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Community shared bicycle systems, such as the Vélo’v program launched in Lyon in
May 2005, are public transportation programs that can be studied as a complex sys-
tem composed of interconnected stations that exchange bicycles. They generate digital
footprints that reveal the activity in the city over time and space, making possible a
quantitative analysis of movements using bicycles in the city. A careful study relying
on nonstationary statistical modeling and data mining allows us to first model the time
evolution of the dynamics of movements with Vélo’v, that is mostly cyclostationary over
the week with nonstationary evolutions over larger time-scales, and second to disentan-
gle the spatial patterns to understand and visualize the flows of Vélo’v bicycles in the
city. This study gives insights on the social behaviors of the users of this intermodal
transportation system, the objective being to help in designing and planning policy in
urban transportation.

Keywords: Community bicycle sharing program; Vélo’v; Cyclostationarity; Nonstation-
arity; Dynamic network; Network community

1. Introduction

Community shared bicycle programs have been under development in the recent

years all over Europe, as an answer to an increasing need of green and versatile

public transportation in cities. Lyon’s shared bicycle program, called Vélo’v and

operated by the JCDecaux agency [1], is a major one of its kind, having started

in May 2005. Besides their evident interest as a new means to think about public
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transportation, such community shared programs offer a new way to look into the

dynamics of movements inside a city, and more generally into its activity. In a sense,

the Vélo’v system provides digital footprints that reveal the activity of people in

the city over time and space, and makes possible their analysis.

Different issues motivate the study of such a system. Some questions are about

the usage patterns of this kind of transport, with reference to social or economical

studies of transportation, while others are about the system itself: does the service

work correctly? Can it be optimized? Can one regulate the availability of bicycles?

An objective in this paper is to make first steps in such directions by proposing

relevant tools for the study of the space and time patterns of activity from all the

trips made with Vélo’v, going from an empirical point of view that can be compared

to previous studies of equivalent systems in Paris (the Vélib’ program studied in

[2]) or in Barcelona (Bicing ; studied in [3, 4]), to a more quantitative point of view

on the activity of the stations, and their properties.

The main contributions of the paper are intended to be in the use of methods

from signal processing and data analysis to study the Vélo’v system, so as to exhibit

some features of the system and to begin to answer some economical questions

linked to such community system. Many social questions can be addressed using

this dataset, and some specific ones are chosen in this study. How many trips are

made using the rented bicycles, and is there an evolution in time of the use of the

system? Is it then possible to forecast the use of the bicycles, as a help toward better

regulation of the service. We will turn to statistical signal processing to address

these questions. A second set of questions pertains to the spatial distribution of

the system. The service is deployed in the whole city which is not uniform. The

objective here is to learn, from the moves of rented bicycles, what is the dynamics

of movements in the city at various hours of the day: Where do people go? What

are the main flows between different parts of the city? As the dataset is large,

data mining methods are needed to work on this topic. Finally, if compared to

what social surveys and enquiries provide, the use of digital footprint to study the

movements of bicycles gives new insights on properties of trips with bicycles in a city

(length of trips, frequency of use, influence of external factors such as weather,...).

On this aspect, this work shares a perspective similar to the one in [5], using digital

footprints of a given means of urban transportation, first to understand how this

method of transportation is used, and more globally to reveal some features of the

moves in a city.

More precisely, the paper is organized as follows. In Section 2, a general pre-

sentation of the Vélo’v program is given, highlighting its key features. Section 3

is concerned with a description of the data, in both time and space, that can be

accessed for studying the system. Section 4 is then devoted more specifically to

the global activity in time for which a predictive model is developed using signal

processing tools, whereas Section 5 is concerned with spatial patterns of activity,

with results in terms of clustering and communities obtained using data mining

methods.



June 3, 2010 11:0 WSPC/INSTRUCTION FILE velov˙acs

Shared Bicycles in a City: A Signal Processing and Data Analysis Perspective 3

(a) (b)

0

50

100

150

200

250

300

Jun05 Sep05 Dec05 Mar06 Jun06 Sep06
0

1

2

3

4

5

6

7

8
x 10

4#Stations (b−−), Bikes (r.−), Subscribers(m)

Month & Year

#stations, #bykes(/10) #subscribers

Map of Lyon with Velo’v stations: Voronoi

Fig. 1. General features of the Vélo’v system. (a) Time evolutions of the numbers of stations
(dashed line, in blue), of available bicycles Nv (dot-dashed line, in red), and of year-long subscribers
Ns (solid line, in magenta). (b) Map of Lyon with Vélo’v stations (dots), their Voronoi diagram
(blue lines), and subway lines (thick red lines).

2. Vélo’v: A community bicycle system

The Vélo’v program is deployed in the city of Lyona, in France, since May 2005. It

now consists of 4000 bicycles (also called Vélo’v) that can be hired at any of the

340 stations, spread all over the two cities and returned back later at any other

station. In contrast to old-fashioned rental systems, the rental operations are fully

automated: the stations are in the street and can be accessed at anytime (24h a day,

7 days a week), and the rentals are made through a digital terminal at the station

using a credit card to obtain a short-term registration card, or using a year-long

subscription system. First, this makes possible the collection of the complete data

of rentals, and so of movements made with Vélo’v—a dataset not readily available

for other means of transportation. Second, a global and fine management of the

program can be envisioned since a real-time survey of the system is done. Currently,

automated station reports are collected into a central database and mostly used a

posteriori, if one excepts online reports about the availability of bicycle or free

stand to return one at stations [6]. Yet, there is a strong incentive to evolve toward

less empirical management of the system, for instance by being able to increase or

redeploy in real-time the available bicycles to answer the demand.

Anonymized data from May 2005 to the end of 2007 were made available to us by

JCDecaux and the “Grand Lyon” City Hall. The dataset consists of the records of

aMost of the stations are in downtown Lyon, in the southern and northern campuses of Lyon and in
the town of Villeurbanne in the North, all part of the “Grand Lyon” Urban Community. The rest
of the article uses simply the name “Lyon” to name the area of deployment of the program, and
Grand Lyon City Hall to name the administrative service of the “Grand Lyon” Urban Community.
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Fig. 2. Time evolution of the number of hirings. (a) Number of bicycles hired per hour L(t),
and its average per day Ad and per week Aw. (b) Image of a typical week (16 Sept. 2007 is a
Saturday), at different aggregation times ∆ (the different ∆ are given in the legend inside the
graph); for the clarity, when data is aggregated at 2 hours and one day, we divided the amplitude
to renormalize it as a number of rental per hour (yet estimated on aggregation over ∆).

all bicycle trips, over more than two years of exploitation. During this period, there

were more than 13 millions bicycle trips. Each trip is documented with its starting

time and station location, its ending time and destination station, the duration

and length of the travel (as recorded on the bicycle), and specific tags when the

movement is not a rental but a maintenance operation (first deployment of a Vélo’v

bicycle, or movement to a repair workshop).

An important characteristic is that this bicycle program was expanded while

already open. The Vélo’v system opened officially on May 19th, 2005 and stations

and bicycles have been introduced continuously during the take off and lifetime of

the system (no more stations are currently added , but this phase is not in the

studied dataset). Fig. 1 (a) depicts the capacity of the system (station and bicycles

being open/equipped regularly between May 2005 and October 2005). After this

period, deployment reaches a plateau (October 2005 to May 2006) before a new

phase of expansion that ends in January 2008 where the total current number of

installed stations was reached (340 stations). It relates to the increase along time of

the number of year-long subscribed users (displayed also in Fig. 1 (a)). Note however

that bicycles can also be used without subscription, with short-term registration

cards bought on spot.

Before turning to a more detailed analysis of the data, let us comment on a

spatial property of the system. Fig 1 (b) displays a map of Lyon, showing the current

deployment of the Vélo’v stations in the city, and a Voronoi diagram [7] around the

stations. It gives an idea of the variation of the density, higher near city center

and major axis of transportations, yet putting almost any point of downtown no
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further than 500 m from a station. However, the stations differ both in neighborhood

and number of stands, so that some inhomogeneity is expected in their use. Vélo’v

movements can then be seen as a dynamic process over the transportation network

that connects all stations. An analysis of the flows of bicycles on this network will

be useful to find spatial patterns of the Vélo’v activity.

3. Descriptive statistics of Vélo’v data

Let us first derive basic facts on the Vélo’v system, using empirical features obtained

from the data.

3.1. Temporal Patterns

As depicted in Fig. 1 (a), the increase in the number of available bicycles and stations

parallels the increase of the number of subscribers. The progressive deployment and

the increase in popularity of the program generate a nonstationary behavior of the

whole system. Fig. 2 (a) shows the number of rentals per hour, aggregated by hours,

days and weeks, for the whole network. The main characteristics of the load of this

system are the nonstationary evolution of the use of Vélo’v (its increase), combined

with a cyclostationary pattern over the week. This will be studied and modeled in

Section 4.

A first question when one is confronted to data based on a large number of

individual events is to choose a proper scale of representation in time (a question

reminiscent of studies on Internet packets [12]). Let us call ∆ the time scale over

which to aggregate the number of new rentals. The trade-off here is usual: the

smaller ∆ is, the larger the fluctuations are, whereas a larger ∆ may smooth the

signal with the risk of losing some relevant temporal features. Fig. 3 (a) displays the

distribution of rental durations, and in (b) the same histogram is given in log-log

axis. This distribution of durations is large, yet there is a mode at 9 min and the

median equal to 11 min is representative of its core. Let us note in Fig. 3 (b) that,

for duration between 26 and 34 min (the 2 dashed lines), a subtle drop is seen,

reflecting the fact that the first 30 minutes are free and the bicycles beep after 25

minutes of use.

We varied ∆, typically from 15 minutes to 2 hours, so as to remain within

the scales that are sufficient to smooth out the effect of individual rentals, while

keeping the global evolutions of their collection, most importantly the one over the

day. As an example, Fig. 2 (b) shows, for a typical week, the number of rentals made

aggregated on a time scale of 15 min, 30 min, 1 h, 2 h and one day. The aggregation

at 1 hour gives a good trade-off between resolution of details and fluctuations. On

this specific week for instance, one sees clearly a repetition of modes each working

day. Using smaller ∆, it is less clear due to fluctuations. For ∆ = 2h, it is smoothed

out (especially the peak around noon). The aggregation scale will thus be 1h by

default.
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Fig. 3. Temporal features of Vélo’v. (a) Rental duration distribution (in %). (b) The same in
log-log axis (dashed red lines point on the interval [26, 34] min.)

3.2. Spatial Patterns

In Fig. 4, spatial patterns of the traffic at each station are displayed: For a given

hour, the amount of incoming and outgoing traffic is proportional to the area of the

semi-circles at each station, incoming traffic on bottom, outgoing one on top. Then

the average of the directions of incoming trips at each station is represented with a

light (green) vector whose direction and length represents the anisotropy of the set

of trips arriving at this station. Let Ωin(m) = {trips into station m}; the complex

representation of this vector is computed as the average
∑

k∈Ωin(m) eiθk/|Ωin(m)|,

where θk is the angle coordinate in the plane of the origin-destination vector (des-

tination being station m). Dark (blue) arrows represent the same average direction

computed for leaving bicycles, with Ωout(n) = {trips from station n}. Zooms on

specific parts of the city are shown in Figs. 4 (2), (3) and (4).

Let us now underline the main trends among the use of bicycles. The first com-

ment is the non-uniformity of use of the stations: the order of magnitude of the

number of trips at less frequented station is very low as compared to the most fre-

quented stations in the center of the city (less than 1/100 of their use). Zones A

and C in Fig. 4 (1) and in zooms (2) and (3) correspond to university campuses. On

Monday 8 am, these stations receive many bicycles whereas on Tuesday 4pm-5pm

(see maps (2) and (3)), there are more leaving trips than incoming ones (and this

usually lets the stations be in deficit of Vélo’v for the evening). In Fig. 4 (1), zone B

corresponds to stations that are on the top of a hill (Croix-Rousse) and mostly have

leaving trips (at all hours of the day). All these zones illustrate the unbalanced char-

acter of many stations. Related to that, many stations show an anisotropic activity:

stations around the center of the city have usually incoming trips coming from the

center and leaving ones going to the center (hence the appearance of a field of vector

pointing toward the center of the city in Fig.4 (1)). In Fig.4 (4), mostly the center

of the city is displayed: Zones D and F correspond to railway stations, and zone E
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(1) Monday 8am-9am

(2) Tuesday 4pm-5pm (3) (4) Thursday 4pm-5pm

Fig. 4. Visualization of the traffic at all stations. The amount of incoming and outgoing
traffic, for a given hour, is proportional to the area of the semi-circles at each station, incoming
traffic on bottom, in light grey (green); outgoing on top, in dark grey (blue). The arrow gives the
average direction of these trips (incoming in light green; outgoing in dark blue arrow), the direction
and length of the arrow being computed (as defined in the text, Sec. 3.2) from the anisotropy at
each station m, e.g., for incoming trips:

P

k∈Ωin(m) eiθk /|Ωin(m)|.

is an active area with both shops and residential parts. All these three zones serve

also as connection hubs with major subways and buses. These zones experience a

rush of activity at almost anytime during the day. For instance, many people seem

to return or take a Vélo’v near one of the train stations on Thursday 4pm-5pm,

validating the idea that Vélo’v are used as one part of an intermodal transportation

system (with trains, buses or subways). These simple diagrams based on temporal

patterns visualized at each stations allow us to differentiate their behaviors. Some

stations (zones D and F in Fig. 4 (3)) act like hubs for Vélo’v. At several other
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Fig. 5. Individual characteristics of trips with Vélo’v. Distribution of lengths of each trip (in
log-log axis on (b)). There is a peak near 0 and up to 150m, which amounts to 7.5% of the traffic,
that is mostly associated to bicycle that are returned immediately for various reasons (technical
issues, or changes of plan).

stations, mostly one-way flows (reversing direction depending on the time of the

day) are found, that leave the stations unbalanced during the day. This indicates a

use of Vélo’v by people nearby the stations, using it to commute to or from works.

3.3. Individual characteristics of trips

Before aggregating the trips in space and/or time, studies can also be conducted

on individual trip level. Basic features are displayed here. Fig. 5 (a) and (b) reports

the distribution of lengths of each journey. Like the duration distribution, 3 parts

can be distinguished: a sharp peak near 0 that is commonly associated to rentals

of bicycles that are out of order due to mechanical reasons; a mode with median

near 2.1 km corresponding to normal use; a long tail up to more than 20 km. The

tail accounts for just a small fraction of the rentals (around 5%), yet it exists and,

if one would like to use some agent-based modeling, at least 3 different classes of

rentals should be made. In the present study, we will favor aggregated analysis

rather than agent-based ones, especially because we also lack any identification of

users or bicycles, to protect privacy of users.

A complementary characteristics, in Fig. 6, is the median velocity of the user

(computed from the data reported by the Vélo’v bicycles), averaged over all the

trips that begun at the same time (with an aggregation scale of ∆ = 1h) during the

week. Here again, there is a signature of the natural cyclostationarity of the week,

people moving faster in the morning than later in the day. Also, an interesting

point is that the average velocity is between 12 and 14 km/h. As a comparison, the

mean velocity in cities is 18 km/h for buses, 25 km/h for (regular) subways and

only 17 km/h in the center for cars [8]. This proves that bicycles are actually a

competitive means of transportation as compared specifically to cars.
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Fig. 6. Median speed of individual trips with Vélo’v, as a function of the day of week and
hour. The standard deviation is represented around the median.

All the properties discussed so far are interesting in that they would not be

easily obtained using classical social surveys (usually with population sampling); the

digital nature of the information is here precious. It provides a full characterization

of the trips made with rented bicycles, and this is an important asset to models

transportation and moves in a city.

4. Time dynamics

This Section deals with a statistical study of the time series of the number of

bicycles hired along time, expanding upon first results reported in [9–11]. The goal

is not only to identify its temporal patterns but, going way further in the modeling

than previous studies such as [3], to propose a statistical model for the series,

encompassing their cyclostationarity and their nonstationarity. Then, this model is

used to predict the number of bicycle rentals on a daily or hourly basis.

The raw data here is the number L(t) of hired Vélo’v between t and t+∆ (thus,

aggregated over the time scale ∆). In the following, time instants will therefore

be discrete and understood as integer multiples of the aggregation scale, i.e., of

the form t = k∆ with k ∈ N. As seen in Fig. 2, two features are dominant: The

mean is nonstationary and evolves with time, and there is a periodic repetition

over the week. The first feature is related to the increase in size and popularity of

the program (commented above); a complementary reason is that the use of Vélo’v

also depends on the season (with less users during winter, or during holidays).

The second feature of cyclic evolution over the week, more properly referred to as

cyclostationarity, comes from the obvious fact that from a social point of view, days

and hours are not equivalent for people. Those two features, nonstationarity and

cyclostationarity, are precisely the ones that the model proposed in this Section

aims at accounting for.
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Fig. 7. Cyclic models and comparison to data. (a) Model 〈L(t)〉c giving the typical expected
evolution over the week. (b) Examples of L(t) for some chosen days, compared to the model

Lmod(t)+ dF (t). Here, we choose to zoom on the days around the 8th of December, a Lyon festivity
(which was a Saturday in 2007), showing qualitatively that the model holds well here.

4.1. Model for the cyclic temporal patterns

Let us first study nonstationary patterns on time scales larger than the day. An

estimation is obtained by computing, from the rentals L(t) aggregated on ∆, the

number of rentals Ad(d) at a given day (d is the variable of day):

Ad(d) =
∑

t∈(d)

L(t). (1)

Then, inspired from cyclostationary methodologies [13, 14], an estimate of the cyclic

mean for L over the week is the periodic average:

〈L(t)〉c =
1

Nw

Nw−1∑

k=0

L(t + k w∆), (2)

for t expressed in multiples of ∆, from 0 to one week (or 167h), and w∆ is the

duration of the week in unit of ∆; Nw is the number of weeks of data used. This

equation describes the periodic average of the data, evaluated over a period of one

week. The result is displayed in Fig. 7 (a). It shares similarities with observations

made on the Barcelona program [3, 4]. During week-days, three peaks are seen: in the

morning (8am-9am), at noon (12am-1pm) and by the end of afternoon (5pm-7pm,

this one being the highest and broadest). During week-ends, the pattern changes,

with mostly a large peak spread during the afternoon, having a maximum around

5pm (with only a small increase on its top at noon). These features match intuitive

interpretations about the fact that people use bicycle transportations mostly during

the day to commute, or during lunch break, whereas during the week-end, the major

trend is to take an afternoon pleasure ride or go to recreational area in the city.

Let us write Amod(d7) =
∑

t∈(d7)
〈L(t)〉c the average number of rentals per day

d7, where d7 simply marks the day of week, from Monday to Sunday. Mathemati-
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cally, d7 is equal to d (the variable of day) modulo 7 (hence the choice of notation).

As a quantitative approach of the time activity, the model is the following:

L(t) = Lmod(t) + F (t) = Ad(d)
〈L(t)〉c

Amod(d7)
+ F (t), (3)

where F (t) is the part of the data not accounted by the cyclic model. In Fig. 7 (b),

we illustrate the model for a specific range of days, to show that it usually holds well,

even when specific occasions change the flow of days, such as holidays or festivities

(here we illustrate that on the 8th of December, which is a specific festivity day in

Lyon). It has not yet been discussed so far how to predict the amplitude Ad, or the

fluctuations F . This is the purpose of the next paragraph.

4.2. Forecasting of the number of rentals, and anomalies

Let us now turn to the prediction of the evolution of the hourly number of rented

bicycles, taking into account factors that are external to the cyclic pattern. Using

the model, Eq. (3), prediction is split into two subparts: First, the prediction of

the non-stationary amplitude Ad(d) for a given day; Second, the prediction of the

fluctuations F (t) at a specific hour. The corresponding time scales being different,

it is appropriate to predict them separately.

Prediction of Ad(d) It seems fair to look for factors explaining Ad(d) among the

following ones:

(i) the weather and seasons summarized by the average temperature T (d) over one

day (in oC and centered according to δT (d) = T (d) − 〈T (d)〉) and the volume

of rain R(d) (in mm) during day d (for which the reference value is 0); we used

weather data collected at the weather station of a small airport of Lyon, the

closest to downtown;

(ii) the development and popularity of the program: The number of subscribed users

Ns(d), the number of bicycles available Nv(d); here again, we take deviations

δNs(d) and δNv(d) between the real value and the value at the end of the data

(December 2007) where the system is supposed to have reached its final state;

(iii) specific conditions such as holidays, with a marker Jh(d) taking value 0 usually

and 1 for those specific days, or strikes with marker Js(d).

A linear regression model is written as:

Âd(d) = α0(d7) + α1δNs(d) + α2δNv(d) + α3δT (d)

+α4R(d) + α5Jh(d) + α6Js(d), (4)

where features δNs, δNv(d), δT (d) and R have been normalized to variance 1, and

where the term α0(d7) describes the mean of the number of rentals. Because, as

seen in Fig. 7 (a), the expected number of rentals each day varies from Monday to

Sunday, the term α0(d7) has to depend on position of day d7 during the week. The
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Table 1. Statistical model for Ad(d) as per eq. (4). For the different linear coefficients associ-
ated to the factors in play, we report the estimated value (est.) and its Confidence Interval (under
Gaussian assumption), given by [CI−, CI+].

Variable δNs(d) δNv(d) δT (d) R(d) Jh(d) Js(d)

Unit Subscr. Bicycles oC mm

ref. 62 250 3 000 13.0

std. 8 030 400 7.7 0.37

coeff. α1 α2 α3 α4 α5 α6

est. 1 860 -120 2270 -1280 -2900 20

CI− 1 210 -720 1980 -1520 -3700 -2900

CI+ 2 560 +490 2560 -1030 -2100 +2900

rentals are, for instance, less numerous during the week-ends. A term linear with

Amod(d7) is thus added in α0(d7), with a coefficient c1, to describe this dependence:

α0(d7) = A0 + c1 (Amod(d7) − 〈Amod(d7)〉d7
) . (5)

The constant A0 is finally the constant in the linear regression. Solving this problem

of linear regression using standard least square minimization, we obtain the results

reported in Table 1. Confidence intervals are reported along with the estimated

values of the coefficients because, even though computed under Gaussian hypothesis,

which does not hold for many factors, it assists us in the interpretation of the

relevance and importance of each factor. Note that errors are found to be sub-

Gaussian, i.e., the distribution is sharper and more concentrated toward 0 than

the Gaussian one with the same variance. The confidence intervals are thus over-

estimated.

Results call for the following comments.

(1) The term depending on the day α0(d7) is simple enough: it consists of a constant

A0 whose value is close to the average number of hired bicycles per day during

the last months in the data set (17 500 during the last 4 months of 2007), with a

linear correction (with factor close to 1) that takes into account the dependence

with the day of week.

(2) A larger number of subscribers increases Ad(d);

(3) Weather factors act in an expected manner: the warmer, the larger the number

of bicycles used (and conversely) whereas, under heavy rain, Ad(d) decreases.

For the rain, the effect seems to be relatively small because of averaging over

the day: it is often the case that the rain lasts only for a part of the day. When

turning to hourly analysis in the next paragraph, rain will have a deeper and

more immediate impact.

(4) The factor pertaining to holidays Jh also impacts Ad(d): There is a decrease

(whose relevance is assessed by the confidence interval) during holidays — a
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feature that appears qualitatively in Fig. 2 (a) and is explained by the fact that

people are out of city during holidays.

(5) The number of available bicycles does not impact much Ad(d) and this can

interpreted by looking again at Fig. 1 (a): the numbers of subscribers and the

number of bicycles follow roughly the same time evolution. This lack of influence

hence results from the fact that a part of the evolution is already accounted

for by the evolution of Ns, and by the fact that there seems to be no major

depletion of bicycles as confronted to subscribers.

(6) Strikes are a non conclusive factor, mostly because of the scarce number of such

events in the current dataset.

Using this linear regression model, it becomes possible to predict the amplitude

of the number of bicycles rented per day, depending on all the external factors

proposed here. If one would use only the average number of hirings Amod(d7) ad-

justed only for the day of week d7, without any other non-stationary factors, the

root-mean-square error between the observed data Ad(d) and this number, as nor-

malized by the mean value of this amplitude, would conduct to 30% of mean relative

error. Using the model Âd(d), it decreases to 12%. Clearly there is still room for

improvement, yet the quantitative gain is not negligible and, more importantly,

the interpretation of the dependence with the various factors shows their relevance.

Turning to L(t), a zoom is shown in Fig. 7 (b) comparing the resulting model with

actual data. The agreement is already good.

Prediction of hourly fluctuations Let us now turn to the fluctuation term F (t),

whose standard deviation is 210 (in bicycles hired per hour; it can be compared to

the mean of L(t) that is equal to 655 hired bicycles per hour). A standard empirical

spectrum analysis shows that it is well modeled by an auto-regressive process of

order 1 with exogenous input (ARX(1)) [15, 16]:

F (t) = a1F (t − ∆) + β1R(t) + I(t), (6)

where a1 is the coefficient of the AR(1) part, and β1 is the linear regression coefficient

for the rain R(t) (in mm) and I(t) is a white innovation. Using a quadratic error

minimization, the estimates are a1 = 0.59±0.02 and β1 = −40±4 (Vélo’v/∆/mm of

rain). The coefficient a1 and the order of the model were estimated using a classical

algorithm on correlations [16].

This leads to a general prediction scheme for the number of hourly rentals that

follows eq. (3) with Âd(d) obtained from Eq. (4) and

F̂ (t) = a1(L(t − ∆) − Lmod(t − ∆)) + β1R̂(t), (7)

where R̂(t) is the weather forecast for the hour (available from a weather station).

In Fig. 8, the displayed model is built using these estimates Âd(d) and F̂ (t) and eq.

(3). It works satisfactorily in following the observed variations of L(t) along time.

Using this improved scheme including prediction of the fluctuations, the standard
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Fig. 8. Hourly fluctuations of rental numbers: model and data. The actual data (thin solid
line), the model without the ARX(1) part (dashed line) and the full prediction with the ARX(1)

part for dF (t) are superimposed. On the bottom, the rain for these days is drawn (on arbitrary
scale), showing that a major correction obtained by the ARX(1) is actually due to the rain.

deviation of the error of the global prediction decreases from 210 bicycles to 120

bicycles per hour, i.e., the standard deviation of the innovation I, which, by nature of

the approach, cannot be predicted. However, as a perspective, the model formulated

here can be used to detect unusual changes in the number of rentals, when the

measured remaining innovation is different from what is obtained here; it would be

an indication of unusual anomalies in the working of the system.

5. Spatial patterns

5.1. The Vélo’v system as a dynamical network

The Vélo’v system can be interpreted as a dynamical network, where bicycles move

from a station to another. Stations are hence seen as nodes. A central question is

to understand how the flows are distributed along the network. Following [11], this

is the point of view adopted here, keeping in mind that, because of the dominant

cyclic feature, we need to combine analyses in time and space to study the system

in a relevant way.

For that, data will be the matrix of the flows between stations, also modeled

as a directed graph or a complex network, where the dimension of time is added:

T [n, m](t) denotes the number of trips from station n to station m, at time t (ag-

gregated over a time duration ∆). Let N stand for the number of stations, there

are hence N2 directed edges in the full network (including trips back to departure

station), whose weights, at time t, hence consist of the number of trips T [n, m].

Edges have different weights for each direction.
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Fig. 9. Unbalanced stations in Lyon: the stations where the number of incoming trips is much
larger (resp. smaller) than outgoing one are in light (green) circles (resp. dark blue circles); see
text, Sec. 5.1 for more details.

In order to study the evolution of this network of stations along time, stations

will first be arranged in groups that exchange a large number of bicycles at coarse

time scales (∆ ≥ 1 week), using a classification based on the trips, to and from each

of them (cf. Section 5.2). Second, we will turn to the flows between stations and

assess, on a finer time scale (∆ = 1h), which pairs are most active, depending on

the time in the week (cf. Section 5.3).

A first remark is that the Vélo’v directed network is asymmetric and not self-

regulated, because some stations have incoming and leaving traffics unbalanced. In-

deed, to avoid saturation in some specific places that were evidenced in the analysis

of Sec. 3.2, a small number of trucks are equipped with trailers to move bicycles from

one station to another in order to balance the distribution on the network. From the

data, we identify major stations that reveal an unbalanced traffic. A station n will be

considered as particularly unbalanced if the absolute value of the difference between

their number of incoming and leaving trips, |
∑

t

∑
m(T [m,n](t) − T [n, m](t))|, is

larger than 3 times the standard deviation of the distribution of these values over

all the stations.

This procedure finds 12 unbalanced stations, shown in Fig. 9. Among them, 8

have more leaving trips (dark blue circles) that are located on the top of the two

hills that surround Lyon. The 4 remaining unbalanced stations (light green circles)

have more incoming trips and are located near the central railway station (close

also to the biggest shopping center), and on the university campus.
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Fig. 10. Hierarchical communities of stations in Lyon for 2006, obtained by maximization of
the modularity Q, as defined in eq. (8). The higher level communities are represented by colors
and are separated by (red) thick lines; 5 communities are found at this level. At a second level,
sub-comminities inside these 5 ones are distinguished by different marker shapes. Whenever they
exist, third level communities are made explicit by a tag consisting of an integer value nearby the
colored (1st level)-shaped (2nd level) station markers. (Note also that the colored dot inside the
marker is a indication of the same third level in the hierarchy of communities). The communities
are found to be mostly grouped by geographical proximity in the city. Stations not associated to
a community were not yet in service in 2006.

5.2. Clustering stations in communities

As seen in Sec. 4, the choice of ∆ depends on whether one is interested in long

trends (days or weeks) or short term details (intra-day). Section 5.2 focuses on long

periods (typically on one month to one year), while Section 5.3 will concentrate on

finer time scales.

To understand the impact of the inhomogeneities of the city on the long-term

activity of individual stations, let us look for groups of stations exchanging many

bicycles. This amounts to detecting communities of stations in a network [17]. Com-

munities are defined as dense subgraphs with few edges with other communities.

They are found in many complex networks and they can correspond to groups with

similar behaviors or interests (for people), with similar contents (for web pages),
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Fig. 11. PCA analysis of T [m, n](t). The first 3 principal components of T are represented along
time. One recognizes in the first one the cyclic part of the model, 〈L(t)〉c (without its mean). The
next components are mostly corrections on some of the peaks of this model: the second component
changes mostly the mornings in the week-days, the third one brings corrections of opposite signs
on noon and afternoon.

etc. Moreover studies shows that information (rumors for instance) spread more

rapidly within communities than between communities. In the Vélo’v context, find-

ing communities will help to aggregate spatially the individual stations on the basis

of an objective criterion. Automated detection of communities in graph is a diffi-

cult problem that received recently considerable research effort, issues being both

theoretical (conceptual definition of communities) and practical (definitions should

end up with quantities that can actually be computed at a reasonable load). Re-

viewing the literature reveals that proposed algorithms often suffer from either high

computational costs, and hence cannot be used on an actual large database such

as the Vélo’v one, or from a significant sensitivity to minor topology modifications,

lacking robustness.

This review of the literature led us to resort to a definition of communities

based on Newman’s modularity [17, 18] The efficient algorithm proposed in [19]

has been customized to the spatial analysis of the Vélo’v dataset. In this approach,

graph modularity is defined as the average, over all pairs of nodes, of the difference

between the actual T [n, m] and that expected under the absence of community [17,

18]. More precisely, for a directed and weighted network, modularity Q takes the

form:

Q =
1

N(N − 1)

∑

n,m

[
T [n, m] −

∑
j 6=n T [j, n] ·

∑
k 6=m T [m, k]

N(N − 1)

]
δcn,cm

(8)

where cn is the community where station n is assigned, and δ the Kronecker delta

symbol. Community definitions result from the maximization of the modularity over

the set of possible partitions.

However, this optimization problem is NP-complete [20]. Approximations, such

as the greedy approach of [21], tend to produce too large communities. The hier-

archical algorithm proposed in [19] is used here because it builds a hierarchy of

communities of increasing sizes (small community are grouped into larger ones).

Also, it uses a local computation of the gain of modularity when increasing the
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size of the communities by merging some together, and hence shows a tractable

computational efficiency. Finally, the method’s output reads as a hierarchy of em-

bedded communities: the first level of the hierarchy is the less detailed grouping

into communities (the one that is found last in the unfolding of the algorithm);

then each community of this first level can be split into several sub-communities on

the second level. Then, in some cases, a third level breaks second-level communities

in several parts. The number of communities at each level of the hierarchy cannot

be decided a priori by the practitioner and per se constitutes an important result

of the analysis. The practical use of this output consists of first plotting the higher

level communities. Then, information can be refined by considering the second level

of the hierarchy that split the higher level communities into sub-communities, and

so on and so forth. Therefore, the only choice left to practitioners is that of the level

in the hierarchy at which the refinement superimposition should be stopped (often

guided by readability of the result).

The result of the unfolding of hierarchical communities, applied to one year of

data, is displayed in Fig. 10, for the three higher levels of the hierarchy of commu-

nities. The most striking feature is that the communities are mostly organized as

spatial groups (at least when looking at the higher level of the hierarchy of com-

munities, or the first two levels). This is in accordance with the short typical trip

length: many trips are local. Inside the large-scale communities that are found to

closely match the administrative districts of Lyon, finer communities reveal details

such as groups of stations, lined along major boulevards (and subway lines or bi-

cycle paths often follow them). The stations on the Croix-Rousse hill (the zone on

the north) are clearly grouped in a specific community, as are the ones near the

northern campus of the Science University (La Doua).

Finally, because the stations with an extremely unbalanced behavior were evi-

denced as specific, we have checked whether their removal or their inclusion in the

dataset affects or not the results: it did not change the results reported in this sec-

tions about communities (nor would it will change the results of the flow clustering

in 5.3).

The conclusion is that grouping the stations by geographical proximity would

be a correct intuition. Indeed, close stations exchange more bicycles than distant

stations and this is the meaning of the communities found by maximizing the mod-

ularity. These hierarchical communities are particularly interesting because they

provide guidelines to automatically group communities given a level of granularity

in space that is wanted, instead of trying to do this task by hand and intuition only.

The method provides us with a quantitative means of spatial aggregation.

5.3. Clustering flows of activity between stations

The second step of spatial analysis is the clustering of the flows between stations

at finer time-scales. The objective is now to highlight the distribution in time along

the week of the main spatial features of the Vélo’v use. Therefore, the T [n, m](t)
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Fig. 12. K-means silhouettes of the clustering of Flows. Computed for the 4 clusters of
flows found, from Eq. (9). Almost all values are positive: this is an indication of good and relevant
clustering.

are now aggregated with ∆ = 1h, as in Sec. 4. Also, because of the nonstationary

evolution at scales larger than the week, data used are either one specific week, or

a mean over several weeks if one wants to study aggregated trends.

The high-dimensionality of the data involved (N2 flows times 168 hours per

week) calls for a dimensionality reduction. Thanks to the time analysis done, we

know that the most important activities of the stations are characterized by 3 peaks

every ordinary days (8am-9am, 12am-1pm and 5pm-7pm) and 2 peaks for week-

ends (1pm-2pm and 4pm-6pm). We select these 19 times stamps to be the features

in time. Note that dimension reduction using Principal Component Analysis on

T [n, m](t) was performed in [11]. The PCA transforms the original attributes into

a set of Principal Components (PC) that are non-correlated and obtained as linear

combinations of the original variables. The first 3 obtained PCs along time are

displayed in Fig. 11: one recognizes without surprise for the first PC the cyclic model

(minus its mean) that was studied in Sec. 4; it accounts for 54.6% of the variance.

The following components (accounting for 13.4%, then 5.6%) are corrections on

this cyclic pattern, mostly on the various peaks of activity: the second component

changes mostly the mornings in the week-days, the third one brings corrections of

opposite signs on noon and afternoon. This leads us to retain these 19 peaks of

activities during the week as the dominant time features. Then, we keep only 1046

pairs of stations where traffic is large enough between the pairs, meaning that the

number of trips is more than 45 for each of these pairs over the time covered by the

dataset.

In order to uncover the main properties of flows on the Vélo’v stations network,

a K-means algorithm (see, e.g., [22]) is run on T [n, m](t) for t equal to the 19

selected time-features and (n, m) being in the 1046 pairs of stations that are kept.
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(b) Activities in Space:

Cluster 1: Su12am+5pm Cluster 2: Working-days 9am

Cluster 3: Working-days 12am Cluster 4: Working-days 6pm

Fig. 13. Clustering of the flows between stations. (a) Activities in Time: At the 19 selected
time-features, the mean and variance of the sum of the flows of the station are displayed for the
4 clusters. (b) Activities in Space: The map is coded in areas of different color background, each
area being a community of the second level of the hierarchy already displayed in Fig. 10. Then, in
each sub-figure, a line is drawn between the centers of 2 communities if, in each community, there
exists a flow between stations in the displayed cluster of the flows. For clusters 2 and 4, the solid
lines are the ones appearing in both clusters 2 and 4; the dashed lines are used when between the
2 communities, there are flows only in the cluster displayed (so that these dashed lines represent
what is different between clusters 2 and 4 when they are displayed with this aggregation in space
based on 2nd-level communities).

The distances between every couples of pairs of stations were evaluated classically

by the correlation between the temporal vectors of number of rentals [23]. Silhouette

measures in a classical manner [24] the quality of a clustering by estimating how a

pair of stations is similar to other pairs in its own cluster vs. pairs in other clusters,
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and ranges from -1 to 1. Silhouette is defined as

S(i) =
mink(dB(i, k)) − dW (i)

max(dW (i),mink(dB(i, k)))
, (9)

where dW (i) is the average distance from the i-th point to the other points in its

own cluster, and dB(i, k) is the average distance from the i-th point to points in

another cluster k. The procedure finds 4 well separated clusters whose silhouette

values of pairwise stations are shown in Fig. 12. Pairs of stations are closer to the

ones of the same cluster than to pairs of others clusters, except for 25 among 1046

pairs—this attests of the quality of the clustering.

Let us now comment on the identified clusters. Fig. 13 (a) shows the mean and

standard deviation of the number of moves for the flows in each cluster. The peaks

of activity of each cluster are easily identified:

(1) Cluster 1 corresponds to rentals on Sundays at noon and more importantly at

5pm;

(2) Cluster 2 corresponds to travels at 8am-9am, mostly on working days;

(3) Cluster 3 corresponds similarly to hirings around noon;

(4) Cluster 4 gathers afternoon travels at 5pm-7pm, except on Fridays.

The clusters take a clear meaning as being a classification of the dynamics on the

network in space and time.

Fig. 13 (b) locates on the map of Lyon the pairs of stations that are part of each

cluster. To make the picture clearer, we grouped nearby stations according to their

community (computed in Section 5.2) and plot a line between two communities if

there exists at least one station forming a pair that belongs to the corresponding

cluster. Communities are shown with the same code as in Fig. 10. The interpreta-

tions of the clusters follow:

(1) Trips in Cluster 1 are mainly along the two rivers and around the main parks

of the city (in the north and the south of the map). We can also observe some

travels between the university campus (or the periphery of the city) and the

center of the city (North-east and the land between the two rivers).

(2) Clusters 2 and 4 share many similarities (the solid lines in Fig. 10 are the edges

they have in common): they correspond to commuting to and from work (re-

spectively Clusters 2 and 4). We identify the main network hubs (train stations,

campus, business center, etc.) in the communities reached in these clusters.

(3) Cluster 3 is less dense; it includes short travels related to lunch break rides, and

moves are often between close communities.

It is worth noting that these clustering results seem to be stable: similar results

are obtained when applying the same methodology on a monthly basis.
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6. Conclusion

The dataset made available to us by JCDecaux and the Grand Lyon City Hall is

huge and unique in nature, consisting of the records of each and every Vélo’v trip

over a two year long period. The exhaustive digital footprint kept by the system

is unmatched by usual social enquiries, hence permitting real statistical and data

analysis on issues pertaining to trips in bicycles.

Two kinds of analyses were performed. First, carefully combining standard sta-

tistical signal processing tools dedicated both to cyclostationarity or nonstationary

trend analysis and to forecasting, enabled us to model the time evolution of hourly-

aggregated bicycle rentals. It yielded a temporal pattern for the typical week mixing

days and intra-days periodicities, most being naturally interpretable as related to

professional activity rhythms (week days) or leisure (week-end) activities. This pat-

tern closely resembles those observed in studies of different sharing programs in

other cities. In addition, it enabled the forecasting of the number of bicycles rented

in the next hour, based on the knowledge of factors both internal to the deployment

program (number of available bicycles or subscribers) and external (weather condi-

tions), down to a ten per cent fluctuation accuracy. Second, computer science data

mining tools were tailored to the analysis of the Vélo’v dataset to extract clusters of

stations based either on an intra versus inter community preferred exchanges mea-

sure (modularity), yielding communities of stations exchanging regularly a large

number of bicycles, or on a similarity measure in the time patterns of bicycle flows.

Such analyses enabled us to gain a significant understanding on the social usage

of the Vélo’v program in Lyon: Communities remain geographically concentrated

(hence indicating a preferred short-range use of the bicycles) while time patterns

of flows between stations display similarities so that they are grouped in clusters

separating trips related to professional activities (week days and major communica-

tion hubs) from those used during leisure time (week end and parks). Finally, they

showed that, depending on the time in the week, some stations are alternatively

sinks or sources of Vélo’v.

Besides the usage conclusions they enabled us to yield, these contributions are

also of methodological values: Notably, community mining for stations, and time

pattern clustering for flows remain intricate issues both at the theoretical and prac-

tical levels. Also, the tools used here depend on a aggregation or resolution scale ∆

at which analyses are conducted and that can be tuned to further address different

questions and issues.

A large number of open questions remain, some of them being currently under

investigations. Regular contacts with JCDecaux (the Vélo’v private operator) and

the Grand Lyon City Hall (the political leader of the program), enabled the iden-

tification of various operational investigation objectives, ranging from the system

optimization of bicycle removal/balancing operations to the evaluation and certi-

fication that the prescribed quality of service is actually achieved, most of them

however not qualifying for public disclosure. Further developments will be oriented
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toward analyzing the Vélo’v system with respect to socio-economical information

and quantitative data related to Lyon City, and collected by the French INSEE

(Institut National de la Statistique et des Études Économiques), in collaboration

with other economical institutes or laboratories.
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tions de Vélo’v à Lyon”, Symposium GRETSI-09, Dijon, FR (Sept., 2009).
[11] Borgnat, P., Fleury, E., Robardet, C., and Scherrer, A, “Spatial analysis of dynamic
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