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SUMMARY

A novel host behavior classification approach is proposed as a preliminary step toward traffic classification and
anomaly detection in network communication. Though many attempts described in the literature were devoted
to flow or application classifications, these approaches are not always adaptable to operational constraints
of traffic monitoring (expected to work even without packet payload, without bidirectionality, on highspeed
networks or from flow reports only...). Instead, the classification proposed here relies on the leading idea that
traffic is relevantly analyzed in terms of host typical behaviors: typical connection patterns of both legitimate
applications (data sharing, downloading,...) and anomalous (eventually aggressive) behaviors are obtained by
profiling traffic at the host level using unsupervised statistical classification. Classification at the host level is
not reducible to flow or application classification, and neither is the contrary: they are different operations which
might have complementary roles in network management. The proposed host classification is based on a nine-
dimensional feature space evaluating host Internet connectivity, dispersion and exchanged traffic content. A
Minimum Spanning Tree (MST) clustering technique is developed that does not require any supervised learning
step to produce a set of statistically established typical host behaviors. Not relying on a priori defined classes
of known behaviors enables the procedure to discover new host behaviors, that potentially were never observed
before. This procedure is applied to traffic collected over the entire year 2008 on a transpacific (Japan/USA) link.
A cross-validation of this unsupervised classification against a classical port-based inspection and a state-of-the-art
method provides assessment of the meaningfulness and the relevance of the obtained classes for host behaviors.
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2 DEWAELE ET AL.

1. Introduction

A major issue in network traffic analysis consists in classifying and characterizing traffic. Performing

an accurate classification is indeed essential in various respects, such as traffic control, application

identification, defense against attacks, and anomaly detection. Common approaches are based on rules

and signatures, combining port number identification with payload signature matching. However, they

are often observed to fail, either because of packet encryption, arbitrary or dynamic port use, or because

different protocols or utilizations employ the same single port (e.g., doing software update on port 80).

The possibility of analyzing unidirectional traffic only, because of asymmetric routing, also prevents to

use many such methods. Statistics-based approaches are also regularly used, amongst which supervised

learning methods [1] are the most recently used, for packet or flow classification. However, their

performance strongly depends on the choice of the training datasets, and hence on the availability of

traces where ground-truth of some form is assumed known – a situation which is rare, if even attainable,

for real Internet traffic. Another major drawback of supervised classification consists of the fact that

unknown traffic types cannot be identified. Therefore, unsupervised classification should be preferred.

Additionally, host-level classification, though it has greater usefulness for the global analysis of a link

or a network than usual application or flow classification, has rarely been performed, mostly because

of the complexity inherent to host characterization.

Therefore, the focus in this article is on characterizing host-level behaviors and classifying hosts,

in an unsupervised manner. The goal consists of the identification of classes of computers (or

hosts) characterized by their mixture of traffic, automatically from the statistical profile of their

communication, without any prior knowledge about existing classes of hosts. The proposed work is

intended as a kind of pre-filtering step of traffic analysis, preliminary to more specific operations of

network management (e.g., anomaly detection, application identification,...) Our rationale is that, on

backbone links, using methods for network management on every packet or flow is not easy, nor even

achievable due to the high load and the computational resources that would be needed. Given this

context, the objective of the current work to provide a first general view of what is transported on this

link, at the level of the hosts (which are less numerous that flows, and more stable in behavior). Then

this view could be used as an indication of which hosts, flows or packets should be inspected more

closely for network management (using for that existing methods for flow or application classification,

or for anomaly detection). In any case, host classification is not reducible to flow or application

classification (and neither does the contrary hold), because today’s Internet uses consist of mixtures of

different services so that a host can no longer be characterized by a single service. Hence conducting a

priori an enumeration of classes of behaviors becomes a hopeless task. The choice of an unsupervised

approach allows to split hosts into groups with different behaviors and, most importantly, to find new

and/or unknown classes of behaviors (mix of traffic, new applications, anomalies or malicious attacks,

etc) besides the expected classical ones (P2P, Web, etc). Also, it avoids the conceptual and practical

difficulties inherently associated to training set preparation. To that end, a classification technique

is proposed that makes use of an extended characterization of the host traffic patterns. It is further

required that only a small number of parameters have to be tuned, and that the technique is applicable to

monitor backbone links: It should work without packet payload inspection, with unidirectional traffic

data only (no bidirectionality in data due to load-balancing or other routing policies), for highspeed

networks and/or from flow reports only. Even many state-of-the-art methods (e.g., [2, 3]) do not work

for unidirectional traffic [1]. The constraints stemming from such requirements rule out most the the

classification procedures classically involved in IDS (cf. e.g., [4, 5]).

There are two major novelties in this contribution. First, nine connection pattern based features are
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UNSUPERVISED HOST BEHAVIOR CLASSIFICATION FROM CONNECTION PATTERNS 3

involved for the characterization of host-level traffic. It will be argued how and why such nine features

provide a relevant description of both the transport and connection layers of host traffic as well as their

functional and social behaviors (popularity, acting as servers or not, communicating with one or many

hosts,...). Second, there is no reason a priori why host clusters should have convex structures in the

9D connection feature space. Therefore, their identification from standard clustering methods [6] can

turn very difficult. This hence motivates the development and use of a recent and efficient technique:

Classification is performed using a Minimum Spanning Tree (MST) based clustering algorithm that

can identify non-convex sets as classes in the feature space. The proposed procedure is evaluated on

real traffic traces collected on a transpacific link. Data (the MAWI dataset) are publicly available, at

http://mawi.wide.ad.jp [7]).

The remainder of the article is organized as follows: Traffic classification related works are discussed

in Section 2. The rationale behind the choice of the nine features and their precise definitions and

meaning are detailed in Section 3. An efficient MST based clustering method is described in Section

4. Results obtained from real traffic traces and validation, by traffic manual inspection and cross-

validation against classical methods are reported in Section 5. This host classification yields fruitful

insights of the real traces inspected (e.g., there are different usages of the same protocols). Conclusions

are drawn in Section 6.

2. Related work

Traffic classification procedure can be broadly split into two categories: rule-based vs. statistics-based

ones. We will not conduct a complete survey of existing methods (see, e.g., [1]), and only some

elements are provided to compare and contrast the proposed method from the ones in the literature.

Rule-based: Snort [8] is the paradigm of rule-based intrusion detection system inspecting packet

payload and comparing it with its signature database. It works for traffic classification, but fails to

identify encrypted or emerging applications. Other approaches based on heuristic rules (e.g., port

numbers) are deemed reliable and often used because the rules are designed based on human’s intuition

and give results comparable to the findings of experts (if given enough rules). In particular, BLINC

“Multilevel Traffic Classification” [9] focuses on communication flow structure among hosts and

recursively identifies flows per application. It is an interesting approach, but still has drawbacks that all

rules and communication patterns (represented as graphlets in [9]) should be pre-defined and the order

in which they are applied affects its performance. Furthermore, it aims at identifying server application

flows rather than client ones. Also, as for the host-level classification, when there is a mixture of

application flows, they are independently identified. Finally, some studies [1,10,11] show that BLINC

does not work at best on backbone links. Anyway, we will compare our work to results given by

BLINC which appears as one of the state-of-the-art classification methods at the host-level, and one

of the few with easily available implementation. Also, the results obtained in Section 5.4 will show

that BLINC provides classification results that are acceptable, even if not perfect. Recently, an original

work classifies hosts by mining Google database [12]; A limitation here is that it seems to have some

difficulties in identifying client hosts and P2P application users, finding only a small proportion of them

in the traffic. As we know that P2P is a major part of traffic in the MAWI dataset [13], this methods

does not appear to be suitable for comparison. More generally, signature and port based approaches are

accurate for well-known traffic, but cannot identify unknown one (e.g., zero-day attack).

Statistics-based: Several supervised learning methods (e.g., neural network [14], Bayes theory [3],

and Support Vector Machine [1]) have been applied to traffic classification. However, their accuracy,
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4 DEWAELE ET AL.

depends on correctly-labeled training dataset: this is difficult to construct for real Internet traffic.

Unsupervised clustering methods (e.g., K-Means [2], AutoClass, DBSCAN [6] or entropy-based

profiling [15]) have also been used, grouping packets or flows with similar features (cf. e.g., [4, 5] for

reviews of unsupervised classification though orientated toward anomaly detection). Note that these

works often use less features for describing the traffic than what we will propose in the next Section

(e.g., in [15], only source ports, destinations ports, and destination IP are used). A part of the originality

of the present work is to involve metrics relevant to network traffic information both at a global level of

the host, and for the packets or flows it emits (or receives), and not only features related to individual

packets or flows. As a consequence, related methods can not give classification on the host-level (the

objective here) which is relevant for the global monitoring of a network and its hosts.

Here, unsupervised classification is performed on network-based features so as to identify host

behaviors.

3. Features of connection pattern

The first contribution is to analyze how a collection of features (or attributes) can be used to statistically

parametrize traffic at the host level.

In [9], a graphlet description of traffic at the host-level, complemented with functional and/or

social level features, is proposed, that can be read as a connection pattern characterizing a host.

However, graphlets, essentially living in a space of potentially infinite dimension, convey far too much

information for a proper use in any unsupervised statistical classification procedure. Actually, diversity

in graphlets is such that the authors of [9] had to resort to the design of a set of rules, aiming at

identifying, amongst a set of known application graphlets, the one that best matches that of a given a

host. As a consequence, only simple patterns can be identified while no new class nor any mixture of

traffic can be discovered.

Instead, the goal of the present contribution is to represent host connection patterns in a space of

traffic features aiming at balancing the parsimony/relevance trade-off: The space dimension must be

kept as low as possible (as opposed to the approaches in [4, 5]), for processing efficiency and ease

of interpretation; while carrying rich enough information to allow the discrimination of different host

behaviors. To that end, nine features labelled Fn, with n = i, ..., ix, are defined. For each host, they are

computed and used as a 9D feature vector. These nine features are gathered into three groups sensing

respectively the host network connectivity, dispersivity and traffic content. In the proposed approach,

each host can be characterized either as a source of traffic (meaning that it emits packets having this IP

source), or as a destination of traffic (packets with its IP as destination). This would end up with two

classes for each given host: one pertaining to its IPsrc behavior (this one is discussed in details here),

and one relevant to its behavior as IPdst. The latter one is not discussed in this article for the sake of

simplicity. Mutatis mutandis, the results that would be obtained with the same methodology for hosts

as destination of traffic, are similar in the sense that hosts (seen as clients, servers, doing transfers,

. . . ) would be usually classified as having the same roles even though the traffic is seen in the reverse

direction. The conciliation of both points of view, would be a major asset for traffic management.

However, being a different task in itself, it will not be conducted in the present work, and will only be

discussed shortly at the end.

I. Network connectivity. These three first features describe the way a host is connected to the Internet,

consisting of:

i) the number of peers (or destination IPs): the peers of a given hosts are defined as being the
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Figure 1. Connection Dispersion. Left: The entropies of IP for the various hosts in a traffic is represented, as
scatter plot of S(IP2) vs. S(IP4), each dot represents a host. Two different areas are apparent: S(IP2) ≪ S(IP4)
and S(IP2) . S(IP4) that can be distinguished by taking the ratio: Fiv = S(IP2)/S(IP4). Right: distribution

of this feature after normalization (fiv) for traffic associated to the Sasser virus only, and for the whole traffic.

destination IPs to which at least one packet is sent to in the trace. This feature distinguishes one-to-one

communications (e.g., downloads) from one-to-several (e.g., browsing) and from one-to-many (e.g.,

netscans, viruses);

ii) the number of source ports, divided by the number of peers (or destination IPs): Servers reply

usually on a single, fixed source port for classical protocols, while clients open a different (usually

random) port for each connection to a server. Large values often betray attacks (many connections

initiated) or portscans.

iii) the number of destination ports, divided by the number of peers (destination IPs): Likewise,

this feature probes whether the analyzed IP peers has a server behavior or not.

These parameters, or variations of, are classical in the traffic classification literature. The number of

peers describes the social behavior of the host, notably its popularity in communicating with other

computers. A normalization by the number of peers is introduced for the second and third features

to better quantify the functional behaviors of the host and enables to identify whether it is a client

(usually one port for a given peer), a server (many ports, many peers), a piece of an overlay network

(small number of ports, many peers). Note also that ICMP is handled as a different port number, as in

netflow. Beyond, the mere number of ports used, these three first features convey a richer information

regarding the pattern of connectivity of the host, and convert this complex network connectivity pattern

into numerical indices, simpler to exploit.

II. Connection dispersion in the network. Because features Fi to Fiii are not sufficient to assess the

social or functional role of a host, two features are introduced to characterize the dispersion observed

on the list of peers (or IPdst) associated to a given host. To quantify the spreading in the IP space

of the peers of a given host, the use of variances or kurtosis of the distribution is not suited. IPs are

actually not valued and there is therefore no meaning in taking a mean over the values of the IPs, or

over any power of them. Only the repartition of the probabilities is meaningful. Because the complete

distribution of the peers in the IP space would be too complicated to characterize, its Shannon entropy S
is classically used instead, as it is known to relevantly measure the distribution dispersion [16]. Entropy

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 00:1–17

Prepared using nemauth.cls



6 DEWAELE ET AL.

0 500 1000 1500

10
−3

10
−2

10
−1

10
0

Packet Size (byte)

P
ro

ba
bi

lit
y 

(lo
g−

sc
al

e)

Figure 2. Distribution of Packet Size (for the data used in 5). Histogram in log-scale, with bins going from 0 to
1500 bytes, steps of 48 bytes. The vertical (red) lines are the limits, decided from this distribution, of the small
and large packets, corresponding to its two dominant modes. They respectively account for 46% and 44% of the
packets, with a large drop of probability between the chosen limit and the probability of the medium-sized packets
that are defined here as packets larger than 144 bytes and smaller than 1392 bytes (in coherence with the definition

of the features).

for IP distributions has been previously used in traffic analysis (e.g., [17]), to check whether peer

distributions in the IP space are of spiky or flat type. This solution is consistent with the aforementioned

parsimony/relevance trade-off. Still, a refinement is introduced: Entropy is not computed directly on

the distribution of the entire IP addresses but instead on those of the different bytes in the IP space:

iv) the ratio of the entropies of the second and fourth bytes of IPdst: S(IP2)/S(IP4)
v) the ratio of the entropies of the third and fourth bytes: S(IP3)/S(IP4).

Let us explain the motivations beyond such refinement. Because most IP addresses are reserved, and

because some subnetworks are more populated than others, distribution of peers over the IP space is

not random in real cases. This is even more so for backbone link traffic, as it conveys only packets

targeting a specific subpart of the Internet. In IPv4, the first and second bytes usually correspond to

locations or corporations managing IPs, while the fourth one represents hosts in a same subnetwork

and distributions of regular traffic inherits from this structure. Therefore, computing S directly over IP

does not account for the strong structure of the IP space, while byte base entropy ratios do. Indeed, as

can be seen in Fig. 1 (left), for most of regular traffic, entropy measured on IP2 tends to be just a little

bit lower than that on IP4. Conversely, a large difference in these entropies is likely to betray scanning.

This motivates the computation of entropies of the IP dst second, third and fourth bytes (noted IP2 to

IP4), and then the use entropy ratios.

Let us further detail the benefits of using byte entropies as compared to the simpler entropy on

IP, S(IP): A host sending a couple of packets to a thousand real HTTP servers in the Internet has

the same S(IP) as a scanner (or virus) sending packets toward a thousand IPs over a subnetwork, in

an organized manner, whereas S(IP2) (and possibly S(IP3)) differ since scanner sends packets to a

limited number of subnetworks. Hence, byte entropies display a higher variability in the last bytes

than in the first ones. Conversely, some viruses and malwares are targeting random hosts, missing the

fact that some subnetworks are more populated than others. Again, this behavior is not visible on the

single S(IP) but are likely to be seen when comparing S(IP2/3) and S(IP4). For instance, the ratio

Fiv = S(IP2)/S(IP4) distinguishes Sasser traffic from regular traffic (cf. Fig. 1, right). S(IP1) is

not used because traffic routing constraints the possible values taken over a link, and, for traffic on a

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 00:1–17
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A (137.116.155.68) B (193.169.26.130)
         

Host Peers Src ports Dst ports S(2/4) S(3/4) Flow len. Small Large S(mid)

A

B

B (dst)

Figure 3. Features of connection patterns and Graphlet. Comparison for two given hosts (with the anonymized
IP provided in the trace) in the trace of Feb., 1st 2008, of the computed 9D features and of the associated graphlets.
The value between 0 and 1 of each feature is indicated by the thick vertical bar on the scale (0 is on the left, 1
on the right). Host B displays a complex behavior for its graphlet; to better understand what happens and for the
sake of example, its features as IPdst (the last line B (dst)) are given. The complete interpretation of the traffic of
these two hosts is given in the text: A is mostly doing HTTP request over TCP; B has a mixture of traffic (P2P,

Ping-flood).

transit backbone link (such as the transpacific link analyzed hereafter), values for the first byte vary

only weakly. Still, S(IP1) would be useful if the interest is in network-wide classification.

III. Host traffic content. Finally, packet sizes and numbers are used as follows, so as to characterize

the type of traffic emitted, with no recourse to payload inspection. Indeed, the distribution of packet

size for the entire traffic (cf. Fig. 2 computed from the total traffic of the MAWI data [7] in 2008),

two modes are clearly observed standing out at the extrema of the possible packet size: one for small

packets and one for large packets. In between, the distribution shape varies, depending on the type of

traffic (observed peaks are representative of various applications or protocols). Consequently, the four

additional characteristic features are retained:

vi) the mean number of packets per flow: It roughly distinguishes elephant flows from mice flows or

non-connected flows (likely attacks or scans);

vii) the percentage of small size packets (≤ 144 bytes) in emitted traffic: Small size packets mostly

consist of signaling traffic;

viii) the percentage of large size packets (≥ 1392 bytes) in emitted traffic: Large size packets indicate

data exchange traffic, such as downloads;

ix) the entropy of the distribution of medium size packets defined here as packets larger than 144

bytes and smaller than 1392 bytes in emitted traffic.

This last feature specifically points toward web or interactive traffic, usually displaying higher

variabilities in packet sizes than other types of traffic. Also, some protocols use fixed-size packets,

which can obviously be measured by the entropy of the distribution of medium size packets. Recent

studies [18, 19] showed significant signatures in the packet size distribution for traffic analysis, even

though numerous protocols are more and more often trying to vary packet size to avoid being easily
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8 DEWAELE ET AL.

detectable.

Normalization of the feature space. Classification amounts to ordering distances in this 9D space,

defined above. The chosen features naturally vary in large (number of ports, peers) or narrower

(entropies) ranges. To balance their relative importance, a non linear transform is applied to each feature

Fn: fn = (2/π) arctan(Fn/Rn) where Rn are reference parameters that ensure the renormalization

of all features into the common range of values [0, 1]. Parameter Ri is set to 10, corresponding to

average number of peers and found to relevantly separate few from many peers. Parameters Rii and

Riii are both set to the actual number of peers Fi. For entropies, features iv and v, being ratios, are

naturally normalized. Hence, fiv and fv correspond to angles in the S(IP2/3) and S(IP4) spaces.

The size of flows Fvi is scaled by Rvi = 100; Fvii and Fviii are naturally normalized, as expressed

in percentage. Finally, feature Fix, entropy of midsize packets, is naturally scaled into [0, 1] with a

division by log K (where K is the number of bins involved in the packet size distribution). All these

normalization parameters may require tuning with the nature of the studied link, yet the choices of their

precise values have been checked to not critically vary the performance of the proposed classification

procedure.

Features of Connection patterns vs. Graphlets. The selected features are claimed to be representative

of the transport-level behavior of a given host. To check for that, the features and the graphlets

(from [9]) of 2 specific hosts are shown in Fig. 3. The 9 features are displayed (from 0 (left) to 1

(right)) and are compared against graphlets as a convenient way to visualize the type of activities of

the hosts. Features i to iii obviously reflect the number of nodes to put in the graphlets. The remaining

features complement the description. For instance, host A is mostly doing HTTP requests over TCP: It

uses a small to medium number of peers and src ports, whereas it targets a single same dst port (turning

out to be port 80) and emits a dominant proportion of small packets (feature vii is close to 1). Clearly,

the 9 features reveals satisfactorily typology of this HTTP client behavior. For host B, one would have

a hard time to interpret the graphlet or to find a known class of traffic giving rise to such a graphlet.

Instead, the quantitative features (shown here both as sender and receiver) provide information that

can be dealt with in a automated manner, using a suited unsupervised clustering method. From the

analysis of the feature values, it can guessed that this host displays a mixture of traffic, and, indeed,

manual inspection reveals that it combines P2P traffic with many peers with the emission of a Ping-

flood aiming at a large number of destination hosts. Such an host behavior is typically of the type that

the unsupervised classification method described below enables to identify.

Computation of the features. Finally, let us note that features i to vi could be calculated from netflow

reports. Note here that flows are defined classically, either by considering all packets sharing the same

five-tuples during 15min to be in the same flow, or by using the same method as for netflow reports, with

timeouts of a few minutes. For short traces, this was not changing the results. Due to computation and

memory constraints, though, most netflow reports use sampled data when throughput is high, implying

a non reversible loss of information. Because the goal here is primarily to assess the relevance of the

proposed method, we do not use netflow reports and, instead, measure flow parameters (e.g., Fi or

number of ports) directly from traces. As this question has already classical answers (e.g., netflow) the

procedure is not detailed here: It involves in our implementation hashing techniques, and is fast and

memory efficient enough to work online on any backbone using a consumer desktop PC. Some recent

works, e.g. [20, 21], share a common spirit, using sketches. Features vii to ix, not available in netflow

reports, are computed directly from packet traces. However, these features are easy to compute on-line

from traces. This would be a welcome addition to usual flow reports. Robustness to sampling is beyond

the scope of the present contribution and left for future work.
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(1) (2) (3)

Figure 4. MST clustering procedure. For illustration purpose, a set of hosts is spread into a (reduced 2D) feature
space (1), the corresponding MST is shown (2) with the longest edges in dashed lines, and the shorter edges in
solid lines. Then, step II (edge cutting procedure) yields the clusters shown in plot (3). Step III of the procedure is

not illustrated here as it makes sense mostly in a space with more dimensions and with more hosts involved.

4. Unsupervised classification using Minimum Spanning Tree

The benefits of using unsupervised classification to detect new types of host (and traffic) has been

discussed earlier; this rules out supervised methods such as Support Vector Machines (SVM). Because

the shapes of the clusters can not be expected a priori to be convex sets, and because the classification

procedure has to work in the nine-dimensional feature vector, it is chosen to rely on minimum spanning

tree (MST) for the classification. From graph theory, a MST is defined, for a given set of nodes, as the

fully connected acyclic graph whose edge total length is minimal, amongst all possible trees (see,

e.g., [22, 23] for a tutorial introduction). The benefits for using a MST clustering procedure fulfill

all requirements listed above: It is unsupervised, hence avoiding the recourse to a labeled traffic

database (that is rarely available and that would anyway require regular actualization); It yields a

posteriori and data-driven clusters, hence enabling to discover new classes of (not previously expected

nor obtained) behaviors. Also, the motivation stems for the fact that the clusters obtained are in no

manner constrained to be convex, or of a specific shape: clusters of hosts would emerge from regions

of densely connected regions, be they of bent shapes, hyperplanes, hyperspheres or of any geometry.

See, e.g., [24, 25] for examples of MST-based clustering methods that can uncover complex-shaped

clusters in other contexts. Additional motivations for using MST based techniques relies on some more

theoretic nevertheless attractive features. MST belong to the class of quasi-additive graphs and can

therefore be seen as entropy estimators [26]. As a consequence, the clusters output by the proposed

algorithm are actually optimal with respect to an entropy minimization criterion, as shown in [27]

and rediscovered recently in [28]. Furthermore, the relationship between MST features and manifold

properties has recently been highlighted: When dealing with high dimensional data that may lie on

a lower dimensional manifold, this graph based approach allows to handle it in some natural way

(cf. [24]). Finally, the possibility to address large data set problems should also be emphasized, as

MST constructions may be quite easily implemented so that the computational burden is maintained in

O(N log N) operations.

Let us now explain how the MST clustering technique is customized and tuned for the classification
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of host behaviors and detail a complete description of the procedure. It consists of three steps, as

sketched in Fig. 4, on a simplified (for sake of clarity) yet real example in a reduced 2D feature space.

I) Compute MST: From the selected traffic data, the 9D features fn are computed for each host and the

corresponding MST is computed in this 9D space. For efficiency, we use a classical greedy algorithm

to built the MST, starting from a random host (as it is known that the MST is unique and will not

depend on this choice). Because some features take only integer values, the feature space is made

continuous by adding random values uniformly spread in [0, 1] to Fn, hence prior to the normalization

transformation. This transforms area where a large number of hosts take the same integer value into

dense regions. This can be read as an alternative solution to the introduction of weights at nodes where

hosts are collocated.

II) First Clustering: Edges of the tree are sorted by decreasing lengths, and the longest ones are

removed to get independent components. The edge length threshold depends on the desired number of

clusters, and is in relation with the number of hosts in the data (and hence the mean distance between

hosts). It is currently set to T = 0.25, as a result of a trial-and-error approach. The precise value of this

threshold is found to be not overly sensitive. For instance, it remains valid when used to analyze traffic

recorded on the same MAWI dataset, for other years.

Clustering by cutting edges in MST is known to be unstable in the presence of outliers (e.g., rare

anomalies), or when there is some “jitter” of the vertices (which is possible for Internet traffic because

of mixed host behaviors), hence requiring refinements to identify relevant classes, leading to a third

step.

III) Identify dense clusters: The most dense subpart (cores) of the clusters of identified at step II are

detected. They are defined as being subtrees of cardinality larger than 10, whose nodes are connected by

edges of length smaller than T ′ = 0.05. This threshold is currently selected by trials and its automatic

determination will be studied thoroughly in future contributions. When two cores are found within the

same cluster of step II, they are split into separate ones by removing the longest edges along the path

between cores, on condition that the distance that separates them is large enough: the number of pairs

of points, belonging to the two different sub-clusters, whose distance is below T is calculated; if this

number is a low percentage (less than 10%) of all possible inter sub-cluster pairings, sub-clusters are

split into independent classes. Finally, only significant clusters, consisting of at least 25 hosts, are kept.

The proposed operational approach for cluster identification deserves a brief discussion. Steps II and

III in the procedure requires ‘hand-tuned’ parameters based on some priors or expertise. As already

outlined, the results that are presented in the papers show a good robustness with respect to variation

in the threshold value. However, a fully unsupervised data driven algorithm should include automatic

estimation of these later parameters. Estimating the right number of clusters and their centroı̈ds is a

difficult problem, for which no universally adopted strategy exists. Among the recent approaches are

Prim curves thresholding [29], spectral clustering methods [30] and diffusion maps [31] to cite but a

few. Prim curves allow to unfold the high dimensional distribution into a one dimensional curve that

highlights the presence of high density (reps. low density) areas in the data set. Setting the threshold

may rely upon a Neyman Pearson strategy to maximize the false cluster detection probability [32].

Spectral clustering exploits the structure of the eigen-decomposition of the graph Laplacian. The

number of significant eigenvalues allows to estimate the number of clusters. However, this approach

requires a parameter that may be difficult to tune if the clusters have very different characteristic sizes.

A characteristic length is also required for defining the diffusion kernel in [31]. Although a thorough

discussion of unsupervised clustering methods is beyond the scope of the paper, it is worth mentioning

that these latter methods are very promising and must be investigated in future work, to provide a fully
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Figure 5. Clusters C1, S1 and S3 displayed in projected space on features i, ii and iii (only). Each dot is one
host of the given cluster. The non-convex and intricate shapes of the clusters found justify the use of the MST-
based clustering method. A first point is that each cluster is spread over a large part of the space, with some
overlapping between them: a simple segmentation in this space would not separate them. Also, in this projected
3D space, clusters S1 and S3 (both associated to servers, as discussed in text, Section 5.3) are different in that
hosts in S1 have often a high fiii with a low fiii: this indicates that hosts in S1 are communicating with many
peers using a single type of service (just a few src ports) but aim at many different dst ports. For host of S3, which
behave also as servers, the number of src ports fii is a little bit higher, showing a larger variety of services. The
difference between clients C1 and servers is mostly in the number of src ports fii used: this feature is closed to 1,

telling that there is roughly one flow for each peer.

automated procedure.

The proposed 3-step procedure yields an adaptive (or data-driven) number of dense and significant

clusters of hosts, whose shapes and numbers of hosts per cluster are neither identical nor a priori

defined (cf. Fig. 4). Notably, the clusters do not need to be hyperspheres, and can be non convex.

Hence, they can consist of any complex manifolds of any dimensionality. The method described here

has not been designed nor finely tuned for the specific dataset that is used in the next Section, and it

was based on generic principles. As a consequence, the performance of the methodology would not

change dramatically on other data.

5. Results and Cross-Validation

5.1. Dataset: description and clustering

The traffic analyzed here, taken from the MAWI traffic repository [7], consists of publicly available 15-

min pcap traces with anonymized addresses and no payload. Traffic is collected on a 1 Gbps transpacific

link between Japan and the US (Samplepoint-F). Note that even if traffic is recorded in both directions,

and because of the asymmetric nature of WAN routing, traffic of a given host is not necessarily collected

in both directions. Specifically, traces do not usually contain both request and answer direction of a

given flow. This feature was already mentioned in [13] and is consistent with the findings reported

in [33]. This forbid the use of a number of classification methods (e.g., [2, 3]) specifically requesting

bidirectionality. The link mostly carries commodity traffic so that the main traffic is web, followed

by P2P (yet transcontinental P2P traffic displays unusual features, as discussed below). More detailed

descriptions of its content can be found in [7, 13, 34].
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12 DEWAELE ET AL.

First, the host MST-based clustering algorithm is applied to 7 days in Jan. 2008, hence yielding a set

of unsupervised clusters. Chosen days are Jan. 2008, 8, 9, 10, 15, 16, 17, 22, so as to have a mix of both

week-days and week-ends. Second, 50 other traffic traces, also recorded in 2008 (5 days each months)†

are analyzed: A host is associated to the cluster to which it has minimum distance, where distance to

a cluster is defined here as the minimum distance to any point belonging to the cluster. Should this

distance be larger than T , it remains unclassified. Days are picked without prior knowledge to preclude

subjectivity. Each trace is processed independently, hence whenever a host is present in severals, it is

regarded as new (which is consistent with its traffic being likely to vary from one day to another).

Only results for hosts that send at least 1500 packets during a 15min trace are reported, so as to keep a

number tractable for manual inspection of their traffic (to check for the relevancy of the results with an

network expert). Both direction, Japan to the US and back, are analyzed at the same time.

This methodology for data analysis lead us to the clustering of host behaviors. The largest clusters

are further reported on in Fig. 6. Before analyzing them, let us first turn to the labeling of the trace.

5.2. Trace labeling for validation

Because the goal of the present work consist of assessing the relevance of clusters (and hence to explain

the chosen labels), comparisons against some form of data ground truth are needed. However, for real

traffic (as the MAWI traces), ground truth is not available per se. Many algorithms can help to classify

packets and hosts to obtain a basic labeling, hence to ease the assessment of automatic classification

procedures. As payload is not available here, methods that rely on Deep Packet Inspection cannot be

used. This is a limitation of the methodology adopted for validation; however, absence of payload is a

very frequent situation of analysis of network traffic, especially for a posteriori analyses and research

studies (due to privacy issues and to the size of datasets with payloads). Also, using payload, known

applications can be recognized but it does not help to identify unknown applications, nor is it useful

directly for host classification that is the objective here.

For validation and interpretation of the clusters that are identified by the MST-based clustering,

we first rely on our expertise of Internet traffic, and, more particularly of the MAWI dataset gained

from the previous analyses conducted over it (cf. [7, 13, 34]). To guide the labeling work of network

practitioners, and as shown in [1], a first step of port-based analysis is sufficient to identify most legacy

applications such as web, mail, DNS,... Then, the anomaly detection method, introduced in [34] allows

to tag as such most of the anomalies occurring in the analyzed traffic. Finally, a set of heuristic rules

(some being inspired by those given in works such as [9]) complete the tools used to label manually the

traces and the behavior of the hosts. As a side note, let us remark that in the analysis of the content of

the traffic, hosts are defined as being a specific IP. In many networks, NAT process is used that blurs the

strict correspondence between an IP and a host: a given IP can be used by different computers. When

the host associated to the IP changes (e.g., because DHCP is used), it does not matter much as we are

using short duration traces (15 min) that are processed independently: the risk is reduced of having a

given IP used by another host during this period. For NAT using port translation, several computers can

be under one unique IP at the same time. Ignoring this is currently a limitation of the reported analyses,

both with the proposed MST-based clustering and with classical Port-based or BLINC classifications

that are used for comparison (none of these methods distinguish between hosts having the same IP).

The methodology and the discussion about cross-validation would have to be improved in future works,

†More precisely, the days were the 1st, 8th, 15th, 21st and 29th of each month.
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Label No. Peers Src ports Dst ports S(2/4) S(3/4) Flow len. Small Large S(mid) #Hosts

T1 22 11637

T2 9 6344

T3 12 1626

T4 38 1591

T5 33 572

T6 24 986

T7 39 586

C1 16 7875

C2 27 2765

C3 31 524

C4 19 2389

C5 18 1566

C6 20 608

C7 21 530

S1 0 5383

S2 11 1772

S3 1 1760

S4 3 991

S5 4 690

S6 7 4225

S7 8 4056

S8 6 1694

S9 13 476

S10 14 442

P1 15 4461

P2 34 560

Figure 6. Features of the identified clusters. For each cluster are displayed labels given by trace labeling, (No.
is an automatic identifier (No.) output by the algorithm) and its nine features computed from the traces. For each
feature, the means and variances computed over all the hosts belonging to this particular cluster are graphically
displayed on a scale for 0 (left) to 1 (right): the means are the thick vertical bars and the variances are shown with
the grey area around the means. Finally, the number of host (#Hosts) in each cluster is provided in the last column.

by taking into account NAT mechanism.

From that point, the clusters found will be described in terms of their traffic content as found by

manual inspection of the traces, before we turn in 5.4 to the cross-validation with other automated

classifiers.

5.3. Identified clusters

Fig. 5 shows three clusters (chosen for the sake of the example) as projections onto the subspace

spanned by the three first features (high-dimensionality precludes any graphical representation of the

9D space). These projections illustrate that clusters display a significant variety in shapes, many being

elongated manifolds, and that they are likely to partially superimpose in any projection subspace.

This hence reinforces the conviction that higher dimension representation spaces are needed for valid

clustering, and that the MST-based technique makes sense to find clusters with such shapes.

Fig. 6 displays the connection features (in mean and variance) of the most populated clusters

obtained from the proposed host MST-based clustering technique. Combining the trace labeling and

the analyses of the similarity of the values taken by the features for each cluster, enables us to group

and label them into classes of behaviors: letters correspond to different kinds of port usages (while

No. was the automatic number given by the algorithm). Clusters labeled as T (for Transfer) consist of

hosts whose traffic uses few ports on both sides. Servers (S clusters) send packets to a large number of

ports, from a limited number of ports (e.g., web servers send packets always from port 80). Conversely,

clients (C clusters) send packets from many ports to a limited numbers of dst ports. They are further
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Label No. HTTPr HHTPa P2P Ping SYN SMTPr SMTPa DNSr DNSa SSHr SSHa Mix #Hosts

T1 22 6771 121 3357 427 1 3 59 55 53 46 24 41 11637
T2 9 3 5581 364 0 0 112 0 0 0 0 8 5 6344
T3 12 16 539 802 9 0 7 0 0 0 3 4 14 1626
T4 38 2 197 892 250 0 6 0 0 43 2 16 16 1591
T5 33 7 22 382 13 0 6 0 0 0 2 8 15 572

T6 24 51 21 41 622 0 0 16 133 58 2 1 7 986
T7 39 0 0 583 1 0 0 0 0 0 0 0 0 586

C1 16 6138 0 130 3 18 115 0 119 0 43 2 1003 7875
C2 27 2271 2 215 16 0 1 1 37 0 12 0 57 2765
C3 31 69 0 0 78 220 11 0 83 0 0 0 25 524

C4 19 2057 4 144 1 3 18 0 5 0 1 2 49 2389
C5 18 751 0 248 0 3 49 0 1 0 17 0 151 1566
C6 20 147 0 60 0 10 0 0 1 0 1 0 309 608
C7 21 224 0 30 0 8 2 0 0 0 3 0 193 530

S1 0 0 4648 171 0 0 1 0 0 16 0 2 340 5383
S2 11 0 1637 65 0 0 2 0 0 0 0 3 22 1772
S3 1 12 369 257 11 0 0 442 212 29 1 60 337 1760
S4 3 14 221 193 6 1 0 309 14 124 0 26 47 991
S5 4 7 561 47 0 0 10 0 0 0 1 2 19 690

S6 7 0 3849 45 0 0 1 0 0 3 0 2 123 4225
S7 8 17 3578 191 0 0 63 0 0 0 0 4 32 4056
S8 6 0 302 33 0 0 0 116 0 37 0 1136 17 1694
S9 13 0 455 7 0 0 0 0 0 0 0 0 3 476
S10 14 0 421 11 0 0 0 0 0 0 0 0 3 442

P1 15 719 186 523 12 44 111 272 239 38 0 29 1922 4461

P2 34 9 5 235 0 15 5 0 1 0 0 5 251 560

Figure 7. Cross-validation of the classification with port-based analysis. The classes from port-based classifier
are in columns, the clusters from the MST-based method are in lines. For each cluster discussed in the text (see
Section 5.3), whose Labels as used in Fig. 6 are given in the first column (with the identifier No. output by the
procedure), is shown the number of hosts falling into the different classes of a port-based classifier. This port-
based classifier identifies types of traffic using only port numbers (or protocol ICMP for the Ping class); in case
of Mix traffic, the rule to decide in which class the host falls in is explained in Section 5.4, paragraph I. The last
column, #Hosts, is the total number of host in the cluster. Hosts in clusters T have mostly simple connections; in
clusters S (respectively C) are servers (resp. clients) of HTTP transfer. Clusters P group hosts doing P2P (often
hidden). More details on these clusters are given in Section 5.3, and more details on the cross-validation are in
Section 5.4. The numbers in bold are the most numerous components in the clusters; a general view of the cross-
classification is given by these numbers mainly: they show that the table is sparse, each cluster of the MST-based
method displaying only one or two types of traffic if identified by ports. Finally, when a network traffic expert
looks carefully at the traffic of each host, the clusters are usually more meaningful than the simple port-based

analysis.

divided into 2 groups depending on their number of peers. Clusters P (for P2P) group hosts using a

large number of both dst and src ports.

As a first observation, let us note that a number of MST-based clusters gather two or more protocols

(as seen by labeling of the trace) and conversely that some such protocols are split into several MST

clusters. This helps grouping the clusters together. Let us detail the major classes and their differences.

Clusters T1 − T5 mostly are one-to-one connections, using usually a single port. The inspection of the

5 largest such clusters shows that their dominant traffic consist of a mix of HTTP and of P2P, most

of them characterized by long flows. Deeper analyses reveal that they are split on the basis of packet

sizes: T1 contains mostly small packets, whereas those of T2 are large. This discriminates the two

sides of a downloading activity (be it through HTTP or P2P protocols): the former T1 corresponding
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to signaling packets, hence receiving hosts, the latter T2 to actual data packets, hence senders. Host

A from Fig. 3 is in T1. T3 to T5 include midsize packets, related to file requests and information

exchange on chunks. T4 and especially T5 show low values of entropy on those midsize packets, often

a sign of (old) P2P protocols or games (fix medium-sized packets). This is confirmed by port analysis:

classical port numbers (for instance, as collected in [35]) are associated to P2P that do not use dynamic

port numbers, e.g., 1214 for Kazaa, 1337 for WASTE, 6346 and 6347 for Gnutella. Clusters T6 − T7

contain hosts connected to a large number of peers with fixed ports. Cluster T7 groups hosts using P2P

protocols without dynamic ports, while in T6, hosts display intense Ping and/or DNS traffic: many of

those are related to anomalies [34]. In clusters T , Ping traffic can be found because ICMP packets do

not use ports (it only adds one to the number of ports). Most of these are probably anomalies (some

Ping floods for T1 and T4, many Ping scans or results of spoofed flooding for T6), another explanation

could be experiments with radars and traceroute, considering the academic nature of the network on

the Japan side.

Clusters S and C gather hosts whose dominant behavior is sender or client of HTTP, respectively

sending ACK or requests. S1 to S5 are popular servers, with many peers. S6 to S10 communicate with

a lower number of IPs. Accordingly, C1 to C3 are clients that connect to many different servers, which

can be explained, for example, by web surfing, while C4 to C7 connect to less servers, and probably

seek precise information. Cluster C3 is more peculiar is that it comprises many SYN, Ping and DNS

traffic that are analyzed as activities from viruses and worms, or netscans. It corresponds to an anomaly

cluster, and C7 seems to be in the same case.

Clusters P contain many hosts doing P2P in a hidden manner [36], with ports that dynamically vary in

the high number range. Typical P2P traffic is not as common on this transpacific link as it could be on

other networks, as firstly many P2P applications avoid linking peers with a high RTT (the case for this

backbone link), and secondly the differences in language and in popularity of the various P2P protocols

between Japan and the US limit P2P communications on this link. Still, P1 matches the typical behavior

of leechers connecting to many peers and requesting chunks or sending acknowledgments, hence using

many small and mid-size packets. P2P exchanges are often performed as background activity, and this

explains why many hosts in P1 display a mix of activities, for instance being web clients at the same

time. Host B from Fig. 3 is a typical example of P1 (its Ping-flood activity would be exhibited by

classification from its behavior as a receiver).

The discussions above intend to illustrate that host MST-based clustering procedure offer a rich and

fine classification of the host behaviors, that would be finer than what a simple port-based classifier

does. For instance, HTTP traffic is split into different S or T clusters, which identifies significant

differences in the usage of the same protocol in real-traffic. The same holds for hosts doing P2P or

with a mixture of traffic. Several clusters are often associated to a kind of transport-level behavior,

and they differ one from another due to the functional or social behavior of the host (server vs. client,

one-to-one or many-to-one connections,...) Finally, our finding is that, in a longitudinal study of the

traffic, the classes are quite stable over several weeks. The recommendation would be to update the

classification every couple of months or so. Only in case of anomaly outbreaks (e.g., a new major

worm or virus), or over a time-frame of several months the clusters would change, as the usages and

applications on the Internet change.

5.4. Cross-validation with other automated classifiers

To better understand the benefits of the proposed classification method, a comparison to known

classification methods is done in the manner of cross-validation of the results.
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I) Cross-validation with a Port-based classifier. Instead of the labeling by an network expert

combining study of ports, some heuristic rules and an anomaly detection step, one could use a classical

port-based classifier, known to be failing in many cases but still used as a simple, admitted method

that is enough for legacy traffic [1]. Still, one heuristic rule is added to port classification: The ratio of

SYN flags in flows is used to detect SYN floods (this is made necessary by the large number of SYN

flooding anomalies detected in the MAWI traces [34]). This port-based and SYN-flag classification

procedure (developed first for [34]) labels each host according to the most important class of flows that

it sends (or receives). For most hosts, a dominant class is found. However, whenever more than a single

class of traffic accounting for at least 20% of the packets sent (or received), or when the dominant class

account for less than 50%, host is classified Mix traffic. This procedure is used here as a port-based

classification of the behavior of hosts: 250 different classes are obtained, and we discuss here the most

frequently observed as representative: HTTPr or HTTPa (respectively requests/answers), P2P, Ping,

SYN, SMTP(r/a), DNS(r/a), SSH(r/a) or Mix.

The cross-validation between the MST-based clustering approach and the port-based (plus SYN-

flag) classification procedure is reported in Fig. 7. The sparsity of this table provides us with a first

satisfactory conclusion: Despite the fact that traffic information used in each approach are different

and independent, the match in host classification is high. This reflects the adequacy of the proposed

procedure. One can go back to the description of the identified clusters in 5.3 and check that the

discussion about the nature of each clusters is coherent with the class given by the port-based

classification for the majority of the hosts in a given cluster. For instance, T1 is mostly requests in

HTTP and P2P whereas T2 groups hosts that answers over HTTP. Host in T3 and T4 are doing P2P

plus some web browsing. The client/server distinction in clusters C and S is particularly well reflected

in Fig. 7 by looking at columns HTTPr/a. Clusters P , containing a high number of hosts doing P2P

performed in background activities at the same time as other communication, are not easily classified

from Ports only as doing P2P; hence, they are spread in many other categories and only the MST-

based clustering on connection patterns identify them as such. Finally, for clusters containing hosts

associated to a high proportion of anomalies (T4, T6, C3, C6, C7), the port-based classification reflects

only partially this fact. Ping or SYN-flooding is detected from time to time (thanks to the additional

SYN-flag rule) but the MST-based classifier seems to be more sensitive by isolating the anomalous

hosts from other ones displaying the same activity but the anomalies. A last comment is that there is

not a large number of hosts displaying unusual or weird behaviors in the traces (e.g., when a host is

doing P2P of HTTP in addition to scans, anomalies,. . . ). Almost all of them would fall in the category

of Mix traffic for this classification and this group accounts for less than 8% of the total hosts reported

in Fig. 7. As some of these host are grouped in clusters where many anomalous behaviors were found

(clusters C6, C7 or P ), the remaining hosts in the Mix category outside these specific clusters are not

numerous. All in all, if there are outliers because if weird or anomalous behaviors of hosts, there are

not a major part of the traffic.

II) Cross-validation with BLINC (transport-level part) (of [9]). Fig. 8 displays a cross-validation

between the proposed procedure and the BLINC classifier on the transport-layer level (because of the

absence of payload in the traces). Let us comment the table. Again, this table is mostly sparse if one

looks globally at the major proportions of traffic of each cluster (the ones in bold, consisting in more

than 10% of each class). Clusters T are often classed by BLINC in “Unknown” traffic (often, round

half of the hosts), despite the fact that, as already noted, hosts in these groups are mostly doing HTTP

or P2P transfers with a small number of peers. This difficulty of BLINC is due to it failing partially on

backbone links [1, 10, 11], and because P2P traffic in these groups is very often disguised. Clusters T1

and T2 contain identical traffic but for being on the receiver and servers sides (respectively); BLINC
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Label WEB UNKN P2P MAIL DNS FTP SCAN CHAT STREAM #Hosts

T1 60.88 22.04 15.03 0.36 0.86 0.72 0.00 0.02 0.08 11637

T2 7.40 89.95 1.33 0.92 0.27 0.14 0.00 0.00 0.00 6344

T3 8.29 62.10 27.27 0.60 0.67 1.00 0.00 0.00 0.07 1626

T4 10.98 56.94 25.58 1.01 5.06 0.43 0.00 0.00 0.14 1591

T5 3.27 43.59 49.35 0.52 0.92 1.05 0.00 0.00 1.18 572

T6 10.41 58.04 8.52 5.99 16.72 0.00 0.00 0.32 0.00 986

T7 1.45 49.89 42.84 0.22 2.57 0.22 0.00 0.00 2.80 586

C1 90.82 1.18 3.05 2.74 2.14 0.07 0.00 0.00 0.00 7875

C2 90.81 4.10 3.15 0.63 0.75 0.47 0.00 0.00 0.04 2765

C3 15.59 50.61 5.67 2.83 25.10 0.20 0.00 0.00 0.00 524

C4 89.75 5.40 3.37 1.02 0.23 0.23 0.00 0.00 0.00 2389

C5 92.39 1.52 1.85 1.05 3.19 0.00 0.00 0.00 0.00 1566

C6 34.25 33.52 31.31 0.00 0.92 0.00 0.00 0.00 0.00 608

C7 96.30 0.00 0.34 1.18 2.19 0.00 0.00 0.00 0.00 530

S1 89.86 3.51 3.30 2.12 0.75 0.16 0.00 0.29 0.00 5383

S2 91.74 5.25 1.93 1.03 0.00 0.06 0.00 0.00 0.00 1772

S3 30.96 5.36 19.08 27.53 15.56 0.00 0.00 1.51 0.00 1760

S4 26.70 18.33 7.89 32.40 12.38 0.12 0.00 2.18 0.00 991

S5 81.25 5.07 6.25 4.90 1.69 0.51 0.00 0.00 0.34 690

S6 95.02 4.03 0.58 0.20 0.13 0.05 0.00 0.00 0.00 4225

S7 78.50 18.72 1.80 0.55 0.39 0.04 0.00 0.00 0.00 4056

S8 27.38 56.89 1.69 10.13 3.91 0.00 0.00 0.00 0.00 1694

S9 50.61 25.31 23.06 0.82 0.20 0.00 0.00 0.00 0.00 476

S10 63.39 24.69 6.49 5.02 0.42 0.00 0.00 0.00 0.00 442

P1 51.47 1.11 25.40 13.71 6.76 1.45 0.00 0.00 0.10 4461

P2 1.64 54.91 37.64 0.55 0.00 4.55 0.00 0.00 0.73 560

Figure 8. Cross-validation of the classification with BLINC. The classes from BLINC are in columns, the
clusters from the MST-based method are in lines. For all the clusters of Fig. 6 and Fig. 7 (whose Labels are recalled
in the first column), the percentage of hosts in the cluster falling into the different classes of the BLINC classifier
is shown. For BLINC, the class UNKN is for “Unknown”. The last column, #Hosts, is the total number of host in
the cluster. The numbers in bold are the most numerous components in the clusters (others being always less than
10% of the hosts in this cluster). The major comment is the sparseness of this table of cross-classification: Both
methods often agree to class hosts under similar categories. However, the MST-based method seems to bring more
details in that it breaks a given type of hosts (for instance the ones doing mostly WEB) in several classes according
to their behavior with only simple (often one-to-one) connections (clusters T ), or as clients (C) or servers (S) in
many connections. Also, the proportion of “Unknown” is important in BLINC (because of the difficulties it has

on backbone traffic). More detailed comments are given in the text, Section 5.4.

identifies correctly in T1 this mixture of WEB and P2P traffic whereas for T2 it ends mostly in the

“Unknown” class. We suppose that it is the lack of bidirectionality and of payload in the traces that

confuses BLINC. This shows that our procedure is robust to the absence of such information. T3 is

correctly seen by BLINC as well as the other classifiers as a group of hosts active on P2P (with only

few peers). The same holds for server and client clusters (S and C) shown here: in many of them, the

large majority of hosts are correctly labelled by BLINC as doing WEB. Others are labelled by BLINC
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with high proportion of “Unknown”. Note here the refinement given by the MST-based method, that

provides the means to decide whether they are servers or clients, so giving a functional-level view of the

hosts. Cluster P1 of hosts with P2P activities (with many peers) is again spread from BLINC between

WEB and P2P mostly, whereas for the hosts in P2 which are doing P2P as well, the class provided

by BLINC are “Unknown” or P2P. Again, this is associated to the difficulty of BLINC of labeling

correctly P2P on a backbone link. Hosts in cluster C6 are spread between WEB, “Unknown” and P2P

whereas the Port-based analysis was analyzing them as doing a mixture of traffic. A strength of the

MST-based clustering method is to be able to distinguish in a separate trace such a group of hosts with

Mix traffic, without putting it in the same class as hosts withe simpler traffic profile (e.g., cluster C5).

Finally, cluster C3 deserves a specific comment: it was told to group hosts with anomalous traffic (SYN

and Ping flooding, DNS anomalies). With the BLINC procedure, hosts are spread in WEB, “Unknown”

and DNS classes; the MST based procedure described here adds the information that all these hosts,

despite their other activities, can be grouped as being a not so small cluster with equivalently anomalous

activities. This shows the advantage of the unsupervised nature of the method: a cluster of anomalous

hosts is identified without a priori related neither to its existence, nor to its characteristics.

5.5. Computation load

Computational load wise, there are two different phases in the proposed classification procedure. First,

the extraction of the cluster itself requires to process a large enough set of data (here, 15min of traffic

collected over 7 different days). This is the most computationally intensive phase that remain however

very reasonable even for the case of the MAWI backbone traffic analyzed here, and in any case,

much lower as compared to the actual duration of analyzed data. All the results reported here were

computed on a standard desktop computer (with a G5 processor). Extraction of the features describing

the connection patterns were taking between 2 and 3 minutes per trace of 15 minute duration. For

instance, if one wants to use 3 months of traffic (with 15min per day) as the basic dataset for finding

clusters, this part of the method should take less than 2 hours of computation. Then the computation of

the MST and the clustering were done in a couple of minutes from these. The number of clusters obtain

and kept were up to 200; this number has to be decided mostly depending on the amount of time an

expert will then spend on traces to analyze them. The second step is the classification of new traffic:

it amounts to computing the 9 feature for each host within a chosen analysis window, followed by the

calculation of the distances to clusters. This phase hence shows a very low computational cost and can

hence be implemented real time, i.e., almost immediately at the end of the analyzing window: as told,

this takes 2 to 3 minutes to compute them once a 15 min traffic trace is acquired, and the classification

is immediate. These figures are given for the typical traces in MAWI dataset for 2008: there are usually

between 3 · 105 and 6 · 105 different IP addresses in a trace, 5 · 105 and 1 · 106 different flows, around

400 MB of trace without payload (that would be larger than 10 GB with payloads). The computational

cost of the proposed method appears to be reasonable enough for it being applicable in an operational

context.

6. Conclusion

The key points of the present contributions are threefold. First, an original 9D feature vector has

been defined and shown to characterize accurately and efficiently traffic at the host behavior. It is

backbone traffic classification oriented: It accommodates large data sets, avoid the use of payload
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and bidirectionality. The dimension of this feature vector has been kept low (9D) thanks to the

meaningfulness and richness of the information each feature convey: It probes the host network

connectivity, connection dispersion and traffic content. Second, classification is based on a Minimum

Spanning Tree approach: It is unsupervised hence avoids the recourse to training sets and ground truth

knowledge; it assumes a priori neither a fixed number of clusters, nor the convexity of their shapes; it is

data-adaptive, notably it accommodates new classes of traffic not observed earlier. Third, its feasibility

and performance are assessed on a one year real traffic dataset collected over a transpacific backbone

(MAWI dataset). Cross-validation against classical port-based classifiers or transport layer based

procedures proposed in the literature enables to assess the relevance and potential or the classification

procedure proposed here. This contribution has hence shown that combining this relevant 9D feature

vector, characterizing the connection patterns of a host, to the MST clustering technique yields an

unsupervised and meaningful classification of host behaviors.

This approach will require further developments for the rationale and the automation of parameter

tuning. Still the parameters to tune remain limited in number and the global performance shows

little sensitivity to their precise values. As compared to any rule-based classifier, the proposed host

MST-based clustering procedure hence requires little parameter tuning. Results presented here on the

different behaviors of hosts have been obtained on traffic of the MAWI dataset in 2008; when doing

preliminary analyses of other years of the MAWI dataset, the reported classes appear to be mostly stable

along time (up to significant events on the Internet such as the Sasser worm outbreak of 2004-2005, as

already noted in the longitudinal analysis of [13]).

The characterization of the hosts was here developed mostly using their behavior as source of traffic.

As already mentioned, another point of view is to study them as destination of traffic (computing

the connection features from packets having their IP as IPdst). Similar results are obtained in our

study of this question: hosts are usually seen as having the same role, even though by mostly seeing

traffic in the reverse direction of connections. However, specific results were not shown on that respect

because it would not bring more insight by itself. More than merely showing similar results in the other

direction, the important work to do is to jointly use both points-of-view. It would be of utmost benefit

to understand the behavior of a given host with finer details. However, such an automated fusion of

information obtained on a host as source or destination is not conducted here as it would be a new

research question per se, and part of a larger task. Obviously, the joint use of both the proposed host

MST-based clustering and other procedures such as the port-based and SYN-flag procedure (or the

BLINC methodology) would also take advantages of the different nature of the analyzed information,

in a collaborative manner, to provide practitioners with a clear yet automated view of the content of the

traffic at the host level.
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