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Abstract

A polynomial identity testing algorithm must determine whether
an input polynomial (given for instance by an arithmetic circuit) is
identically equal to 0. In this paper, we show that a deterministic
black-box identity testing algorithm for (high-degree) univariate poly-
nomials would imply a lower bound on the arithmetic complexity of
the permanent. The lower bounds that are known to follow from de-
randomization of (low-degree) multivariate identity testing are weaker.

To obtain our lower bound it would be sufficient to derandomize
identity testing for polynomials of a very specific norm: sums of prod-
ucts of sparse polynomials with sparse coefficients. This observation
leads to new versions of the Shub-Smale τ -conjecture on integer roots
of univariate polynomials. In particular, we show that a lower bound
for the permanent would follow if one could give a good enough bound
on the number of real roots of sums of products of sparse polynomials
(Descartes’ rule of signs gives such a bound for sparse polynomials and
products thereof).

∗UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.
†A part of this work was done during a visit to the Fields Institute.
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1 Introduction

A polynomial identity testing algorithm must determine whether an input
polynomial (given for instance by an arithmetic circuit) is identically equal
to 0. If randomization is allowed, this problem can be solved efficiently
thanks to the well-known Schwarz-Zippel lemma. Following Kabanets and
Impagliazzo [11], it has become increasingly clear in recent years that effi-
cient deterministic algorithms for polynomial identity testing would imply
strong lower bounds (the connection between arithmetic circuit lower bounds
and derandomization of polynomial identity testing was foreshadowed in a
30 years old paper by Heintz and Schnorr [10]). This approach to lower
bounds was advocated in particular by Agrawal [1].

In this paper we show that an efficient black-box deterministic identity
testing algorithm for univariate polynomials of a very specific form (namely,
sums of products of sparse polynomials with sparse coefficients) would imply
that the permanent does not belong to VP0. This is the class of polynomial
families computable by constant-free arithmetic circuits of polynomial size
and polynomially bounded formal degree. It plays roughly the same role for
constant-free circuits as the class VP in Valiant’s algebraic version of the P
versus NP problem (in Valiant’s original setting, arithmetic circuits can use
arbitrary constants from the underlying field [8, 26]).

Compared to [1, 11], the main originality of the present paper is to show
that lower bound for multivariate polynomials such as the permanent would
follow from univariate identity testing algorithms. Most of the recent work
on identity testing (surveyed in [2, 23]) has been focused on low-degree multi-
variate polynomials.1 Nevertheless, we believe that the univariate approach
is worth exploring for at least two reasons.

First, it would lead to stronger lower bounds. Indeed, we show that
black-box derandomization of identity testing implies a lower bound for
the permanent, whereas [1, Section 6.2] would only yield lower bounds for
polynomials with coefficients computable in PSPACE (this complexity class
was independently defined in [18], where it is called VPSPACE; further results
on this class and other space-bounded classes in Valiant’s model can be found
in [17, 22, 20]). The lower bound obtained from [11] would be even weaker,
but could be obtained from a non-black-box identity testing algorithm.

A second, possibly even more important advantage of the univariate ap-
proach is that it leads to new (and hopefully more tractable) versions of
Shub and Smale’s τ -conjecture. According to the τ -conjecture, the number

1Two exceptions are [7, 15].
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of integer roots of a univariate polynomial f ∈ Z[X] should be bounded by
a polynomial function of its arithmetic circuit size (the inputs to the cir-
cuit are the constant 1, or the variable X). It was shown by Bürgisser [9]
that the τ -conjecture implies a lower bound for the permanent. Our main
“hardness from derandomization” result can be viewed as an improvement
of Bürgisser’s result. Indeed, it follows immediately from our result that
to obtain a lower bound for the permaent, one just has to bound the num-
ber of integer roots for sums of products of sparse polynomials with sparse
coefficients (rather than for arbitrary arithmetic circuits). Our strongest
version of the τ -conjecture raises the intriguing possibility that tools from
real analysis might be brought to bear on this problem (a bound on the
number of real roots of a polynomial is a fortiori a bound on its number of
integer roots). It is known that this approach cannot work for the original
τ -conjecture because the number of real roots of a univariate polynomial
can grow exponentially as a function of its arithmetic circuit size (Cheby-
shev polynomials provide such an example [25]). We conjecture that this
behavior is not possible for sums of products of sparse polynomials.

1.1 Main Ideas

A hitting set H for a set F of polynomials is a (finite) set of points such
that there exists for any non-identically zero polynomial f ∈ F at least one
point a ∈ H such that f(a) 6= 0. Hitting sets are sometimes called “correct
test sequences” [10]. It is well-known that deterministic constructions of
hitting sets and black-box deterministic identity testing are two equivalent
problems: any hitting set for H yields an obvious black-box identity testing
algorithm (declare that f ≡ 0 iff f evaluates to 0 on all the points of H);
conversely, assuming that F contains the identically zero polynomial, the
set of points queried by a black box algorithm on the input f ≡ 0 must be
a hitting set for F .

The connection between black-box identity testing and lower bounds is
especially apparent for univariate polynomials [10]. Namely, let H be a
hitting set for F . The polynomial

P =
∏

a∈H

(X − a) (1)

cannot belong to F since it is nonzero and vanishes on H. The same re-
mark applies to all nonzero multiples of P . If F is viewed as some kind of
“complexity class”, we have therefore obtained a lower bound against F by
exhibiting a polynomial P which does not belong to F .
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In the low-degree multivariate setting the polynomial which plays the
same role is not given by such a simple formula as (1). Its coefficients can
be obtained by solving an exponential size system of linear equations. This
can be done in PSPACE, explaining why the lower bound in [1] would be
for polynomials with coefficients computable in PSPACE. By contrast one
can show that the coefficients in exponential-size products such as (1) are
in the counting hierarchy, a subclass of PSPACE. This is the reason why we
can obtain a lower bound for a polynomial in VNP (namely, the permanent)
rather than in VPSPACE as in [1, Section 6.2].

It remains to explain why we only have to derandomize identity testing
for sums of products of sparse polynomials in order to obtain a lower bound.
This class of polynomials comes into the picture thanks to the recent depth
reduction theorem of Agrawal and Vinay [3]: any multilinear polynomial in
n variables which has an arithmetic circuit of size 2o(n) also has a depth-4
arithmetic circuit of size 2o(n). Sums of products of sparse polynomials are
very far from being multilinear (they are univariate polynomials of possibly
very high degree). They are nonetheless connected to depth-4 circuits by a
simple transformation: if we replace the input variables in a depth-4 circuit
by powers of a single variable X, we obtain a SPS polynomial f(X).

At this point, we should stress that we do not claim that univariate arith-
metic circuits can be efficiently converted into SPS polynomials (this would
be a kind of high-degree analogue of Agrawal and Vinay’s depth reduction
theorem). On the contrary, we conjecture that such a transformation is in
general impossible, and that Chebyshev polynomials provide a counterex-
ample (because, as pointed out earlier, they have too many real roots).
Nevertheless, to obtain our results we represent efficiently (in Theorem 6)
certain exponential size products by sums of products of sparse polynomials.
This is possible only under the assumption that the permanent is easy. This
assumption (and the resulting representation) is of course very likely to be
false, but there is no harm in making it since the ultimate goal is a proof by
contradiction that the permanent is hard.

1.2 Organization of the Paper

In the next section we present our model of computation for the permanent
(constant-free arithmetic circuits) as well as the corresponding complexity
classes. We also recall some definitions and results about the counting hier-
archy (as explained above, this class plays a crucial role in the derivation of a
lower bound for the permanent). In Section 3 we define precisely the notion
of sum of products of sparse polynomials with sparse coefficients, and ex-
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plain the connection to depth-4 circuits. In Section 4 we present the notion
of algebraic number generator. This is basically just a sequence of efficiently
computable polynomials in Z[X]. We wish to use them to construct hitting
sets, by taking the sets of all roots of the polynomials in an initial segment
of this sequence. In Section 5 we prove our main result: if a polynomial-
size initial segment provides a hitting set against sums of products of sparse
polynomials with sparse coefficients, then the permanent is not in VP0. In
Section 6 we present three new versions of the τ -conjecture. A proof of
any of these conjectures would yield a lower bound for the permanent. We
conclude the paper with a few remarks on some tools that might be useful
to attack these conjectures.

2 Preliminaries

2.1 Arithmetic Circuits

We recall that an arithmetic circuit contains addition, subtraction and mul-
tiplication gates. We usually assume that these gates have arity 2, except
when dealing with constant-depth circuits as in e.g. Theorem 3. The in-
put gates are labelled by variables or constants. A circuit where the only
constants are from the set {0,−1, 1} is said to be constant-free (in such a
circuit one can even assume that −1 is the only constant, and that there
are no subtraction gates). A constant-free circuit represents a polynomial in
Z[X1, . . . ,Xn], where X1, . . . ,Xn are the variables labelling the input gates.

In this paper we investigate the complexity of computing the permanent
polynomial with constant-free arithmetic circuits. This model of computa-
tion was systematically studied by Malod [21]. In particular, he defined a
class VP0 of polynomial families that are “easy to compute” by constant-free
arithmetic circuits. First we need to recall the notion of formal degree:

(i) The formal degree of an input gate is equal to 1.

(ii) The formal degree of an addition or subtraction gate is the maximum
of the formal degrees of its two incoming gates, and the formal degree
of a multiplication gate is the sum of these two formal degrees.

Finally, the formal degree of a circuit is equal to the formal degree of its out-
put gate. This is obviously an upper bound on the degree of the polynomial
computed by the circuit.

Definition 1 A sequence (fn) of polynomials belongs to VP0 if there exists
a polynomial p(n) and a sequence (Cn) of constant-free arithmetic circuits
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such that Cn computes fn and is of size (number of gates) and formal degree
at most p(n).

The size constraint implies in particular that fn depends on polynomially
many variables. The constraint on the formal degree forbids the compu-
tation of polynomials of high degree such as e.g. X2n ; it also forbids the
computation of large constants such as 22

n

.
A central question in the constant-free setting is whether the permanent

family belongs to VP0. A related question is whether τ(PERn), the constant-
free arithmetic circuit of the n × n permanent, is polynomially bounded in
n. Obviously, if PER ∈ VP0 then τ(PERn) is polynomially bounded in n,
but (as pointed out in e.g. [8]) it is not clear whether the converse holds
true. In this paper we focus on the first question (see section 7 for further
comments).

Another important complexity class in the constant-free setting is the
class VNP0 of easily definable families. It is obtained from VP0 in the natural
way:

Definition 2 A sequence (fn(X1, . . . ,Xu(n))) belongs to VNP0 if there exists

a sequence (gn(X1, . . . ,Xv(n))) in VP0 such that:

fn(X1, . . . ,Xu(n)) =
∑

ǫ∈{0,1}v(n)−u(n)

gn(X1, . . . ,Xu(n), ǫ).

For instance, the permanent family is in VNP0. If this family in fact belongs
to VP0 then the same is true of every VNP0 family up to constant multi-
plicative factors. Indeed, we have the following result (Theorem 4.3 of [14]):

Theorem 1 Assume that the permanent family is in VP0. For every family
(fn) in VNP0 there exists a polynomially bounded function p(n) such that
the family (2p(n)fn) is in VP0.

The occurence of the factor 2p(n) in this theorem is due to the fact that the
completenes proof of the permanent uses the constant 1/2. As in [14] one
could avoid this factor by working with the Hamiltonian polynomial instead
of the permanent.

The next lemma is Valiant’s criterion. The present formulation is basi-
cally that of [14, Th. 2.3] but this lemma essentially goes back to [26](see
also [8, Prop. 2.20]).
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Theorem 2 (Valiant’s criterion) Suppose that n 7→ p(n) is a polyno-
mially bounded function, and that f : N × N → Z is such that the map
1n0j 7→ f(j, n) is in the complexity class GapP/poly. Then the family (fn)
of multilinear polynomials defined by

fn(X1, . . . ,Xp(n)) =
∑

j∈{0,1}p(n)

f(j, n)Xj1
1 · · ·X

jp(n)

p(n) (2)

is in VNP0. Here jk denotes the bit of j of weight 2k−1.

Note that we use a unary encoding for n but a binary encoding for j. We re-
call the definition of GapP/poly (and a few other boolean complexity classes)
in Section 2.2. In this paper we only need to apply Valiant’s criterion to
boolean-valued functions (f(j, n) ∈ {0, 1} for all j and n) such that the map
1n0j 7→ f(j, n) is in P/poly.

Finally, we will use a recent resul of Agrawal and Vinay: low-degree
multivariate polynomials which admit nontrivial arithmetic circuits also ad-
mit nontrivial arithmetic circuits of depth four. We will apply their depth
reduction theorem to multilinear polynomials only. In this case their result
(Corollary 2.5 in [3]) reads as follows:

Theorem 3 (Reduction to depth four) A multilinear polynomial in n
variables which has an arithmetic circuit of size 2o(n) also has a depth 4
arithmetic circuit of size 2o(n).

The resulting depth 4 circuits are
∑∏∑∏

arithmetic formulas: the output
gate (at depth 4) and the gates at depth 2 are addition gates, and the other
gates are multiplication gates.

2.2 The Counting Hierarchy

A connection between the counting hierarchy and algebraic complexity the-
ory was discovered in [4]. This connection was further explored in [9]
and [16]. For instance, it was shown in [9] that the polynomials

∏2n

i=0(X− i)
have polynomial-size circuits if the the same is true for the permanent family.

We first recall the definition of the two counting classes ♯P and GapP.

Definition 3 The class ♯P is the set of functions f : {0, 1}∗ → N such that
there exist a language A ∈ P and a polynomial p(n) satisfying

f(x) = #{y ∈ {0, 1}p(|x|) : (x, y) ∈ A}.

A function f : {0, 1}∗ → Z is in GapP if it is the difference of two ♯P
functions.
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The counting hierarchy introduced in [27] is a class of languages rather than
functions. It is defined via the majority operator C as follows.

Definition 4 If K is a complexity class, the class C.K is the set of lan-
guages A such that there exist a language B ∈ K and a polynomial p(n)
satisfying

x ∈ A ⇐⇒ #{y ∈ {0, 1}p(|x|) : (x, y) ∈ B} ≥ 2p(|x|)−1.

The i-th level CiP of the counting hierarchy is defined recursively by C0P = P

and Ci+1P = C.CiP. The counting hierarchy CH is the union of the levels
CiP for all i ≥ 0.

The counting hierarchy contains all the polynomial hierarchy PH and is
contained in PSPACE.

The arithmetic circuit classes defined in Section 2.1 are nonuniform. As
a result, we will actually work with nonuniform versions of the counting
classes defined above. We use the standard Karp-Lipton notation [12]:

Definition 5 If K is a complexity class, the class K/poly is the set of lan-
guages A such that there exist a language B ∈ K, a polynomial p(n) and a
family (an)n≥0 of words (the ”advice”) satisfying

• for all n ≥ 0, |an| ≤ p(n);

• for all word x, x ∈ A ⇐⇒ (x, a(|x|)) ∈ B.

Note that the advice only depends on the size of x.

The next lemma [9, Lemmas 2.6 and 2.13] provides a first link between
arithmetic complexity and the counting hierarchy.

Lemma 1 If the permanent family is in VP0 then CH/poly = P/poly.

In particular, Lemma 1 was used to show that large sums and products are
computable in the counting hierarchy [9, Theorem 3.10].

In the remainder of this section we summarize some relevant results
from [16].

Definition 6 Let (fn) be a family of polynomials in Z[X] such that the
degree of fn and the bitsize of its coefficients are smaller than 2p(n) for some
polynomial p.
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The coefficient sequence of (fn) is the (double) sequence of integers
a(n, α) defined by the relation

fn(x) =

2p(n)−1∑

α=0

a(n, α)xα.

The coefficient sequence is said to be definable in CH/poly if the language
Bit(a) = {(1n, α, j, b); the j-th bit of a(n, α) is equal to b} is in CH/poly.

Note that in the above definition of Bit(a), the input n is given in unary but
α and j are in binary (this is the same convention as in [16]; by contrast,
in [9] all inputs are in binary).

Definition 7 Let (fn) be a family of polynomials as in Definition 6. We
say that this family can be evaluated in CH/poly if the language

{(1n, i, j, b); 0 ≤ i < 2p(n)and the j-th bit of fn(i) is equal to b}

is in CH/poly.

The following result establishes a connection between these two defini-
tions. It is stated (and proved) in the proof of the main theorem (Theo-
rem 3.5) of [16].

Theorem 4 Let (fn) be a family of polynomials as in Definition 6. If (fn)
can be evaluated in CH/poly at integer points, the coefficient sequence of (fn)
is definable in CH/poly.

In [16] we actually prove a multivariate version of this result, but the uni-
variate case will be sufficient for our purposes.

3 Sums of Products of Sparse Polynomials

A sums of products of sparse polynomials is an expression of the form∑
i

∏
j fij where each fij ∈ Z[X] is a sparse univariate polynomial. Here

“sparse” means as usual that we only represent the nonzero monomials of
each fij. As a result one can represent concisely polynomials of very high
degree. We define the size of such an expression as the sum of the number
of monomials in all the fij. Note that this measure of size does not take
into account the size of the coefficients of the fij, or their degrees. These
relevant parameters are taken into account in the following definition.
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Definition 8 We denote by SPSs,e the set of all polynomials in Z[X] which
can be represented by an expression of the form

∑
i

∏
j fij so that:

• The size of the expression as defined above is at most s.

• Each coefficient of each fij can be written as the difference of two
nonnegative integers with at most s nonzero digits in their binary rep-
resentations.

• These coefficients are of absolute value at most 2e, and the fij are of
degree at most e.

Remark 1 The polynomials fij in this definition can be thought of as a
”sparse polynomial with sparse coefficients”. The integer s serves as a spar-
sity parameter for the number of monomials as well as for the number of
digits in their coefficients. A typical choice for these parameters is s = 2o(n)

and e = 2O(n), where n represents an input size (see for instance Theorem 6
in Section 5).

We will show in Section 5 that constructing polynomial size hitting sets for
sums of products of sparse polynomials implies the lower bound PER 6∈VP0.
Here “polynomial size” means polynomial in s+ log e. It is quite natural to
insist on a size bound which is polynomial in s and log e: s is an arithmetic
circuit size bound, and log e can also be interpreted as an arithmetic cost
since each power xα in an fij can be computed from x in O(log e) operations
by repeated squaring. Likewise, we can write each coefficient of each fij as
the difference of two nonnegative integers as in Definition 1, and each of
the ≤ s powers of 2 occuring in a nonnegative integer can be computed
from the constant 2 in O(log e) operations. Each coefficient can therefore
be computed in O(s log e) operations. As a result, a polynomial in SPSs,e
can be evaluated from the constant 1 and the variable X in a number of
arithmetic operations which is polynomial in s+ log e.

Remark 2 The size of a SPS polynomial as we have defined it is essentially
the size of a depth three arithmetic circuit (or more precisely of a depth three
arithmetic formula) computing the polynomial. In this depth three formula
each input gate carries a monomial; each addition gate at level 1 computes a
fij; each multiplication gate at level 2 computes a product of the form

∏
j fij;

and the output gate at level 3 computes the final sum.
We can further refine this representation of SPS polynomials by arith-

metic circuits. Namely, instead of viewing the monomial aXβ as an atomic
object which is fed to an input gate, we can decompose it as a sum of terms
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of the form ±2αXβ; and each term can be further decomposed as a product
of factors of the form ±22

i

and X2j . The resulting object is a depth four
circuit where each input gate carries an expression of the form ±22

i

or x2
j

(note the symmetry between variables and constants in this representation).
This connection between depth four circuits and SPS polynomials plays a
crucial role in our results.

4 Algebraic number generators

As explained in Section 1.2, we wish to construct hitting sets by taking the
sets of all roots of the polynomials in an initial segment of an efficiently
computable sequence of polynomials. The following definition makes the
notion of “efficiently computable” precise (compare with the notion of hitting
set generator in [1, Section 6.2]).

Definition 9 An algebraic number generator is a sequence (fi)i≥1 of
nonzero univariate polynomials fi(X) =

∑
α a(α, i)X

α such that for some
integer constant c ≥ 1:

1. The exponents α range from 0 to ic;

2. a(α, i) is a sequence of integers of absolute value ≤ 2i
c

;

3. The language L(f) = {(α, i, j, b); the j-th bit of a(α, i) is equal to b}
is in CH/poly.

In the above definition we work with the complexity class CH/poly be-
cause this is the largest complexity class for which our proofs go through.
As shown in the next example, the language L(f) can often be located in a
much smaller complexity class.

Example 1 Each of the three sequences fi = x−i, (xi−1) or xi−2ix+i2+1
is an algebraic number generator. Notice that in these three examples we can
compute the coefficients of the fi in polynomial time rather than in CH/poly,
i.e., there is no need for counting and the construction of the fi is uniform.

Theorem 5 Let (fi) be an algebraic number generator. From this sequence
we define a family of univariate polynomials gn by the formula:

gn(x) =

2n∏

i=1

fi(x).

The coefficient sequence b(n, α) of gn, defined by gn(x) =
∑

α b(n, α)x
α, is

definable in CH/poly.
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Proof. The family (gn) can be evaluated in CH/poly at integer points. This
follows from the fact that integer sequences definable in CH/poly are stable
under products and summations [9, Theorem 3.10]. The result then follows
from Theorem 4. �

We illustrate this result on two examples.

Example 2 For fi = x − i we have gn(x) =
∏2n

i=1(x − i). This is the
Pochhammer-Wilkinson polynomial of order 2n. It was shown in [9, proof of
Main Theorem 1.2] that the coefficient sequence of Pochhammer-Wilkinson
polynomials is definable in CH.

Example 3 For fi = xi − 1 we have gn(x) =
∏2n

i=1(x
i − 1). This product

can be written as
gn(x) =

∏

ǫ

hn(x, ǫ) (3)

where the auxiliary family hn is defined by:

hn(x, ǫ1, . . . , ǫn) = x

n∏

j=1

[(1− ǫj) + ǫjx
2j−1

]− 1.

Note that the powers x2
j−1

in the above formula can be computed efficiently
by repeated squaring. The family (hn) therefore belongs to the class VP0

nb of
polynomials that can be evaluated in a polynomial number of arithmetic oper-
ations in the constant-free unbounded-degree model. It then follows from (3)
that gn belongs to the class VΠP0 (by definition, the families of this class are
obtained as in (3) from a VP0

nb family by taking an exponential-size product
over a VP0

nb family). It is shown in [16, Theorem 3.7] that the class VΠP0

would collapse to VP0
nb if VNP0 collapses to VP0. The proof of this theorem

is based on definability of coefficients in CH/poly for VΠP0 families (in our
particular example there is again no need for nonuniformity since the family
(fi) is uniform).

5 From a Hitting Set to a Lower Bound

In this section we prove our main result: constructing hitting sets for the
class SPSs,e of sums of products of sparse polynomials with sparse coeffi-
cients implies a lower bound for the permanent (recall that the class SPSs,e
is defined in Section 3).
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We begin with a lemma showing that under the assumption PER ∈
VP0, polynomials with coefficients definable in CH/poly can be efficiently
represented by sums of products of sparse polynomials This result is an
adaptation of [16, Lemma 3.2], which was itself a scaled up version of [9,
Th. 4.1(2)]. The main new ingredient is the depth reduction theorem of [3].

Lemma 2 Let gn(x) =
∑

α a(n, α)x
α where the integers α range from 0 to

2c·n − 1, a(n, α) is a sequence of integers of absolute value < 22
c·n

definable
in CH/poly, and c is an integer constant (independent of n).

If PER ∈ VP0 there is a polynomially bounded function p(n) such that
2p(n)gn ∈ SPSs,e where s = 2o(n) and e = 2O(n).

Proof. Expand a in binary: a(n, α) =

2c·n−1∑

i=0

ai(n, α)2
i. Let hn be the follow-

ing multilinear polynomial:

hn(x1, x2, . . . , xc·n, z1, . . . , zc·n) =

2c·n−1∑

i=0

2c·n−1∑

α=0

ai(n, α)z
i1
1 · · · zic·nc·n xα1

1 xα2
2 · · · xαc·n

c·n .

Then we have:

hn(x
20 , x2

1
, . . . , x2

c·n−1
, 22

0
, 22

1
, . . . , 22

c·n−1
) = gn(x). (4)

Assume that the permanent family is in VP0. by Lemma 1 the nonuniform
counting hierarchy collapses, therefore computing the i-th bit ai(n, α) of
a(n, α) on input (1n, α, i) is in GapP/poly (and even in P/poly). By Lemma 2,
(hn) ∈ VNP0. By Theorem 1 there exists a polynomially bounded function
p(n) such that the family h′n = 2p(n)hn is in VP0. By reduction to depth 4
(Theorem 3) we can compute h′n by a depth four circuit Cn of size 2o(n). The
inputs to Cn are the variables of h′n and the constant −1 (which we do need
to compute non-monotone polynomials). Finally, by virtue of (4) we can
plug powers of 2 and powers of x in h′n to represent 2p(n)gn by an expression∑

i

∏
j fij of the required form. In particular, as already pointed out in

Remark 2, after this substitution of inputs the multiplication gates in the
first layer of Cn will compute expression of the±2αxβ, and the addition gates
in the second layers will compute sparse polynomials with sparse coefficients.
Note that the sparseness property for the coefficients of the fij relies on the
fact that depth reduction does not require the introduction of large integer
constants in the resulting depth 4 circuits. �
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Next we we show that the product of the first 2n polynomials of an alge-
braic number generator can be represented by a sum of products of sparse
polynomials of subexponential size, assuming again that the permanent is
in VP0. Namely:

Theorem 6 Let (fi) be an algebraic number generator and gn(x) =∏2n

i=1 fi(x). If PER ∈ VP0 there is a polynomially bounded function p(n)
such that 2p(n)gn ∈ SPSs,e where s = 2o(n) and e = 2O(n). Here SPSs,e is
the class of sums of products of sparse polynomials from Definition 8.

Proof. We wish to apply Lemma 2 to the polynomial gn(x) =
∏2n

i=1 fi(X).
Each polynomial fi in this product is of degree less than 2cn (except possibly
fn, which may be of degree up to 2cn). Hence gn is of degree less than 2(c+1)n.
As to the coefficient size, we have ||gn||1 ≤

∏
i ||fi||1 where ||.||1 denotes the

sum of the absolute values of the coefficients of a polynomial. For each i
we have ||fi||1 < (2cn + 1) · 22

cn

≤ 22
(c+1)n

so that ||gn||1 ≤ 22
(c+2)n

. Finally,
definability of coefficients in CH/poly is provided by Theorem 5. �

We can finally prove our main result.

Theorem 7 (Lower Bound from Hitting Sets) Let (fi) be an alge-
braic number generator and Hm the set of all roots of the polynomials fi
for all i ≤ m. If there exists a polynomial p such that Hp(s+log e) is a hitting

set for SPSs,e then the permanent is not in VP0.

Proof. Let gn(x) =
∏2n

i=1 fi(x) be the polynomial of Theorem 6. Assume by
contradiction that:

(i) There exists a polynomial p such that Hp(s+log e) is a hitting set
for SPSs,e.

(ii) The permanent family is in VP0.

From our second assumption and Theorem 6 we know that 2p(n)gn is in
SPSs,e for s = 2o(n), e = 2O(n) and some polynomially bounded func-
tion p(n). Hence Hm is a hitting set for gn for m = 2o(n) since s + log e =
2o(n). By construction, gn vanishes on H2n and Hm ⊆ H2n since m ≤ 2n if
n is large enough. This is a contradiction since gn vanishes on the hitting
set Hm but is not identically 0. �

Remark 3 The hitting sets that we consider in this theorem are initial seg-
ments of a single ”universal” sequence of algebraic numbers. This require-
ment is not really restrictive: we can always assume that hitting sets have
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this form, by taking the union of all hitting sets up to a given value of s+log e
if necessary (and this transformation does not blow up the size of the hitting
sets by too much).

6 Hitting Sets from Real Analysis ?

In this section we present our new versions of the τ -conjecture. Each of the
three conjectures implies that the permanent is not in VP0.

Conjecture 1 (τ-conjecture for SPS polynomials) There is a polyno-
mial p such that any nonzero polynomial in SPSs,e has at most p(s + log e)
integer roots.

This conjecture implies that PER 6∈VP0 (apply Theorem 7 to the algebraic
number generator fi(x) = x− i). Conjecture 1 follows from the τ -conjecture
of Shub and Smale on integer roots of polynomials [24, 25] since, as explained
after Definition 8, polynomials in SPSs,e can be evaluated by constant-free
arithmetic circuits of size polynomial in s and log e. It was already shown
in [9] that the τ -conjecture implies a lower bound for the permanent. The
point of Conjecture 1 is that to obtain such a lower bound we no longer have
to bound the number of integer roots of arbitrary arithmetic circuits: we
need only do this for sums of products of sparse polynomials. This looks like
a much more manageable class of circuits, but the question is of course still
wide open. Another related benefit of SPS polynomials in this context is that
techniques from real analysis might become applicable. Before explaining
this in more detail we formulate a somewhat stronger conjecture. The idea
is that the parameter e in Conjecture 1 as well as the sparsity hypothesis
on the integer coefficients might be irrelevant. This leads to:

Conjecture 2 (τ-conjecture for SPS polynomials, strong form)
Consider a polynomial of the form

f(X) =
k∑

i=1

m∏

j=1

fij(X),

where each fij ∈ Z[X] has at most t monomials. The number of integer
roots of f is bounded by a polynomial function of kmt.

Note that the size of f as defined in Section 3 is bounded by kmt. Therefore,
Conjecture 2 is indeed stronger than Conjecture 1. Finally, we formulate an
even stronger conjecture.
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Conjecture 3 (real τ-conjecture) Consider a polynomial of the form

f(X) =

k∑

i=1

m∏

j=1

fij(X),

where each fij ∈ R[X] has at most t monomials. The number of real roots
of f is bounded by a polynomial function of kmt.

One could also formulate a weak version of the real τ -conjecture where the
parameters s and e would play the same role as in Conjecture 1.

At present there isn’t a lot of evidence for or against Conjecture 3. We
do know that the conjecture holds true when k = 1: by Descartes’ rule
each polynomial f1j has at most 2t− 2 nonzero real roots, so f has at most
2m(t − 1) + 1 real roots. The case k = 2 already looks nontrivial. In the
general case we can expand f as a sum of at most ktm monomials, so we
have at most 2ktm − 1 real roots. A refutation of the conjecture would be
interesting from the point of view of real algebra and geometry as it would
yield examples of “sparse like” polynomials with many real roots. Of course,
a proof of the conjecture would be even more interesting as it would yield a
lower bound for the permanent.

Finally we recall that if true, Conjecture 3 would be a property that is
really specific to SPS polynomials: as explained in the introduction, it is
known that for general arithmetic circuits, the number of real roots cannot
be bounded by a polynomial function of the circuit size.

7 Final Remarks

We have shown that constructing hitting sets for sums of products of sparse
polynomials with sparse coefficients will show that PER 6∈VP0. It should
be possible to obtain a variation of this result where the conclusion is that
τ(PERn), the constant-free arithmetic circuit complexity of the permanent,
is not polynomial in n. To obtain this stronger conclusion, a stronger hy-
pothesis should be necessary. It seems natural to expect that the role payed
by sparse polynomials with sparse coefficients will now played by sparse
polynomials with coefficients of “small” τ -complexity (this is a larger class
of polynomials since sparse coefficients are certainly of small τ -complexity).

Most importantly, one should try to prove or disprove the real τ -
conjecture. A solution in the case k = 2 (a sum of two products of sparse
polynomials) would already be quite interesting. We note that the search
for good upper bounds on the number of solutions of sparse multivariate
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systems is a topic of current interest in real algebraic geometry. The theory
of fewnomials [13] provides finiteness results and sometimes quantitative es-
timates on the number of real roots in very general “sparse like” situations.
The general estimates from [13], at least when applied in a straightforward
manner, do not seem to yield any useful bound for our problem. Neverthe-
less, one can hope that the methods developed in [13] as well as in more
recent work such as [5, 6, 19] will turn out to be useful.
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