
HAL Id: ensl-00490463
https://ens-lyon.hal.science/ensl-00490463

Preprint submitted on 8 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelization for the Deployment of a Hierarchical
Middleware on a Heterogeneous Platform

Eddy Caron, Benjamin Depardon, Frédéric Desprez

To cite this version:
Eddy Caron, Benjamin Depardon, Frédéric Desprez. Modelization for the Deployment of a Hierarchical
Middleware on a Heterogeneous Platform. 2010. �ensl-00490463�

https://ens-lyon.hal.science/ensl-00490463
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon

Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Modelization for the Deployment of a

Hierarchical Middleware on a

Heterogeneous Platform

Eddy Caron ,
Benjamin Depardon ,
Frédéric Desprez

University of Lyon. LIP Laboratory. UMR

CNRS - ENS Lyon - INRIA - UCBL 5668.

France.

June 2010

Research Report No RRLIP2010-19

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Modelization for the Deployment of a Hierarchical

Middleware on a Heterogeneous Platform

Eddy Caron , Benjamin Depardon , Frédéric Desprez

University of Lyon. LIP Laboratory. UMR CNRS - ENS Lyon - INRIA - UCBL 5668. France.

June 2010

Abstract

Accessing the power of distributed resources can nowadays easily be done using
a middleware based on a client/server approach. Several architectures exist for
those middlewares. The most scalable ones rely on a hierarchical design. De-
termining the best shape for the hierarchy, the one giving the best throughput
of services, is not an easy task.
We first propose a computation and communication model for such hierarchical
middleware. Our model takes into account the deployment of several services
in the hierarchy. Then, based on this model, we propose algorithms for au-
tomatically constructing a hierarchy on two kind of heterogeneous platforms:
communication homogeneous/computation heterogeneous platforms, and fully
heterogeneous platforms. The proposed algorithm aim at offering the users the
best obtained to requested throughput ratio, while providing fairness on this
ratio for the different kind of services, and using as few resources as possible.
For each kind of platforms, we compare our model with experimental results
on a real middleware called Diet.

Keywords: Hierarchical middleware, Deployment, Modelization, Grid.

Résumé

De nos jours, l’accès à des ressources distribuées peut être réalisé aisément en
utilisant un intergiciel se basant sur une approche client/serveur. Différentes
architectures existent pour de tels intergiciels. Ceux passant le mieux à l’échelle
utilisent une hiérarchie d’agents. Déterminer quelle est la meilleure hiérarchie,
c’est à dire celle qui fournira le meilleur débit au niveau des services, n’est pas
une tâche aisée.
Nous proposons tout d’abord un modèle de calcul et de communication pour de
tels intergiciels hiérarchiques. Notre modèle prend en compte le déploiement de
plusieurs services au sein de la hiérarchie. Puis, en nous basant sur le modèle,
nous proposons des algorithmes pour construire automatiquement la hiérarchie
sur différents types de plates-formes : des plates-formes avec des communica-
tions homogènes et des puissances de calcul hétérogènes, ou des plates-formes
complètement hétérogènes. Les algorithmes visent à offrir aux utilisateurs le
meilleur ratio entre le débit demandé, et le débit fourni, tout en utilisant le
moins de ressources possible. Pour chaque type de plate-forme, nous compa-
rons notre modèle à des résultats expérimentaux obtenus avec l’intergiciel de
grille Diet.

Mots-clés: Intergiciel hiérarchique, Déploiement, Modélisation, Grille.

Hierarchical Middleware on a Heterogeneous Platform 1

1 Introduction

Using distributed resources to solve large problems ranging from numerical simulations to life
science is nowadays a common practice [3, 15]. Several approaches exist for porting these appli-
cations to a distributed environment; examples include classic message-passing, batch processing,
web portals and GridRPC systems [18]. In this last approach, clients submit computation requests
to a meta-scheduler (also called agent) that is in charge of finding suitable servers for executing
the requests within the distributed resources. Scheduling is applied to balance the work among
the servers. A list of available servers is sent back to the client; which is then able to send the
data and the request to one of the suggested servers to solve its problem.

There exists several grid middlewares [6] to tackle the problem of finding services available
on distributed resources, choosing a suitable server, then executing the requests, and managing
the data. Several environments, called Network Enabled Servers (NES) environments, have been
proposed. Most of them share a common characteristic which is that they are built with broadly
three main components: clients which are applications that use the NES infrastructure, agents
which are in charge of handling the clients’ requests (scheduling them) and of finding suitable
servers, and finally computational servers which provide computational power to solve the requests.
Some of the middlewares only rely on basic hierarchies of elements, a star graph, such as Ninf-
G [19] and NetSolve [2, 11, 21]. Others, in order to divide the load at the agents level, can have
a more complicated hierarchy shape: WebCom-G [17] and Diet [1, 10]. In this latter case, a
problem arises: what is the best shape for the hierarchy?

Modelization of middlewares behavior, and more specifically their needs in terms of computa-
tions and communications at the agents and servers levels can be of a great help when deploying
the middleware on a computing platform. Indeed, the administrator needs to choose how many
nodes must be allocated to the servers, and how many agents have to be present to support the
load required by the clients. Using as many nodes as possible, may not be the best solution:
firstly it may lead to using more resources than necessary; and secondly this can degrade the over-
all performances. The literature do not provide much papers on the modelization and evaluation
of distributed middleware. In [20], Tanaka et al. present a performance evaluation of Ninf-G,
however, no theoretical model is given. In [7, 13, 12] the authors present a model for hierarchical
middlewares, and algorithms to deploy a hierarchy of schedulers on clusters and grid environments.
They also compare the model with the Diet middleware. However, a severe limitation in these
latter works is that only one kind of service could be deployed in the hierarchy. Such a constraint
is of course not desirable, as nowadays many applications rely on workflows of services. Hence,
the need to extend the previous models and algorithms to cope with hierarchies supporting several
services.

In this paper, we will mainly focus on one particular hierarchical NES: Diet (Distributed
Interactive Engineering Toolbox). The Diet component architecture is structured hierarchically
as a tree to obtain an improved scalability. Such an architecture is flexible and can be adapted
to diverse environments, including arbitrary heterogeneous computing platforms. Diet comprises
several components. Clients that use Diet infrastructure to solve problems using a remote pro-
cedure call (RPC) approach. SeDs, or server daemons, act as service providers, exporting func-
tionalities via a standardized computational service interface; a single SeD can offer any number
of computational services. Finally, agents facilitate the service location and invocation interac-
tions of clients and SeDs. Collectively, a hierarchy of agents provides higher-level services such as
scheduling and data management. These services are made scalable by distributing them across
a hierarchy of agents composed of a single Master Agent (MA) (the root of the hierarchy) and
several Local Agents (LA) (internal nodes).

Deploying applications on a distributed environment is a problem that has already been ad-
dressed. We can find in the literature a few deployment software: DeployWare [14], ADAGE [16],
TUNe [4], and GoDiet [8]. Their field of action ranges from single deployment to autonomic
management of applications. However, none include intelligent deployment mapping algorithms.
Either the mapping has to be done by the user, or the proposed algorithm is random or round-
robin. Some algorithms have been proposed in [7, 13] to deploy a hierarchy of schedulers on clusters

2 E. Caron, B. Depardon and F. Desprez

and grid environments. However, a severe limitation in these works is that only one kind of service
could be deployed in the hierarchy. Such a constraint is of course not desirable, as nowadays many
applications rely on workflows of services. Hence, the need to extend the previous models and
algorithms to cope with hierarchies supporting several services.

The contribution of this paper is twofold. We first present a model for predicting the perfor-
mance of a hierarchical NES on a heterogeneous platforms. Secondly, we present algorithms for
automatically determining the best shape for the hierarchy, i.e., the number of servers for each
services, and the shape of the hierarchy supporting these servers.

We first present in Section 2 the hypotheses for our model, then the model itself in Section 3 for
both agents and servers. Then, we explain our approach to automatically build a suitable hierarchy
on communication homogeneous/computation heterogeneous platforms in Section 4, and present
experimental results. We then present, in Section 5 a genetic algorithm for automatically building
a hierarchy on totally heterogeneous platforms, and also give some experimental results. Finally,
we conclude this paper in Section 6.

2 Model Assumptions

2.1 Request Definition

Clients use a 2-phases process to interact with a deployed hierarchy. They submit a scheduling
request to a Master Agent to find a suitable server in the hierarchy (scheduling phase), and then
submit a service request (job) directly to the server (service phase). A completed request is one
that has completed both the scheduling and service request phases and for which a response has
been returned to the client. The throughput of a service is the number of completed requests
per time unit the system can offer. We consider that a set R of services have to be available in
the hierarchy. And that for each service i ∈ R, the clients aim at attaining a throughput ρ∗i of
completed requests per second.

!"#$

%&'# %&'#

!"(

%&'(%&'(

)"

*+,&-.

!"#$"#%&'(#&%"#$)*"&+ !"#$"#%&'(#&%"#$)*"&,

-+.

-,.

-/.

-0.

-,.-,.

-/.

-1.

(a) Scheduling phase

!"#$

%&'# %&'#

!"(

%&'(%&'(

)"

*+,&-.

!"#$"#%&'(#&%"#$)*"&+ !"#$"#%&'(#&%"#$)*"&,

-./

-0/

-1/

(b) Service phase

Figure 1: Scheduling and service phases.

Figure 1 presents the scheduling and service phases. The example shows the following steps:

1. the client sends a request of type i (i = 2 in Figure 1);

2. the request is forwarded down the hierarchy, but only to the sub-hierarchy that knows service
i;

3. the SeDs perform performance predictions, and generate their response;

4. responses are forwarded up the hierarchy, and “sorted”, i.e., the best choice is selected at
each agent level;

Hierarchical Middleware on a Heterogeneous Platform 3

5. the scheduling response is sent back to the client (the response contains a reference to the
selected server);

6. the client sends a service request directly to the selected server;

7. the server runs the application and generates the results;

8. the results are directly sent back to the client.

2.2 Resource Architecture

We consider the problem of deploying a middleware on a fully connected platform G = (V,E, W, B):
V is the set of nodes, E is the set of edges, wj ∈W is the processing power in Mflops/s of node
j, and the link between nodes j and j′ has a bandwidth Bj,j′ ∈ B in Mbit/s. We do not take into
account contentions in the network. We also denote by N = |V | the number of nodes.

Remark 2.1 We consider that whatever the node they are running on, services and agents require
a constant amount of computation, i.e., we consider the case of uniform machines where the
execution time of an application on a processor is equal to a constant only depending on the
machine, multiplied by a constant only depending on the application.

2.3 Deployment Assumptions

We consider that at the time of deployment we do not know the clients’ locations or the charac-
teristics of the clients’ resources. Thus, clients are not considered in the deployment process and,
in particular, we assume that the set of computational resources used by clients is disjoint from V ,
and that we will not consider client/servers direct communications in our model (phases 6 and 8 in
Figure 1). This corresponds to the case where data required for the services is already present in
the platform, and does not need to be sent by the clients. A valid deployment will always include
at least the root-level agent and one server per service i ∈ R. Each node v ∈ V can be assigned
either as a server for any kind of service i ∈ R, or as an agent, or left idle. Thus with |A| agents,
|S| servers, and |V | total resources, |A|+ |S| ≤ N .

2.4 Objective

We consider that we work in steady-state. The platform is loaded to its maximum. Thus, we do
not take into account the phases when only a few clients are submitting requests to the system,
but only the phase where the clients submit as many requests as the middleware is able to cope
with.

As we have multiple services in the hierarchy, our goal cannot be to maximize the global
throughput of completed requests regardless of the kind of services, this would lead to favor
services requiring only small amount of computing power to schedule and to solve them, and with
few communications. Hence, our goal is to obtain, for each service i ∈ R, a throughput ρi such
that all services receive almost the same obtained throughput to requested throughput ratio: ρi

ρ∗

i

,

of course we try to maximize this ratio, while having as few agents in the hierarchy as possible, so
as not to use more resources than necessary.

3 Servers and Agents Models

3.1 “Global” Throughput

For each service i ∈ R, we define ρschedi
to be the scheduling throughput for requests of type i

offered by the platform, i.e., the rate at which requests of type i are processed by the scheduling
phase. We define as well ρservi

to be the service throughput.

4 E. Caron, B. Depardon and F. Desprez

Lemma 3.1 The completed request throughput ρi of type i of a deployment is given by the mini-
mum of the scheduling and the service request throughput ρschedi

and ρservi
.

ρi = min {ρschedi
, ρservi

}

Proof: A completed request has, by definition, completed both the scheduling and the service
request phases, whatever the kind of request i ∈ R.

Case 1: ρschedi
≥ ρservi

. In this case, requests are sent to the servers at least as fast as they
can be processed by the servers, so the overall rate is limited by ρservi

.
Case 2: ρschedi

< ρservi
. In this case, the servers process the requests faster than they arrive.

The overall throughput is thus limited by ρschedi
. �

Lemma 3.2 The service request throughput ρservi
for service i increases as the number of servers

included in a deployment and allocated to service i increases.

3.2 Hierarchy Elements Model

We now describe the model of each element of the hierarchy. We consider that a request of type i
is sent down a branch of the hierarchy, if and only if service i is present in this branch, i.e., if at
least a server of type i is present in this branch of the hierarchy. Thus a server of type i will never
receive a request of type i′ 6= i. Agents won’t receive a request i if no server of type i is present in
its underlying hierarchy, nor will it receive any reply for such a type of request. This is the model
used by Diet.

3.2.1 Server model

We define the following variables for the servers. wprei
is the amount of computation in MFlops

needed by a server of type i to predict its own performance when it receives a request of type
i from its parent. Note that a server of type i will never have to predict its performance for a
request of type i′ 6= i as it will never receive such a request. wappi

is the amount of computation
in MFlops needed by a server to execute a service. mreqi

is the size in Mbit of the messages
forwarded down the agent hierarchy for a scheduling request, and mrespi

the size of the messages
replied by the servers and sent back up the hierarchy. Since we assume that only the best server
is selected at each level of the hierarchy, the size of the reply messages does not change as they
move up the tree. Figure 2 presents the server model.

w
prei

w
appi

Server

m
reqi m

respi

Figure 2: Server model parameters.

Server computation model We suppose that a deployment with a set of servers Si completes
Ni requests of type i in a given time frame. Then, each server Sj ∈ Si will complete N j

i such that:

∑

j∈Si

N j
i = Ni (1)

On average, each server Sj has to do a prediction for Ni requests, and complete N j
i service

requests during the time frame. Let T
serverj
compi be the time taken by the server Sj ∈ Si to compute

Hierarchical Middleware on a Heterogeneous Platform 5

N j
i requests and predict Ni requests. We have the following equation:

T serverj
compi

=
wprei

.Ni + wappi
.N j

i

wj

(2)

Now let’s consider a time step T during which Ni requests are completed. On this time step,
we have:

∀i ∈ R, ∀j ∈ Si, T =
wprei

.Ni + wappi
.N j

i

wj

(3)

From (3), we can deduce the number of requests computed by each server Sj ∈ Si for all type
of requests i ∈ R:

N j
i =

T.wj − wprei
.Ni

wappi

(4)

From equations (1) and (4), we can rewrite the time taken by the Si servers to process Ni

requests of type i:
∑

j∈Si

N j
i =

∑

j∈Si

T.wj − wprei
.Ni

wappi

Ni = T ×

∑

j∈Si
wj

wappi

(

1 +
∑

j∈Si

wprei

wappi

)

Ni = T ×

∑

j∈Si
wj

wappi
+ |Si| .wprei

T = Ni ×
wappi

+ |Si| .wprei
∑

j∈Si
wj

(5)

Hence the average computation time for one request of type i:

T server
compi

=
wappi

+ |Si| .wprei
∑

j∈Si
wj

(6)

and the service throughput for service i:

ρcomp
servi

=

∑

j∈Si
wj

wappi
+ |Si| .wprei

(7)

Server communication model A server of type i needs, for each request, to receive the request,
and then to reply. Hence Equations (8) and (9) represent respectively the time to receive one
request of type i, and the time to send the reply to its parent.

Communications time depends on the shape of the hierarchy, as the bandwidth is not the same
over the platform. Thus, we denote by f j

i the father of server Sj ∈ Si.
Server Sj ∈ Si receive time for one request of type i:

T serverj
recvi

=
mreqi

B
j,f

j

i

(8)

Server Sj ∈ Si reply time for one request of type i:

T
serverj

sendi
=

mrespi

B
j,f

j

i

(9)

Service throughput Concerning the machines model, and their ability to compute and com-
municate, we consider the following models:

• Send or receive or compute, single port: a node cannot do anything simultaneously.

ρservi
=

1

maxj∈Si

{

T
serverj
recvi + T

serverj

sendi
+ T server

compi

} , (10)

6 E. Caron, B. Depardon and F. Desprez

• Send or receive, and compute, single port: a node can simultaneously send or receive a
message, and compute.

ρservi
= min

{

1

maxj∈Si

{

T
serverj
recvi + T

serverj

sendi

} ,
1

T server
compi

}

(11)

• Send, receive, and compute, single port: a node can simultaneously send and receive a
message, and compute.

ρservi
= min

{

1

maxj∈Si

{

max
{

T
serverj
recvi , T

serverj

sendi

}} ,
1

T server
compi

}

(12)

3.2.2 Agent model

We define the following variables for the agents. wreqi
is the amount of computation in MFlops

needed by an agent to process an incoming request of type i. Let A be the set of agents. For a
given agent Aj ∈ A, let Chldj

i be the set of children of Aj having service i in their underlying

hierarchy. Also, let δj
i be a Boolean variable equal to 1 if and only if Aj has at least one child

which knows service i in its underlying hierarchy. wrespi

(∣

∣

∣Chldj
i

∣

∣

∣

)

is the amount of computation

in MFlops needed to merge the replies of type i from its
∣

∣

∣
Chldj

i

∣

∣

∣
children. We suppose that this

amount grows linearly with the number of children. Figure 3 presents the server model.

w
reqi

w
respi

...

Agent
m
reqi m

respi

Figure 3: Agent model parameters.

Our agent model relies on the underlying servers throughput. Hence, in order to compute the
computation and communication times taken by an agent Aj , we need to know both the servers
throughput ρservi

for each i ∈ R, and the children of Aj .

Agent computation model. The time for an agent Aj to schedule all requests it receives and
forwards,when the servers provide a throughput ρservi

for each i ∈ R, is given by Equation (13).

T agentj
comp =

∑

i∈R
ρservi

.δj
i .wreqi

+
∑

i∈R
ρservi

.wrespi

(∣

∣

∣
Chldj

i

∣

∣

∣

)

wj

(13)

Agent communication model. Agent Aj needs, for each request of type i, to receive the re-
quest and forward it to the relevant children, then to receive the replies and forward the aggregated
result back up to its parent. We also need to take into account the variation in the bandwidth be-
tween the agent and its children. Let f j be the father of agent Aj in the hierarchy. Equations (14)
and (15) present the time to receive and send all messages when the servers provide a throughput
ρservi

for each i ∈ R.

Hierarchical Middleware on a Heterogeneous Platform 7

Agent Aj ∈ A receive time:

T agentj
recv =

∑

i∈R

ρservi
.δj

i .mreqi

Bj,fj

+
∑

i∈R

∑

k∈Chld
j

i

ρservi
.mrespi

Bj,k

(14)

Agent Aj ∈ A send time:

T
agentj

send =
∑

i∈R

ρservi
.δj

i .mrespi

Bj,fj

+
∑

i∈R

∑

k∈Chld
j

i

ρservi
.mreqi

Bj,k

(15)

We combine (13), (14), and (15) according to the chosen communication / computation model
(similarly to Equations (10), (11), and (12)).

Lemma 3.3 The highest throughput a hierarchy of agents is able to serve is limited by the through-
put an agent having only one child of each kind of service can support.

Proof: The bottleneck of such a hierarchy is clearly its root. Whatever the shape of the hierarchy,
at its top, the root will have to support at least one child of each type of service (all messages
have to go through the root). As the time required for an agent grows linearly with the number of
children (see (13), (14) and (15)), having only one child of each type of service is the configuration
that induces the lowest load on an agent. �

4 Planning on Communication Homogeneous / Computa-
tion Heterogeneous Platforms

Given the models presented in the previous section, we propose a heuristic for automatic de-
ployment planning on communication homogeneous/computation heterogeneous platforms. As we
consider that we have homogeneous communications, we have ∀j, j′ ∈ V,Bj,j′ = B. The heuristic
comprises two phases. The first step consists in dividing N nodes between the services, so as to
support the servers. The second step consists in trying to build a hierarchy, with remaining nodes,
which is able to support the throughput generated by the servers. In this section, we present
our automatic planning algorithm in three parts. In Section 4.1 we present how the servers are
allocated nodes, then in Section 4.2 we present a bottom-up approach to build a hierarchy of
agents, and present in Section 4.3 the whole algorithm. Finally, we give experimental results in
Section 4.4.

4.1 Servers repartition

Our goal is to obtain for all services i ∈ R the same ratio
ρservi

ρ∗

i

. Algorithm 1 presents a simple

way of dividing the available nodes to the different services. We iteratively increase the number of
assigned nodes per services, starting by giving nodes to the service with the lowest

ρservi

ρ∗

i

ratio. We

need to take into account the nodes’ heterogeneity. Hence, we propose two heuristics: min-first
which first give the less powerful nodes to the servers, and max-first which first give the more
powerful nodes to the servers.

4.2 Agents hierarchy

Given the servers repartition, and thus, the services throughput ρservi
, for all i ∈ R, we need to

build a hierarchy of agents that is able to support the throughput offered by the servers. Our
approach is based on a bottom-up construction: we first distribute some nodes to the servers, then
with the remaining nodes we iteratively build levels of agents. Each level of agents has to be able
to support the load incurred by the underlying level. The construction stops when only one agent

8 E. Caron, B. Depardon and F. Desprez

Algorithm 1 Servers repartition

Require: L: list of available nodes
Ensure: La: list of nodes allocated to the servers
1: S ← list of services in R
2: La ← ∅
3: N ← |L|
4: L← L sorted according to min-first or max-first heuristic
5: repeat
6: i← first service in S
7: Assign one more node to i: n, following the order of L, and compute the new ρservi

8: La ← L + {n}
9: if ρservi

≥ ρ∗i then
10: ρservi

← ρ∗i
11: S ← S − {i}
12: S ← Sort services by increasing

ρservi

ρ∗

i

13: until |La| = N or S = ∅
14: return La

is enough to support all the children of the previous level. In order to build each level, we make
use of a mixed integer linear program (MILP): (LP1).

We first need to define a few more variables. Let k be the current level: k = 0 corresponds to
the server level. For i ∈ R let ni(k) be the number of elements (servers or agents) obtained at step
k, which know service i. For k ≥ 1, we recursively define new sets of agents. We define by Mk

the number of available resources at step k: Mk = M1 −
∑

i∈R

∑k−1

l=2
ni(l). For 1 ≤ j ≤ Mk we

define aj(k) ∈ {0, 1} to be a boolean variable stating whether or not node j is an agent in step k.

aj(k) = 1 if and only if node j is an agent in step k. For 1 ≤ j ≤Mk,∀i ∈ R, δj
i (k) ∈ {0, 1} defines

whether of not node j has service i in its underlying hierarchy in step k. For the servers, k = 0,
1 ≤ j ≤ M0,∀i ∈ R, δj

i (0) = 1 if and only if server j is of type i, otherwise δj
i (0) = 0. Hence, we

have the following relation: ∀i ∈ R, ni(k) =
∑Mk

j=1
δj
i (k). For 1 ≤ j ≤Mk,∀i ∈ R,

∣

∣

∣
Chldj

i (k)
∣

∣

∣
∈ N

is as previously the number of children of node j that know service i. Finally, for 1 ≤ j ≤Mk, 1 ≤
l ≤ Mk−1 let cj

l (k) ∈ {0, 1} be a boolean variable stating that node l in step k − 1 is a child of

node j in step k. cj
l (k) = 1 if and only if node l in step k − 1 is a child of node j in step k.

Using linear program (LP1), we can recursively define the hierarchy of agents, starting from
the bottom of the hierarchy.

Let’s have a closer look at (LP1). Lines (1), (2) and (3) only define the variables. Line (4)
states that any element in level k − 1 has to have exactly 1 parent in level k. Line (5) counts, for
each element at level k, its number of children that know service i. Line (6) states that the number
of children of j of type i cannot be greater than the number of elements in level k − 1 that know
service i, and has to be 0 if δj

i (k) = 0. The following two lines, (7) and (8), enforce the state of
node j: if a node has at least a child, then it has to be an agent (line (7) enforces aj(k) = 1 in this
case), and conversely, if it has no children, then it has to be unused (line (8) enforces aj(k) = 0 in
this case). Line (9) states that at least one agent has to be present in the hierarchy. Line (10) is
the transposition of the agent model in the send or receive or compute, single port model. Note
that the other models can easily replace this model in MILP (LP1). This line states that the time
required to deal with all requests going through an agent has to be lower than or equal to one
second.

Finally, our objective function is the minimization of the number of agents: the equal share of
obtained throughput to requested throughput ratio has already been cared of when allocating the
nodes to the servers, hence our second objective that is the minimization of the number of agents
in the hierarchy has to be taken into account.

Hierarchical Middleware on a Heterogeneous Platform 9

Minimize

Mk
∑

j=1

aj(k)

Subject to






































































































































































































(1) 1 ≤ j ≤Mk aj(k) ∈ {0, 1}

(2) 1 ≤ j ≤Mk,∀i ∈ R δj
i (k) ∈ {0, 1} and

∣

∣

∣
Chldj

i (k)
∣

∣

∣
∈ N

(3) 1 ≤ j ≤Mk,

1 ≤ l ≤Mk−1 cj
l (k) ∈ {0, 1}

(4) 1 ≤ l ≤Mk−1

Mk
∑

j=1

cj
l (k) = 1

(5) 1 ≤ j ≤Mk,∀i ∈ R
∣

∣

∣
Chldj

i (k)
∣

∣

∣
=

Mk−1
∑

l=1

cj
l (k).δl

i(k − 1)

(6) 1 ≤ j ≤Mk,∀i ∈ R
∣

∣

∣Chldj
i (k)

∣

∣

∣ ≤ δj
i (k).ni(k − 1)

(7) 1 ≤ j ≤Mk, i ∈ R δj
i (k) ≤ aj(k)

(8) 1 ≤ j ≤Mk aj(k) ≤
∑

i∈R

δj
i (k)

(9)

Mk
∑

j=1

aj(k) ≥ 1

(10) 1 ≤ j ≤Mk

∑

i∈R
ρservi

×




δj
i (k).wreqi

+ wrespi

(∣

∣

∣Chldj
i (k)

∣

∣

∣

)

wj

+

δj
i (k).mreqi

+
∣

∣

∣
Chldj

i (k)
∣

∣

∣
.mrespi

B
+

δj
i (k).mrespi

+
∣

∣

∣Chldj
i (k)

∣

∣

∣ .mreqi

B



 ≤ 1

(LP1)

4.3 Building the whole hierarchy

We do not detail the whole algorithm for building the hierarchy, as it is the same as the one
presented in [9] for homogeneous platforms. So, we refer the reader to this research report.

10 E. Caron, B. Depardon and F. Desprez

4.4 Experiments

We ran experiments on Diet hierarchies containing two services: dgemm 100 and Fibonacci 30.
We used two clusters on the Lyon site of Grid’5000: Sagittaire and Capricorne. Their respective
computing power is wsagittaire = 3249MFlops and wcapricorne = 2922MFlops. We used two
strategies to sort the nodes that are divided between the services: either we sorted them by
increasing wj (heuristic min-first) or by decreasing wj (heuristic max-first).

4.4.1 Theoretical model / experimental results comparison

We validate our model against real executions with the Diet middleware. Figures 4 and 5 present
the comparison between theoretical and experimental throughput for respectively experiments with
min-first and max-first heuristics. Table 1 presents the relative error for those experiments. As can
be seen, the min-first heuristic is the most interesting one when dealing with large platforms. This
can easily be explained: using less powerful nodes for servers leaves more powerful nodes for the
agents, hence the maximum attainable throughput due to agents limitation is higher. Whatever
the heuristic, we remain within 18.3% of the theoretical model.

 500

 1000

 1500

 2000

 2500

1-
2

2-
3

5-
5

10
-1

0

15
-1

5

20
-2

0

25
-2

5

 500

 1000

 1500

 2000

 2500

d
g
e
m
m

 th
ro

ug
hp

ut
 (

re
qu

es
ts

 /
s)

F
ib

on
ac

ci
 th

ro
ug

hp
ut

 (
re

qu
es

ts
 /

s)

Number of nodes (Sagittaire-Capricorne)

dgemm 100 Fibonacci 30

dgemm theoretical
Fibonacci theoretical
dgemm experimental

Fibonacci experimental

Figure 4: dgemm 100, Fibonacci 30 theoretical and experimental throughput, with min-first heuris-
tic.

Experiment
Number of nodes

1-2 2-3 5-5 10-10 15-15 20-20 25-25

min-first
dgemm 0.3% 5.2% 6.1% 3.2% 3.9% 2.9% 4.20%
Fibonacci 4.1% 5.1% 10.2% 9.7% 10.0% 10.6% 11.0%

max-first
dgemm 2.1% 0.1% 7.0% 7.7% 8.9% 2.3% 3.8%
Fibonacci 4.6% 10.8% 12.7% 12.8% 18.3% 4.5% 3.0%

Table 1: Relative error, using min-first and max-first heuristics.

Hierarchical Middleware on a Heterogeneous Platform 11

 500

 1000

 1500

 2000

 2500

1-
2

2-
3

5-
5

10
-1

0

15
-1

5

20
-2

0

25
-2

5

 500

 1000

 1500

 2000

 2500
d
g
e
m
m

 th
ro

ug
hp

ut
 (

re
qu

es
ts

 /
s)

F
ib

on
ac

ci
 th

ro
ug

hp
ut

 (
re

qu
es

ts
 /

s)

Number of nodes (Sagittaire-Capricorne)

dgemm 100 Fibonacci 30

dgemm theoretical
Fibonacci theoretical
dgemm experimental

Fibonacci experimental

Figure 5: dgemm 100, Fibonacci 30 theoretical and experimental throughput, with max-first heuris-
tic.

4.4.2 Comparison with star graphs

On the tested platforms, our heuristics create hierarchies having up to three levels of agents. Is
this really necessary, or would have a star graph, having the same SeD mapping, given the same
or better results? Figure 6 presents the comparison between min-first and a star graphs having
the same SeD distribution, and figure 7 present the comparison between max-first and star graphs
having the same SeD distribution. As can be seen our approach clearly surpasses the simple star
graph approach.

The fact that on Figure 7 the star graph throughput increases with 25-25 nodes, is easily
explained by the number of SeDs this star graph has. As can be seen on Figure 11 (25-25 nodes)
less SeDs are present than in Figure 10 (20-20 nodes). Thus, the MA is less loaded on the star
graph obtained on 25-25 nodes, than on the star graph obtained on 20-20 nodes.

4.4.3 Hierarchy shape

Figures 8, 9, 10 and 11 give an example of the shape of the hierarchy generated by respectively
min-first on a 20-20 and 25-25 platform, and max-first on a 20-20 and 25-25 nodes platform. Red
nodes are on the Sagittaire cluster, white nodes on the Capricorne cluster. “D” stands for dgemm,
and “F” stands for Fibonacci.

12 E. Caron, B. Depardon and F. Desprez

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

1-
2

2-
3

5-
5

10
-1

0

15
-1

5

20
-2

0

25
-2

5

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

d
g
e
m
m

 th
ro

ug
hp

ut
 (

re
qu

es
ts

/s
)

F
ib

on
ac

ci
 th

ro
ug

hp
ut

 (
re

qu
es

ts
/s

)

Number of nodes (Sagittaire-Capricorne)

dgemm 100 Fibonacci 30

dgemm, min-first
Fibonacci, min-first

dgemm, star graph
Fibonacci, star graph

Figure 6: Comparison min-first with a star graph with the same SeD distribution.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

1-
2

2-
3

5-
5

10
-1

0

15
-1

5

20
-2

0

25
-2

5

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

d
g
e
m
m

 th
ro

ug
hp

ut
 (

re
qu

es
ts

/s
)

F
ib

on
ac

ci
 th

ro
ug

hp
ut

 (
re

qu
es

ts
/s

)

Number of nodes (Sagittaire-Capricorne)

dgemm 100 Fibonacci 30

dgemm, max-first
Fibonacci, max-first

dgemm, star graph
Fibonacci, star graph

Figure 7: Comparison max-first with a star graph with the same SeD distribution.

Hierarchical Middleware on a Heterogeneous Platform 13

!" !"

!" !" !"

$ $ $ $ $ $ $ $

!" !" !"

$ $ $ $# # # #

%"

Figure 8: min-first : 20-20.

!" !"

!" !" !"

� � � � � � � � � � � � � �

!" !" !" !"

� � � �� � � �

%"

� �

Figure 9: min-first : 25-25.

LA LA

LA LA LA

D D D D DF F F F F F F F

LA LA LA

F F D D D D

MA

Figure 10: max-first : 20-20.

LA LA LA

D D F F F F F F F F

MA

D D D D D

Figure 11: max-first : 25-25.

14 E. Caron, B. Depardon and F. Desprez

5 Fully Heterogeneous Platforms

In this section we finally deal with a fully heterogeneous platform: each node j has a computing
power of its own wj , and the communication links between any two nodes j, j′ are possibly all
different: Bj,j′ . Hence, the agents and servers models follow the general model presented in
Section 3.

The problem when dealing with totally heterogeneous platforms is that we need information
about both the location of the parent, and location of the children. Hence, the bottom-up approach
we used so far won’t be applicable, nor would be a top-down approach: we won’t be able to build
a level if we do not know the position of the parent in a bottom-up approach, and conversely we
cannot build a level without knowing the position of the children in a top-down approach.

5.1 A Genetic Algorithm Approach

As we cannot use an iterative approach to build a hierarchy without risking to have to test all
possible solutions, we took a totally different approach: we rely on a genetic algorithm to generate
a set of hierarchies, then evolve them, and finally select the best one among them.

In order to define our genetic algorithm, we need to describe a few notions: the objective
function, crossover and mutations, and finally the evaluation strategy.

5.1.1 Objective function

The objective function has to encode all the goals we aim at optimizing in a hierarchy. It also
needs to be subject to an order relation. Many genetic algorithm frameworks require that the
objective function is encoded on an integer or floating point variable.

Our goal is the same as previously: we aim at maximizing the minimum ρi/ρ∗, while minimizing
the number of agents constituting the hierarchy. Hence our goal can be summarized with the
following point of decreasing importance: (i) maximize mini∈R {ρi/ρ∗}, (ii) then maximize the
second ratio, the third. . . , (iii) minimize the number of agents to support the maximum throughput
(i.e., maximize N minus the number of agents). In order to encode all these points into a single
value, we use the following encoding (presented Figure 12): if we are given a precision ǫ on each
ρi/ρ∗i ratio, then we can encode them on 1/ǫ digits; moreover, as the maximum number of agents
is N − 1, we only need ⌈log

10
(N)⌉ digits to encode the number of agents. Hence, on the whole we

need R× 1/ǫ + ⌈log
10

(N)⌉ digits.

X X X X X X X X X X X X X X X X X X

ρi/ρi
∗ x 1/ε sorted by increasing values N - NbAgents

...

Objective value to maximize

Figure 12: Objective value encoding.

Actually, in order to guide a bit more the genetic algorithm towards convergence, we added two
more metrics that we wish to minimize at the end of the fitness value: the number of agents that do
not have any children (in order to remove really useless elements) and the depth of the hierarchy
(this shouldn’t affect the throughput, but this impacts the response time of the hierarchy, and
limits the formation of chains of agents).

5.1.2 Genotype

The genotype needs to encode the whole hierarchy: the parent/children relationship, and the type
of each node (agent, server or unused). It can easily be encoded on two arrays of size N : one for

Hierarchical Middleware on a Heterogeneous Platform 15

encoding the type of the nodes, and one for encoding the parent/children relationship. The alleles,
i.e., each value in the arrays, can have the following values. The type of a node can either be 0 if
the node is unused, 1 if it is an agent, or i ∈ {2 . . . 2 +R} if the node is a server of type i− 2. The
parent of a node i can either be itself if the node is unused (i.e., type[i] = 0) or the MA, or the node
number corresponding to the parent of i in the hierarchy. Genotypes are randomly generated when
creating the first generation of individuals: nodes’ types and relationship are randomly chosen in
such a way that a valid hierarchy is created.

5.1.3 Crossover

We define a crossover between two hierarchies as follows. Crossovers are only made on the parent
array. We randomly select two nodes (one on each hierarchy) and exchange the parent of both
selected nodes. Figure 13 presents an example of crossover. Why not define a crossover which
replaces a whole part of a hierarchy into another one? This approach works well for a small number
of nodes, but has a far too big impact on the hierarchy shape on a large number of nodes. As an
example, consider hierarchies H1 and H2 in Figure 13, suppose a crossover between node 6 in H1

and node 1 in H2. Transferring node 6 into H2 in place of node 1 would remove seven nodes, as
node 6 is a server. Conversely, we cannot transfer node 1 in place of node 6 into H1, as node 1 is
the root of the hierarchy, and thus a transfer would lead to a loop in the hierarchy.

!

"# $

%

&

' (%& (

%) *

%

&" #

%%

!

$ & !

"# $

%

&

' (%& (

%) *

%

&" #

%%

!

$ &+

,
%

,
'

,-
%

,-
'

Figure 13: Crossover. Colored nodes are the one selected for crossover, within hierarchy elements
represent the nodes’ number.

5.1.4 Mutation

Mutations on a hierarchy can occur at different levels in the hierarchy. We define the following
mutations, also presented in Figure 14:

• Hierarchy modification:

1. we randomly select a node to change its type. If the mutation changes the type from
agent to unused or SeD, or from SeD to unused, then we remove the underlying
hierarchy and modify the type of the node. If the type changes from unused to agent
or SeD, we randomly choose a parent among the available agents.

2. we randomly select a node that will choose a new parent among the available agents.
We can end up with two hierarchies (if the new parent is the node itself), in this case
we randomly select one of the two hierarchies, and delete the other.

• Pruning: a node is randomly selected, then its whole underlying hierarchy is deleted.

5.1.5 Hierarchy evaluation

In order to evaluate a hierarchy generated by our genetic algorithm, we first compute for all i ∈ R
the throughput supported by the servers, we denote by ρmax

i this throughput. Then, for each

16 E. Caron, B. Depardon and F. Desprez

(a) Type mutation (b) Parent mutation (c) Pruning

Figure 14: Mutations. Colored node has been selected for mutation. Hexagons are agents, and
circles are servers.

agent in the hierarchy, we compute the maximum throughput ρi for each service supported by the
agent, we use (LP2) to compute ρi.

Maximize
ρ1

ρmax

1

Subject to






























































(1) ∀i ∈ R 0 ≤ ρi ≤ ρmax

i

(2) ∀i ∈ R, i 6= 1
ρ1

ρmax

1

=
ρi

ρmax

i

(3)
∑

i∈R

ρi.δ
j
i .

wreqi

wj

+
∑

i∈R

ρi.
∣

∣

∣
Chldj

i

∣

∣

∣
.
wrespi

wj

+

∑

i∈R

ρi.δ
j
i .mreqi

Bj,fj

+
∑

i∈R

∑

k∈Chld
j

i

ρi.mrespi

Bj,k

+

∑

i∈R

ρi.δ
j
i .mrespi

Bj,fj

+
∑

i∈R

∑

k∈Chld
j

i

ρi.mreqi

Bj,k

≤ 1

(LP2)

5.1.6 Implementation and parameters

Genetic algorithms rely on quite a lot of different parameters. Each one of them can influence the
quality of the result. Among them are the following:

• Selection method : when comparing x individuals, we need to choose which one should “sur-
vive.” Different approaches exist: deterministic tournament, stochastic tournament, roulette
or ranking. Our tests showed that the deterministic tournament was the one giving on aver-
age better results. Hence, we use this selection method in our experiments. When we force
that the best parent replaces the weakest child if the child has a lower fitness, we talk about
weak elitism. Weak elitism can possibly provide better solutions as it forces the algorithm to
converge towards a locally good solution. However, it also reduces the population diversity,
and thus, can lead to a local optimum. Our simulations tended to provide worst solutions
when weak elitism was used, thus, in the following studies, we do not use it.

• Size of the population: with n machines, we varied the size of the population between n/4
and 2× n. The worst results were always obtained for a size of n/4. The best results were
obtained for populations having 5/4×n and 2×n. On average, better results were obtained
for populations of sizes between 5/4× n and 2× n.

• Probability of crossover and mutation: crossover rate should generally be high, around 80%-
90%, and mutation rate quite low, around 0.5%-1%. A very small mutation rate may lead
to genetic drift, whereas a high one may lead to loss of good solutions. We chose set the
mutation and crossover rates respectively to 1% and 80%.

We used the ParadisEO [5] framework to implement our genetic algorithm.

Hierarchical Middleware on a Heterogeneous Platform 17

5.2 Quality of the Approach

Genetic algorithms mainly depend on stochastic processes, thus we need to assess the quality of
the results. As we do not have any other algorithm for fully heterogeneous platforms, we compare
our genetic algorithm with the heuristics proposed in Section 4 for computation heterogeneous
platforms.

5.2.1 Comparison with computation heterogeneous, communication homogeneous
algorithm

We compare our genetic algorithm (GA) with min-first and max-first . GA was run on 1000
generations, on a population having at least 50 individuals (or 2 × |V | if this is higher than 50).
We used the deterministic tournament method of selection, and we ran 100 executions (100 seeds).
Figure 15a and 15b respectively present the results for dgemm and Fibonacci services. As can be
seen, even if on the mean GA do not obtain results as good as min-first or max-first , the best GA
results closely follows the min-first heuristic. Table 2 presents the relative gain/loss obtained with
the best solution of the genetic algorithm, compared to the min-first and max-first heuristics. As
one can see, the loss is no bigger than 15%, and it gives better results than max-first for the larger
platform. This confirms that our approach can be effective: even if one run of GA is not sufficient
to obtain the best result, taking the best hierarchy over a few runs of GA can give us good results.
Note that this is often the case with genetic algorithms, as it is an exploratory method. We are
quite confident that the performance loss obtained with the GA solutions can be reduced by fine
tuning the GA parameters.

Experiment
Number of nodes

1-2 2-3 5-5 10-10 15-15 20-20 25-25

min-first
dgemm -11.3% 0.0% 5.7% -7.3% -14.3% -11.0% 1.8%
Fibonacci 12.8% 12.6% 4.6% -6.6% -13.6% -11.6% -3.6%

max-first
dgemm -11.1% 0.0% 5.7% -11.6% -11.0% -4.5% 34.1%
Fibonacci 12.8% 5.9% 2.3% -9.2% -11.3% -5.1% 32.6%

Table 2: Genetic algorithm gains/loss compared to the min-first and max-first heuristics. A
positive number denotes a gain, whereas a negative one denotes a loss.

18 E. Caron, B. Depardon and F. Desprez

 0

 500

 1000

 1500

 2000

 2500
1-

2
2-

3

5-
5

10
-1

0

15
-1

5

20
-2

0

25
-2

5

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Nodes (Sagittaire-Capricorne)

dgemm

min-first
max-first

Genetic
Genetic mean

(a) dgemm 100

 0

 500

 1000

 1500

 2000

 2500

1-
2

2-
3

5-
5

10
-1

0

15
-1

5

20
-2

0

25
-2

5

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Nodes (Sagittaire-Capricorne)

Fibonacci

min-first

max-first

Genetic
Genetic mean

(b) Fibonacci 30

Figure 15: Comparison genetic algorithm results with min-first and max-first results.

Hierarchical Middleware on a Heterogeneous Platform 19

5.2.2 Initialization difference

We also compared the results of the genetic algorithm for different initialization strategies. We
compared four different strategies:

• Random: we first randomly choose the number of nodes for each service, they are mapped
on random nodes. Then, we create a random number of agents, and finally we just connect
everything randomly, but in a way that creates a valid hierarchy. This is the initialization
method used in the previous section.

• min-first or max-first : we use the random initialization for all but one hierarchy. We initialize
this latter with the hierarchy found by min-first or max-first (this of course is only possible
for a communication homogeneous platform).

• star-graph: we randomly choose the type of each nodes, and ensure that only one can be an
agent. Then elements are connected as a star graph under the agent.

Figures 16a and 16b present the results. The star-graph gives the worst results, as new levels
of hierarchy can be created only through mutations, and they do not occur often. Without much
surprise, the min-first and max-first initialization give the best results as they are guided by
the result of the bottom-up algorithm. Finally, the random initialization give results that are in
between min-first and max-first on the mean, but which best result is almost as good as min-
first method. These results also assess the effectiveness of our approach, as starting from totally
random hierarchies, we obtain results as good as with the min-first heuristic.

20 E. Caron, B. Depardon and F. Desprez

 0

 500

 1000

 1500

 2000

 2500
1-

2
2-

3

5-
5

10
-1

0

15
-1

5

20
-2

0

25
-2

5

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Nodes (Sagittaire-Capricorne)

dgemm

min-first
max-first
Init random

Init star
Init min-first
Init max-first

(a) dgemm 100

 0

 500

 1000

 1500

 2000

 2500

1-
2

2-
3

5-
5

10
-1

0

15
-1

5

20
-2

0

25
-2

5

T
hr

ou
gh

pu
t (

nb
 r

eq
ue

st
s/

s)

Nodes (Sagittaire-Capricorne)

Fibonacci

min-first

max-first

Init random
Init star

Init min-first
Init max-first

(b) Fibonacci 30

Figure 16: Different methods of initialization.

Hierarchical Middleware on a Heterogeneous Platform 21

5.3 Experiments

We ran experiments on Diet hierarchies, with the same services as before: dgemm 100 and Fi-
bonacci 30. We used three clusters present on three different sites of Grid’5000: Sagittaire in
Lyon, Chti in Lille and Paradent in Rennes. Their respective computing power is wsagittaire =
3249MFlops, wChti = 3784MFlops and wParadent = 4378MFlops. Figure 17 present the com-
parison between theoretical and experimental throughput, and Table 3 presents the relative error.
As can be seen, the experiments follow the model. Even though the error can be quite big for
small platforms (less than 10 nodes), the performance prediction becomes more accurate for larger
platforms, as the relative error remains lower than 16%. The higher errors obtained for small
platforms can be explained by the fact that the platform benchmarks have been done by stressing
the network and machines. This stress is more easily attained when many nodes are involved in
the experiments.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1-
1-

1
2-

2-
1

3-
4-

3

7-
7-

6

10
-1

0-
10

13
-1

4-
13

17
-1

7-
16

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

d
g
e
m
m

 th
ro

ug
hp

ut
 (

re
qu

es
ts

 /
s)

F
ib

on
ac

ci
 th

ro
ug

hp
ut

 (
re

qu
es

ts
 /

s)

Number of nodes (Sagittaire-Paradent-Chti)

dgemm 100 Fibonacci 30

dgemm theoretical
Fibonacci theoretical
dgemm experimental

Fibonacci experimental

Figure 17: dgemm 100, Fibonacci 30 theoretical and experimental throughput, with genetic algo-
rithm approach.

Client
Sagittaire-Paradent-Chti

1-1-1 2-2-1 3-4-3 7-7-6 10-10-10 13-14-13 17-17-16

dgemm 5.42% 2.29% 14.26% 0.33% 4.44% 11.73% 3.12%
Fibonacci 98.63% 35.70% 8.16% 4.96% 4.91% 10.53% 15.95%

Table 3: Relative Error, using genetic algorithm.

Figure 18 presents the shape of the hierarchy obtained for a 17-17-16 platform. As can be seen,
not all the available nodes are used: as previously, adding more nodes does not necessarily provide
better performances as it tends to overload the agents. Blue nodes are on the Chti cluster, red
ones on Paradent, and the white ones on Sagittaire.

22 E. Caron, B. Depardon and F. Desprez

MA

LA LA

D D LAF F F F F

F LA

LA

F F D D D

Figure 18: Hierarchy shape for a 17-17-16 platform.

6 Conclusion

In this paper we presented a computation and communication model for hierarchical middleware,
when several services are available in the middleware. We proposed algorithms to find a hierarchy
that gives the best obtained throughput to requested throughput ratio for all services on two
different kinds of platforms: communication homogeneous/computation heterogeneous platforms,
and fully heterogeneous platforms. The algorithm for communication homogeneous platforms
uses a bottom-up approach, and is based on a linear program to successively determine levels of
the hierarchy. The algorithm for totally heterogeneous platforms relies on a genetic algorithm.
Our experiments on a real middleware, Diet, show that the obtained throughput closely follows
what our model predicts and that both approaches (bottom-up algorithm, and genetic algorithm)
provide excellent performances. We clearly showed that they add new levels of agents whenever
required, and that it outperforms the classical approach of deploying the middleware as a balanced
star graph.

7 Acknowledgment

Experiments presented in this paper were carried out using the Grid’5000 experimental testbed,
being developed under the INRIA ALADDIN development action with support from CNRS, RE-
NATER and several Universities as well as other funding bodies (see https://www.grid5000.fr).

References

[1] Abelkader Amar, Raphaël Bolze, Yves Caniou, Eddy Caron, Benjamin Depardon, Jean-
Sébastien Gay, Gaël Le Mahec, and David Loureiro. Tunable scheduling in a GridRPC
framework. Concurrency and Computation: Practice and Experience, 20(9):1051–1069, 2008.

[2] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi, Z. Shi,
and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1. Innovative Computing Dept. Technical
Report ICL-UT-02-05, University of Tennessee, Knoxville, TN, June 2002.

[3] Fran Berman, Geoffrey Fox, and Anthony J. G. Hey. Grid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[4] Laurent Broto, Daniel Hagimont, Patricia Stolf, Noel Depalma, and Suzy Temate. Auto-
nomic management policy specification in tune. In SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, pages 1658–1663, New York, NY, USA, 2008. ACM.

[5] S. Cahon, N. Melab, and E. G. Talbi. Paradiseo: A framework for the reusable design of
parallel and distributed metaheuristics. Journal of Heuristics, 10(3):357–380, 05 2004.

[6] Yves Caniou, Eddy Caron, Frédéric Desprez, Hidemoto Nakada, Keith Seymour, and Yoshio
Tanaka. Recent Developments in Grid Technology and Applications, chapter High performance
GridRPC middleware. Nova Science Publishers, April 2009. To appear.

https://www.grid5000.fr

Hierarchical Middleware on a Heterogeneous Platform 23

[7] E. Caron, P.K. Chouhan, and A. Legrand. Automatic deployment for hierarchical network
enabled servers. In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th
International, pages 109–, April 2004.

[8] Eddy Caron, Pushpinder Kaur Chouhan, and Holly Dail. GoDiet : A deployment tool
for distributed middleware on grid’5000. In IEEE, editor, EXPGRID workshop. Experimen-
tal Grid Testbeds for the Assessment of Large-Scale Distributed Apllications and Tools. In
conjunction with HPDC-15., pages 1–8, Paris, France, June 19th 2006.

[9] Eddy Caron, Benjamin Depardon, and Frédéric Desprez. Modelization for the Deployment of
a Hierarchical Middleware on a Homogeneous Platform. Research Report RR-7201, INRIA,
02 2010. New experimental results compared to version 1 Comparisons with balanced star
deployement since version 2.

[10] Eddy Caron and Frédéric Desprez. DIET: A scalable toolbox to build network enabled servers
on the grid. International Journal of High Performance Computing Applications, 20(3):335–
352, 2006.

[11] Henri Casanova and Jack Dongarra. Netsolve: a network server for solving computational
science problems. In Supercomputing ’96: Proceedings of the 1996 ACM/IEEE conference on
Supercomputing (CDROM), page 40, Washington, DC, USA, 1996. IEEE Computer Society.

[12] P.K. Chouhan. Automatic Deployment for Application Service Provider Environments. PhD
thesis, PhD thesis, Ecole Normale Supérieure de Lyon, 2006.

[13] Pushpinder Kaur Chouhan, Holly Dail, Eddy Caron, and Frédéric Vivien. Automatic middle-
ware deployment planning on clusters. Int. J. High Perform. Comput. Appl., 20(4):517–530,
2006.

[14] Areski Flissi and Philippe Merle. A generic deployment framework for grid computing and
distributed applications. In Proceedings of the 2nd International OTM Symposium on Grid
computing, high-performAnce and Distributed Applications (GADA’06), volume 4279 of Lec-
ture Notes in Computer Science, pages 1402–1411, Montpellier, France, nov 2006. Springer-
Verlag.

[15] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[16] Sébastien Lacour, Christian Pérez, and Thierry Priol. Generic application description model:
Toward automatic deployment of applications on computational grids. In 6th IEEE/ACM
International Workshop on Grid Computing (Grid2005), Seattle, WA, USA, November 2005.
Springer-Verlag.

[17] J. P. Morrison, B. Clayton, D. A. Power, and A. Patil. Webcom-G: grid enabled metacom-
puting. Neural, Parallel Sci. Comput., 12(3):419–438, 2004.

[18] Keith Seymour, Craig Lee, Frédéric Desprez, Hidemoto Nakada, and Yoshio Tanaka. The
end-user and middleware apis for GridRPC. In Workshop on Grid Application Programming
Interfaces, In conjunction with GGF12, Brussels, Belgium, 2004.

[19] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-g: A reference
implementation of RPC-based programming middleware for grid computing. Journal of Grid
Computing, 1(1):41–51, 03 2003.

[20] Yoshio Tanaka, Hiroshi Takemiya, Hidemoto Nakada, and Satoshi Sekiguchi. Design, imple-
mentation and performance evaluation of gridrpc programming middleware for a large-scale
computational grid. In GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, pages 298–305, Washington, DC, USA, 2004. IEEE Computer Society.

24 E. Caron, B. Depardon and F. Desprez

[21] Asim YarKhan, Jack Dongarra, and Keith Seymour. Gridsolve: The evolution of a network
enabled solver. Grid-Based Problem Solving Environments, pages 215–224, 2007.

	1 Introduction
	2 Model Assumptions
	2.1 Request Definition
	2.2 Resource Architecture
	2.3 Deployment Assumptions
	2.4 Objective

	3 Servers and Agents Models
	3.1 ``Global'' Throughput
	3.2 Hierarchy Elements Model
	3.2.1 Server model
	3.2.2 Agent model

	4 Planning on Communication Homogeneous / Computation Heterogeneous Platforms
	4.1 Servers repartition
	4.2 Agents hierarchy
	4.3 Building the whole hierarchy
	4.4 Experiments
	4.4.1 Theoretical model / experimental results comparison
	4.4.2 Comparison with star graphs
	4.4.3 Hierarchy shape

	5 Fully Heterogeneous Platforms
	5.1 A Genetic Algorithm Approach
	5.1.1 Objective function
	5.1.2 Genotype
	5.1.3 Crossover
	5.1.4 Mutation
	5.1.5 Hierarchy evaluation
	5.1.6 Implementation and parameters

	5.2 Quality of the Approach
	5.2.1 Comparison with computation heterogeneous, communication homogeneous algorithm
	5.2.2 Initialization difference

	5.3 Experiments

	6 Conclusion
	7 Acknowledgment

