of two anomaly detectors based on different theoretical backgrounds.
One consists of random projection techniques (sketches) and multi-resolution
gamma modeling [11]. Hereafter we call it as the gamma-based method.
In a nutshell, the traffic is split into sketches and modeled using Gamma
laws at several time scales. Anomalous traffic is detected by reporting
too large distances from an adaptively computed reference. The sketches
are computed twice; the traffic is hashed on source addresses and on
destination addresses. Thus, when anomalies are detected this method
reports the corresponding source or destination address within a certain
time bin.
The other anomaly detector is based on an image processing technique
called the Hough transform [13] (we call it the Hough-based method).
Traffic is monitored in 2-D scatter plot where each plot represents packets
and anomalous traffics appear as “lines”. Anomalies are extracted with
a line detector (the Hough transform) and the original data are retrieved
from the identified plots. The output of this method is an aggregated set
of packets.
These two anomaly detectors were tested on a pcap file of the MAWI
archive containing 15 minutes of traffic taken at a trans-Pacific link be-
tween Japan and US (Samplepoint-B, 2004/08/01) corresponding to a
period of Sasser outbreak.
In practice, the output of these two anomaly detectors is in admd1 form,
which is a XML schema allowing to annotate traffic in an easy and flexible
way. Hence, we implemented an oracle able to read any admd and pcap
file to compare results from both methods.

4.2 Results

In our experiments 332 events have been reported by the gamma-based
method and 873 by the Hough-based one, where respectively 235 and 247
events have been merged by our method. The resulting graph consists of
124 connected components (we do not consider components with a single
event), we present some typical graph structures in this Section.

1 Meta-data format and associated tools for the analysis of pcap data:
http://admd.sourceforge.net



208.8.4.157s;15426pkt

208.8.4.157s;15426pkt

1;15426pkt

(a) Both methods detect the same host
infected by the Sasser worm.

210.133.66.52d;322pkt

172.92.103.79s;173pkt

0.99422;172pkt

(b) The gamma-based method reports
the destination of anomalous traffic
whereas the Hough-based one reports
the source of it.

Fig. 3. Two simple connected components with two similar events.

Note that we use following legend for Fig. 3-7. Gray rectangles represent
the separation in community structure, green ellipses are events reported
by the Hough-based method, and red rectangles are events reported by
the gamma-based method. The labels of events are displayed as: IPad-

dress direction;nbPackets, where IPaddress is the IP address reported by
the gamma-based model or the prominent IP address of traffic reported
by the Hough-based method; direction is a letter, s or d, informing if the
identified hosts are rather the sources or destinations of reported traffic;
nbPackets is the number of packets in the traffic trace that match the
event. We emphasize that the IP addresses shown in these labels are
only provided to facilitate the readability of figures. Thus it is not the
only information considered in the oracle decisions (the gamma-based
method also reports timestamps, and the Hough-based method can pro-
vide several IP addresses, port number, timestamps, and protocols). The
label for an edge linking two events is the weight of the edge w and the
number of packets matching both events.

Simple connected components Figure 3 consists of two examples
of the simplest connected components built by our method. Figure 3(a)
stands for the same Sasser activity reported by both methods. Since the
two methods reported anomalous traffic from the same host, the events
have been obviously grouped together. The single edge between the two
events represents numerous incomplete flows that can be labeled as the
same malicious activity. Figure 3(b) displays two events reporting differ-
ent hosts; one event describes anomalous traffic sent from a source IP
(172.92.103.79), whereas the other one exhibits abnormal traffic received
by another host (210.133.66.52). Their relationship is uncovered by the
original traffic, all packets (except one) initiated from the source host
have been sent to the identified host destination. This connected compo-
nent illustrates the case where both anomaly detectors report the same



traffic but from different points of view, one identified its source whereas
the other emphasized its destination.
In our experiments, we observed 86 connected components containing
only 2 events (like those depicted in Fig.3) where, the two linked events
are sometimes reported by the same anomaly detector.

0.199.181.106s;5098pkt

138.241.115.41d;80692pkt

1;5098pkt

0.199.181.106s;64299pkt

1;5098pkt

138.241.115.41d;102053pkt

1;5098pkt0.792563;50961pkt

3.82.19.96s;37450pkt

0.77773;29126pkt

0.99627;80391pkt

1;64299pkt1;37450pkt

Fig. 4. RSync traffic identified by 5 events.

Large connected components The proposed method found 38 con-
nected components that consist in more than 2 events. For example, Fig.
4 shows 5 events grouped in a strongly connected component. All these
events report abnormally high traffic volume, and manual inspection of
packets header revealed that they are all RSync traffic. Three hosts are
concerned by these events, and the structure of the component help us
in understanding their connection pattern. The weights of edges indicate
that these events are closely related. Thus, these 5 events are grouped
as one community that is uniquely reported.
Figure 5 depicts a connected component consisting of 29 events; 27 are
from the gamma-based method output and 2 from the Hough-based one.
All these events are reporting abnormal DNS traffic. The event on the
right-hand side of Fig.5 and the one on the left-hand side (both labeled
200.24.119.113) represent traffic from a DNS server. This server is re-
ported by both methods because it replies to numerous requests during
the whole traffic trace. Other events shown in Fig.5 represent the main
clients soliciting this service. By grouping all these events together our
method permits to report the flooded server and the blamed clients at the
same time. Whereas, by analyzing individually events raised by clients,



200.24.119.113s;33509pkt

10.2.1.50d;297pkt

1;297pkt 10.1.1.239d;253pkt

0.853755;216pkt

10.23.1.2d;6644pkt

0.25286;1680pkt

10.8.128.39d;264pkt

0.708333;187pkt

10.1.10.9d;612pkt

0.30719;188pkt

10.3.232.51d;406pkt

0.3867;157pkt

192.168.200.23d;304pkt

0.513158;156pkt

205.68.46.154d;559pkt

0.354204;198pkt

10.15.7.18d;380pkt

0.557895;212pkt
10.75.3.2d;260pkt

0.434615;113pkt
195.56.240.64d;273pkt

0.351648;96pkt 192.168.238.20d;399pkt

0.273183;109pkt 172.23.0.11d;319pkt

0.275862;88pkt
197.73.183.171d;632pkt0.39557;250pkt

10.4.1.19d;347pkt0.420749;146pkt

172.16.10.22d;288pkt
0.493056;142pkt

10.40.1.29d;277pkt0.353791;98pkt

193.92.212.83d;583pkt0.319039;186pkt

172.16.253.153d;470pkt0.312766;147pkt

170.66.142.177d;410pkt0.290244;119pkt

192.168.0.230d;288pkt0.274306;79pkt

172.20.0.2d;265pkt
0.301887;80pkt

200.24.119.113s;21160pkt

0.262004;5544pkt

3.164.4.11d;5933pkt0.362886;2153pkt 0.996123;5910pkt

214.79.36.98d;99pkt

1;99pkt

10.20.0.9d;792pkt

0.472222;374pkt

195.56.240.86d;2380pkt0.327731;780pkt

10.10.1.1d;994pkt0.376258;374pkt

1;612pkt

1;406pkt

1;260pkt

1;277pkt

1;99pkt

Fig. 5. DNS traffic reported by many events.



one may misunderstand the distributed characteristic of this network
activity — similar to DDoS, flash crowd, or botnet activity — and mis-
interpret each event.

Communities in connected components In the examples pre-
sented above the algorithm finding community structure (see Section 3.3)
identified each connected component as a single community. Neverthe-
less, our method found 11 connected components that are split in several
communities (e.g. Fig. 6 and 7); the smallest contains 5 events grouped
in 2 communities, and the largest consists of 47 events clustered in 8
communities. These connected components stand for distinct network
traffics that are linked by loose events (i.e. events reporting only one
traffic feature). Fortunately, the algorithm finding community structure
succeed in cutting connected components in coherent groups of events.
An example of a connected component representing two communities is
depicted in Fig.6. The community on the left-hand side of Fig.6 stands
for a high-volume-traffic directed to port number 3128 (proxy server).
However, the community on the right-hand side of Fig.6 represents nntp
traffic between two hosts. A single packet is responsible for connecting
two events from both communities. It is a TCP/SYN packet sent from
the main host representing the left-hand side community and aiming at
the port 3128 of a host belonging to the other community. This is the only
traffic observed on port 3128 for the latter host. The proposed method
successfully dissociates the two sets of events having no similarities, so
they can be handle separately.
Figure 7 depicts another example of connected component split in several
communities, but this involves 14 events grouped in 5 communities. All
events report uncommon HTTP traffic among numerous hosts. Although
all events are connected together, weight of edges emphasizes several
dense sets of events. By analyzing the weight of edges and the degree of
nodes, the algorithm finding community structure successfully detected
these coherent groups of events.

4.3 Discussion

The proposed method enabled us to compare outputs from different kinds
of classifier (e.g. host classification and flow classification), and fulfill our
requirements to combine results form many classifiers.
Our method is also useful in inspecting the output of a single method.
For example, the gamma-based method inherently reports either source
or destination address of anomalous traffic, but both are sometimes re-
ported in two distincts events. Let T be an anomalous traffic between
hosts A and B raising two events ex = {tbegin : X, tend : Y, srcIP : A}
and ey = {tbegin : X, tend : Y, dstIP : B}, then the proposed method
merges these events as packets p ∈ T are in the form p = {tp : Z, srcIP :
A, dstIP : B, ...} with X ≤ Z ≤ Y . In our experiments, our method
permits to merge 27 events (see Fig.5) reported by the gamma-based
method increasing the quality of reported events and reducing the size
of the output.



201.46.145.73d;142055pkt

212.69.78.53s;142054pkt

1;142054pkt

212.69.78.53s;149836pkt

0.999993;142054pkt

201.46.145.73d;87904pkt

1;87904pkt

213.81.0.20s;32795pkt

3.04925e-05;1pkt

213.81.0.20s;32794pkt

3.04934e-05;1pkt

1;142054pkt

1;87904pkt

1;87904pkt

201.46.146.65d;718pkt

0.00139276;1pkt

0.00139276;1pkt

1;32794pkt

Fig. 6. Connected component standing for two distinct traffics.

150.82.137.35d;1074pkt

0.203.211.80s;707pkt

0.110325;78pkt

0.203.211.66s;811pkt

0.01109;9pkt

172.92.106.184d;8097pkt

0.0226308;16pkt

138.241.112.153d;4805pkt

0.0325318;23pkt

0.203.211.150s;396pkt

0.0126263;5pkt0.203.211.150s;208pkt

1;208pkt0.0126263;5pkt

0.203.211.66s;253pkt

1;253pkt

0.0863132;70pkt

0.0542;44pkt

0.203.211.105s;2294pkt

1;2294pkt

0.203.211.194s;933pkt

1;933pkt

0.203.211.212s;3339pkt

0.99401;3319pkt

172.92.106.184d;5930pkt

0.996627;5910pkt

0.844377;1937pkt 1;3339pkt

0.203.211.153s;352pkt

0.0454545;16pkt

3.144.44.64s;273pkt

1;273pkt

Fig. 7. HTTP traffic represented by a large connected component split in 5 communi-
ties.



Another benefit of the proposed method is to help researchers in un-
derstanding different results from their algorithms. For instance, while
developing anomaly detector, researchers commonly face a problem in
tuning their parameter set. Therefore, researchers usually run their ap-
plication with numerous parameter settings, and the best parameter set
is selected by looking at the highest detection rate. Although this process
is commonly accepted by the community a crucial issue still remains. For
instance, a parameter set A may give a similar detection rate to that ob-
tained with a parameter set B, but a deeper analysis of reported events
may show that B is more effective for a certain kind of anomalies not
detectable with the parameter set A (and vice versa). Deciding if A or
B is the best parameter is then not straightforward. This interesting
case is not solved by simply comparing detection rates. The overlap of
both outputs as exhibited by our method would help us first to compare
in which conditions a parameter set is more effective, second to make
methods collaborate.

5 Conclusion

This article first raised the difficulties in relating outputs of different clas-
sifiers. We proposed a methodology to relate reported events although
they are expressed in different ways and represent distinct granularities
of the traffic. Our approach relies on the abstraction level of graph the-
ory, graphs are generated from events and the original traffic to uncover
the similarities of events. An algorithm finding community structure per-
mits to distinguish coherent sets of nodes in the graph standing for sets
of similar events. Preliminary evaluation highlighted the flexibility of
our method and its effectiveness to cluster events reported by different
anomaly detectors.
The proposed methodology is a first step in our process to build a com-
mon database of annotated backbone traffic. We need more analyses to
better understand the basic ability of the proposed method with differ-
ent datasets and classifiers. In future work we will also adopt a strategy
taking into account the nature of classifiers to decide the final label to
annotate traffic represented by a set of events.

Acknowledgments

We would like to thank V.D. Blondel et al. for having provided us with
the source code of their community structure finding algorithm. This
work is partially supported by MIC SCOPE.

References

1. Szabó, G., Orincsay, D., Malomsoky, S., Szabó, I.: On the validation
of traffic classification algorithms. PAM ’08 (2008) 72–81

2. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The
1999 darpa off-line intrusion detection evaluation. Computer Net-
works 34(4) (2000) 579 – 595



3. Cho, K., Mitsuya, K., Kato, A.: Traffic data repository at the WIDE
project. In: USENIX 2000 Annual Technical Conference: FREENIX
Track. (June 2000) 263–270

4. Canini, M., Li, W., Moore, A.W., Bolla, R.: Gtvs: Boosting the
collection of application traffic ground truth. TMA ’09 (May 2009)

5. Haakon Ringberg, A.S., Rexford, J.: Webclass: adding rigor to man-
ual labeling of traffic anomalies. SIGCOMM CCR 38(1) (2008) 35–
38

6. Fontugne, R., Hirotsu, T., Fukuda, K.: A visualization tool for ex-
ploring multi-scale network traffic anomalies. SPECTS ’09 (2009)
274 – 281

7. Gringoli, F., Salgarelli, L., Cascarano, N., Risso, F., Claffy, K.C.: Gt:
Picking up the truth from the ground for internet traffic. SIGCOMM
CCR 39(5) (2009) 13–18

8. Moore, A.W., Papagiannaki, K.: Toward the accurate identification
of network applications. PAM ’05 (2005) 41–54

9. Dainotti, A., Donato, W., Pescapé, A.: Tie: A community-oriented
traffic classification platform. TMA ’09 (May 2009) 64–74

10. Salgarelli, L., Gringoli, F., Karagiannis, T.: Comparing traffic clas-
sifiers. SIGCOMM CCR 37(3) (2007) 65–68

11. Dewaele, G., Fukuda, K., Borgnat, P., Abry, P., Cho, K.: Extracting
hidden anomalies using sketch and non gaussian multiresolution sta-
tistical detection procedures. SIGCOMM LSAD ’07 (2007) 145–152

12. Li, X., Bian, F., Crovella, M., Diot, C., Govindan, R., Iannaccone,
G., Lakhina, A.: Detection and identification of network anomalies
using sketch subspaces. SIGCOMM ’06 (2006) 147–152

13. Fontugne, R., Himura, Y., Fukuda, K.: Evaluation of anomaly de-
tection method based on pattern recognition. IEICE Trans. on Com-
mun. E93-B(2) (February 2010)

14. Sadoddin, R., Ghorbani, A.A.: A comparative study of unsupervised
machine learning and data mining techniques for intrusion detection.
MLDM ’07 (2007) 404–418

15. Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clus-
tering algorithms. SIGCOMM MineNet ’06 (2006) 281–286

16. chul Kim, H., Claffy, K., Fomenkov, M., Barman, D., Faloutsos, M.,
Lee, K.: Internet traffic classification demystified: Myths, caveats,
and the best practices. CoNEXT ’08 (2008)

17. Bernaille, L., Teixeira, R., Salamatian, K.: Early application identi-
fication. CoNEXT ’06 (2006) 1–12

18. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: Blinc: multilevel
traffic classification in the dark. SIGCOMM ’05 35(4) (2005)

19. Trestian, I., Ranjan, S., Kuzmanovi, A., Nucci, A.: Unconstrained
endpoint profiling (googling the internet). SIGCOMM ’08 (2008)

20. Newman, M.E.J., Girvan, M.: Finding and evaluating community
structure in networks. Phys. Rev. E 69(2) (Feb 2004) 026113

21. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast
unfolding of communities in large networks. J.STAT.MECH. (2008)


