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Abstract. - The linear response of non-equilibrium systems with Markovian dynamics satis-
fies a generalized fluctuation-dissipation relation derived from time symmetry and antisymmetry
properties of the fluctuations. The relation involves the sum of two correlation functions of the
observable of interest: one with the entropy excess and the second with the excess of dynamical
activity with respect to the unperturbed process. We illustrate this approach in the experimental
determination of the linear response of the potential energy of a Brownian particle in a toroidal
optical trap. The overdamped particle motion is effectively confined to a circle, undergoing a peri-
odic potential and driven out of equilibrium by a non-conservative force. Independent direct and
indirect measurement of the linear response around a non-equilibrium steady state are performed
in this simple experimental system. The same ideas are applicable to the non-equilibrium linear
response of more general micron-sized systems immersed in Newtonian fluids either in stationary
or non-stationary states and possibly including inertial degrees of freedom.

Introduction. – The linear response of systems in
thermodynamic equilibrium is generally described by the
fluctuation-dissipation theorem [1]. This theorem provides
a simple relation between the equilibrium fluctuations of
a given observable Q with the response of the system due
to a small external perturbation hs changing the potential
at time s as U → U − hsV :

RQV (t− s) = β
d

ds
〈Q(t)V (s)〉0. (1)

In eq. (1) RQV (t− s) = δ〈Q(t)〉h/δhs|h=0 is the linear re-
sponse function of Q at time t ≥ s; 〈Q(t)V (s)〉0 is the two-
time correlation function between Q and V measured at
equilibrium; the brackets 〈. . .〉h denote the ensemble aver-
age in the state perturbed by hs so that 〈. . .〉0 corresponds
to the ensemble average at equilibrium (hs = 0). The in-
verse temperature of the equilibrium system, β = 1/kBT ,
appears as a multiplicative factor. Hence, eq. (1) rep-
resents a useful tool in experiments and simulations to
explore indirectly the linear response regime from fluctua-
tion measurement completely performed at thermal equi-
librium. Vice versa, one can obtain information on mi-
croscopic fluctuations from non-equilibrium macroscopic
measurements of response functions or susceptibilities by
applying sufficiently weak external fields.
In general, eq. (1) fails to describe the linear response

of systems already prepared in a non-equilibrium state.
This situation is relevant in real mesoscopic systems that
usually operate far from equilibrium due to either non-
conservative/time-dependent forces exerted by the exper-
imental apparatus or external flows and gradients applied
at the boundaries. For instance, the developement of mi-
cro and nano techniques (e.g. optical tweezers and atomic
force microscopes) has allowed one to mechanically manip-
ulate colloidal particles, living cells and single molecules
of biological interest with forces ranging from pN to fN. In
this kind of experiments, thermal fluctuations can be com-
parable or larger than the typical external perturbations
necessary to determine RQV . Then, for these systems it is
more reliable in practice to measure non-equilibrium fluc-
tuations than linear response functions.

On the theoretical side, several works have recently
delt with the problem of the extension of the fluctuation-
dissipation theorem around non-equilibrium steady states
[2–11]. In most of the formulations, an additive extra
term on the right-hand side of eq. (1) appears as a non-
equilibrium correction of the fluctuation-dissipation rela-
tion due to the broken detailed balance. Different phys-
ical interpretations of the corrective term are provided
in the literature. We specially highlight the roles of the
non-vanishing probability current [6] and the conjugate
variables to the total entropy production [5, 11] in the
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analytical expression of the corrective term, leading in-
dependently to a Lagrangian interpretation for Langevin
systems with first-order Markovian dynamics. Follow-
ing these two approaches an equilibrium-like fluctuation-
dissipation relation can be restored in the Lagrangian
frame of the local mean velocity of the system for the
right choice of observables [5,12]. An alternative interpre-
tation has been proposed in terms of time-symmetric and
time-antisymmetric properties of the fluctuations [13–15].
This formulation holds even in more general situations in-
cluding non-steady states and inertial degrees of freedom
provided that the dynamics is Markovian [15].

Generalized approach to linear response. –

We briefly present the formulation of the fluctuation-
dissipation relation developed in [13–15] for the special
case of stochastic systems described by a finite number
of degrees of freedom {q} with overdamped Markovian
Langevin dynamics, in presence of a potential U(q). The
systems are in contact with a thermal bath at tempera-
ture T and driven into a non-equilibrium steady state by
a non-conservative force. We focus on the average value of
an observable Q(q) at time t, denoted by 〈Q(qt)〉0. We are
also interested in the mean value 〈Q(qt)〉h of Q(q), when a
small time dependent perturbation hs is applied to U(q),
namely U(q) → U(q) − hsV (q). As formally shown in
[13, 14], 〈Q(qt)〉h is given at linear order in hs by

〈Q(qt)〉h = 〈Q(qt)〉0 +

∫ t

−∞

RQV (t, s)hs ds, (2)

where the linear response function RQV obeys the gener-
alized fluctuation-dissipation relation

RQV (t, s) =
β

2

d

ds
〈V (qs)Q(qt)〉0 −

β

2
〈LV (qs)Q(qt)〉0. (3)

In eq. (3), L is the generator of the unperturbed Langevin
dynamics which determines the time evolution of any
single-time observable O(q): d〈O(qt)〉0/dt = 〈(LO)(qt)〉0.
It should be noted that RQV (t, s) is operationally ob-

tained by applying an instantaneous delta perturbation at
time s and measuring 〈Q(qt)〉h−〈Q(qt)〉0. In experiments
it is always more reliable to apply a Heaviside perturbation
(hs = 0 for s < 0, hs = h = const. for s ≥ 0) instead. This
procedure directly yields the integrated response function

χQV (t) =

∫ t

0

RQV (t, s) ds =
〈Q(qt)〉h − 〈Q(qt)〉0

h
, (4)

defined over the time interval [0, t]. Therefore, in the fol-
lowing we consider the integral form of eq. (3)

χQV (t) =
β

2
[C(t) +K(t)], (5)

where the term

C(t) = 〈V (qt)Q(qt)〉0 − 〈V (q0)Q(qt)〉0, (6)

can be interpreted as a correlation between the observ-
able Q(qt) and the excess in entropy produced by the
Heaviside perturbation during the interval [0, t]: [hV (qt)−
hV (q0)]/T . On the other hand, the term

K(t) = −

∫ t

0

〈LV (qs)Q(qt)〉0 ds, (7)

can be interpreted as minus the correlation between the
observable Q(qt) and the integrated excess in dynamical

activity or frenesy: β
∫ t

0
LV (qs)hds, which quantifies how

frenetic the motion is due to the perturbation with re-
spect to the unperturbed process. The frenesy βLV (q)
can be regarded as a generalized escape rate of a trajec-
tory from a given phase-space point q. In refs. [13–15] it
has been widely discussed that the origin of the entropic
C(t) and the frenetic K(t) terms can be traced back to
time-antisymmetric and symmetric properties of the fluc-
tuations, respectively.

Colloidal particle in a toroidal optical trap. – In
the present paper we apply the previous ideas to a sim-
ple experimental micron-sized system driven away from
thermal equilibrium. Our aim is to show that the gen-
eralized fluctuation-dissipation formula (5) is suitable for
the description of the non-equilibrium linear response of
micron-sized systems immersed in Newtonian fluids and
subjected to time-dependent or non-conservatives forces.
Under this conditions all the unperturbed terms on the
right-hand side of eq. (5) are measurable. Viscoelastic
environments are excluded from this formulation because
they imply non-Markovian dynamics.
Specifically we study the linear response of a single

colloidal particle driven out of equilibrium by a non-
conservative force in presence of a non-linear potential.
We recall the main features of the experiment, described
in detail in ref. [16], where this experimental set-up has
been used in the context of a modified fluctuation dissi-
pation relation, but with a different interpretation of the
one described in the present letter. In our experiment
the Brownian motion of a spherical silica particle (radius
r = 1µm) immersed in water is confined on a thin torus
of major radius a = 4.12µm by a tightly focused laser
beam which rotates at 200 Hz (see fig. 1). The rotation
frequency of the laser is so high that it is not able to trap
continuously the colloidal particle in the focus because the
viscous drag force of the surrounding water quickly ex-
ceeds the optical trapping force. Consequently, at each
rotation the beam only kicks the particle a small distance
along the circle of radius a. During the absence of the
beam (≈ 5 ms), the particle undergoes free diffusion of
less than 40 nm in the radial and perpendicular direction
to the circle. Thus, the particle motion is effectively con-
fined on a circle: the angular position θ of its barycenter
is the only relevant degree of freedom of the dynamics. In
addition, a static light intensity profile is created along the
circle by sinusoidally modulating in time the laser power
which has a mean value of 30 mW and a modulation am-
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Fig. 1: (a) Snapshot of the colloidal particle in the toroidal
optical trap. The straight vertical arrow indicates the position
θ = 0 whereas the curled arrow shows the direction of the rota-
tion of the laser beam. (b) Experimental potential profile (solid
line) and the corresponding probability density function of θ
(dashed line) for the non-equilibrium steady state generated by
the non-conservative force f .

plitude of 4.2 mWpp at the same frequency as the rota-
tion frequency of the beam. Fig. 1(a) sketches this exper-
imental configuration on a snapshot of the the colloidal
particle in the toroidal optical trap. The water reservoir
acts as an equilibrium thermal bath at fixed temperature
(T = 20 ± 0.5◦C) providing thermal fluctuations to par-
ticle. The viscous drag coefficient at this temperature is
γ = 1.89× 10−8 kg s−1.
For the experimentally accessible length and time scales

the dynamics of θ is modeled by the first-order Langevin
equation [16, 17]

θ̇ = −Aφ′(θ) + F + ξ, (8)

where Aφ(θ) is a periodic non-linear potential [Aφ(θ) =
Aφ(θ+2π)] of amplitude A = 0.87 rad2 s−1 created by the
laser intensity modulation; F = 0.85 rad s−1 is a constant
force acting in the direction of the laser rotation which is
associated to the mean kick of the beam; ξ is a white noise
process of zero mean and covariance 〈ξtξs〉 = 2Dδ(t − s)
with bare diffussivity D = kBT/(γa

2) = 1.26 × 10−2

rad2 s−1, which models the thermal fluctuating force
exerted by the water molecules. F is non-conservative

(
∫ 2π

0
Fdθ = 2πF > 0) since the motion takes places on a

circle, driving the system out of equilibrium. The physical
non-conservative force and the potential are f = γaF = 66
fN and U(θ) = γa2Aφ(θ) = 68.8kBTφ(θ), respectively.
The experimental potential profile U(θ) is plotted as a
continuous black line in fig 1(b). Note that at thermal
equilibrium (F = 0) the particle motion would be tightly
confined around the potential minimum with the stochas-
tic variable θ distributed according to the Boltzmann den-
sity ρeq(θ) ∝ exp[−βU(θ)]. However, due to the the ther-
mal fluctuations and the non-conservative force F > 0,
the particle is able to go beyond the potential barrier and
explore the whole circle. In the non-equilibrium situa-
tion with constant F,A,D > 0, the angular position θ
settles in a stationary probability density ρ(θ) 6= ρeq(θ)
that admits an analytical expression found in [18]. The
experimental non-equilibrium density ρ(θ) is shown in
fig. 1(b) as a dashed line. A constant probability cur-
rent j = 〈θ̇(t)〉0/(2π) = [F − Aφ′(θ)]ρ(θ) −D∂θρ(θ) > 0,
in the direction of F appears reflecting the broken detailed
balance of the dynamics. For the experimental conditions
one finds j = 3.76 × 10−2 s−1 corresponding to a mean
rotation period of 26.6 s for the particle. Both ρ(θ) and j,
determined from 200 independent experimental time series
of the angular position of the particle {θt, 0 ≤ t ≤ 66.67
s}, allow one to precisely compute the value of the non-
conservative force f and the potential profile U(θ), as de-
scribed in [16].
Now we proceed to determine the linear response of

the particle motion when slightly perturbing the non-
equilibrium steady state previously described. For exper-
imental simplicity we consider a perturbation to the po-
tential amplitude A → A + δA, so that the perturbation
and its conjugate variable are h = −δA and V (q) = φ(θ),
respectively. In order to illustrate the meaning of the non-
equilibrium linear response relation of eq. (5) in this case,
we perform two different kinds of independent measure-
ments: direct and indirect, as explained in the following.

Direct measurement of the linear response func-

tion. – First, we consider the direct measurement of the
integrated response function χQV for the periodic observ-
able Q(q) = φ(θ) = φ(θ+2π). This observable times γa2A
represents the instantaneous potential energy of the par-
ticle. This is experimentally accomplished by applying a
step perturbation to the amplitude of the sinusoidal laser
power modulation, 4.2 mWpp → 4.4 mWpp, but keeping
constant the power offset at 30 mW so that F remains
constant. This results in a perturbation of the potential
amplitude δA = 0.05A. Then, the integrated response
function of φ(θ) at time t ≥ 0 due to the perturbation
−δA applied at time 0 is given by

χQV (t) =
〈φ(θt)〉δA − 〈φ(θt)〉0

−δA
, (9)

where 〈...〉δA and 〈...〉0 denote the ensemble averages of
the perturbed θt,δA and unperturbed θt trajectories, re-
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Fig. 2: (a) Potential profile φ(θ) locally fitted as a third-order
polynomial φLoc(θ) around each value of θ. Their deriva-
tives are computed from φLoc(θ). (b) Integrated linear re-
sponse function χQV (t), entropic C(t) and frenetic K(t) terms
and the corresponding indirect measurement of the response
[C(t) + K(t)]/2 for Q = φ(θ), h = −δA and V = φ(θ), as
functions of the integration time t. (c) Expanded view of (b).

spectively. In order to decrease the statistical errors in
comparison of the terms in eq. (9), for a given perturbed
trajectory θt,δA we look for as many unperturbed ones θt
as possible starting at time t∗ such that φ(θt∗) = φ(θ0,δA).
Then we redefine t∗ as t = 0 in eq (9). The unper-
turbed trajectories found in this way allow us to define
a subensemble over which the avergare 〈...〉0 is computed.
On the other hand, the average 〈...〉δA is performed over
500 independent realizations of δA that are enough for a
fair determination of the integrated response. The result-
ing curve χQV (t) and its corresponding error bars ±σχ(t)
as functions of the integration time t starting at the in-

stant of the application of the step perturbation are shown
in figs. 2(b) and 2(c).

Indirect measurement of the linear response

function. – The same response information can be
obtained indirectly from correlation measurements of
the unperturbed non-equilibrium steady-state fluctuations
(δA = 0) when properly using eq. (5). For the Langevin
dynamics of θ described by eq. (8) the analytical expres-
sion of the generator L is

L = (F −Aφ′(θ))∂θ +D∂2

θ . (10)

Hence, in this case eq. (5) reads

DχQV (t) =
C(t) +K(t)

2
, (11)

where the entropic and frenetic terms are

C(t) = 〈φ(θt)φ(θt)〉0 − 〈φ(θ0)φ(θt)〉0, (12)

K(t) = −

∫ t

0

ds〈[Dφ′′(θs) + (F −Aφ′(θs))φ
′(θs)]φ(θt)〉0,

(13)
respectively. At this point it is clear the need of a pre-
cise knowledge of the potential profile φ(θ) for the indi-
rect method. The integrand of eq. (13) involves the in-
stantaneous values of φ(θ) and its derivatives φ′(θ) and
φ′′(θ). Otherwise a cumulative error would appear when
computing K(t). As a first approximation φ(θ) ≈ sin θ
according to the sinusoidal modulation of the laser power.
However, due to unavoidable experimental static defects
of the toroidal optical trap (e.g. optical aberration) the
resulting profile φ is slightly distorted. In order to take
into account the distortion, we perform a local polyno-
mial fit φLoc of φ around each value of θ ∈ [0, 2π). Then
the instantaneous value of the observable φ(θt) at time
t is approximated by φLoc(θt) either for an unperturbed
or a perturbed trajectory. The local polynomial approx-
imation φLoc and its derivatives φ′

Loc, φ′′

Loc are plotted
in fig. 2(a) showing the non-sinusoidal distortion. The
resulting curves C(t) and K(t) as functions of the inte-
gration time t are plotted in fig. 2(b). At thermal equi-
librium (F = 0) one should find that C(t) = K(t) for
all t ≥ 0 because of the time reversibility and stationar-
ity of the two-time correlations leading to the equilibrium
fluctuation-dissipation relation DχQV (t) = C(t). Mean-
while, in the present case K(t) reaches negative values of
the same order of magnitude as the positive values of C(t).
This reflects the experimental conditions far from thermal
equilibrium of the system. The average of these two quan-
tities [C(t) + K(t)]/2 is one order of magnitude smaller.
This average, which is an indirect measurement of the in-
tegrated response function according to eq. (11), agrees
very well with the direct measurement of χQV within the
experimental error bars, as shown in fig. 2(c). It is con-
sistent with the experimental results presented in ref. [16]
since the entropic-frenetic approach followed in the present
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paper reduces to the Lagrangian interpretation of ref. [6]
for non-equilibrium steady states of overdamped diffusion
on a circle, as shown in [13].
We remark that for this kind of micron-sized system the

relation (5) actually represents a feasible indirect method
to access the linear response regime far from thermal equi-
librium. This is because all the parameters of the un-
perturbed dynamics are known a priori or can be deter-
mined in situ without any external perturbation of the
non-equilibrium state. On the other hand, the direct mea-
surement of the linear response function exhibit a number
of technical difficulties in practice. First, a vanishingly
small Heaviside perturbation −hV (q) to the initially un-
perturbed potential U(q) is ideally required. Otherwise
spurious effects quickly bias the measurement of χQV , spe-
cially when the system is strongly non-linear. Second,
even when h is small enough to be within the linear re-
sponse regime, its finiteness restricts the available integra-
tion time range to determine χQV (t). This occurs because
when t increases, Q approaches a new non-equilibrium
state at the new potential U(q)−hV (q) whose probability
density may depend non-linearly on h. Third, one requires
an extremely large number of independent realizations of
h to resolve χQV as the perturbation −hV (q) must be
chosen very weak, typically smaller than the thermal fluc-
tuations of the energy injected by the environment. The
last two limitations are evident on the results of the di-
rect measurement of χQV for the colloidal particle, see
fig. 2(c). For integration times t . 3 s the agreement be-
tween DχQV (t) and [C(t) + K(t)]/2 is excellent. Then,
for t & 3 s the combined effects of the non-linear depen-
dence of the new steady-state on −δA and the finite sam-
pling lead to deviations between the two methods and in-
creasingly large error bars for the direct measurement of
χQV . These drawbacks are skipped when implementing
the indirect method measuring the unperturbed quantity
[C(t)+K(t)]/2. In addition, for a steady state like the one
experimentally studied here one can improve dramatically
the statistics by performing an additional time average
over a window [0, tmax]: C̄(t) =

∫ tmax

0
C(t + u)du/tmax,

K̄(t) =
∫ tmax

0
K(t + u)du/tmax, as actually done for the

curvesC, K and (C+K)/2 in figs. 2(b) and 2(c). However,
one must be careful when performing the time average.
This is because the value of tmax may affect the resulting
values of [C(t)+K(t)]/2 as t increases, specially for corre-
lation functions involving strongly fluctuating quantities
such as velocities, as recently discussed in [19]. For the
curves shown in figs. 2(a) and 2(b) we verified that their
shapes are not significantly influenced by tmax.
Finally, we illustrate the use of eq. (5) to study the

behavior of the mean potential energy of the particle
〈U(θt)〉h when slightly perturbing in time either the
phase or the amplitude of the potential around the non-
equilibrium steady state associated to eq. (8). We concen-
trate on a sinusoidal perturbation starting at time s = 0

hs = h0 sin 2πf0s. (14)
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Fig. 3: (a) Integrated response function of the observable
Q = φ(θ) for a small perturbation of the potential phase as
a function of the integration time t. Inset: expanded view of
[C(t) + K(t)]/2. (b) Sinusoidal time-dependent perturbation
−hs (solid black line) of the static potential Aφ. Resulting
mean potential energy of the Brownian particle for a phase
perturbation (dashed blue line) and an amplitude perturba-
tion (dotted red line) for −h0/A = 0.05 and f0 = 1 Hz. (c)
Asymptotic values of oscillation amplitude of the potential en-
ergy and (d) the delay time with respect to −hs for each kind
of perturbation. The black dashed lines represent the values
around thermal equilibrium, given by eqs. (17) and (18).

First, we consider the case of a small phase perturbation
αs = α0 sin 2πf0s with α0 ≪ 1: Aφ(θ) → Aφ(θ + αs) ≈
Aφ(θ) + Aφ′(θ)αs so that h0 = −Aα0 in Eq. (14) and
V = φ′(θ). One must compute first the integrated re-
sponse function of Q = φ(θ) given by [C(t) +K(t)]/(2D)
by inserting the right V and Q in eqs. (6) and (7). The
resulting curves C(t), K(t) and [C(t) + K(t)]/(2D) are
plotted in fig. 3(a). Next, using eq. (2) the experimental
impulse response function [∂tC(t− s) + ∂tK(t− s)]/(2D)
must be convolved with hs given by eq. (14). In this way
one finds that the mean potential energy of the particle
oscillates around the non-equilibrium steady state value
〈U(θ)〉0 = −4.7kBT as shown by the dashed blue line in
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fig. 3(b) for α0 = 0.05 rad and f0 = 1 Hz. The oscil-
lations exhibit a delay time (∆t ≈ 0.23 s) with respect
to αs and a slow transient (∼ 15 s) corresponding to the
decay of the non-equilibrium stationary correlations. As
t increases the oscillations settle around 〈U(θ)〉0 with a
constant amplitude ∆U ≈ 0.2kBT . Now, we consider a
sinusoidal time-dependent perturbation to the potential
amplitude: δAs = δA0 sin 2πf0s with the same strength
(−h0/A = 0.05) and frequency as before. In this case
h0 = −δA0 and V = φ(θ). Following the same procedure
with [C+K]/(2D) shown in fig. 2(c), one finds a different
qualitative behavior of 〈U(θt)〉h, as depicted by the dotted
red line in fig. 3(b). At the beginning the mean potential
energy responds in the opposite direction to δAs. Then, as
t becomes larger than the slow non-equilibrium transient
〈U(θ)〉h oscillates around 〈U(θ)〉0 with a constant ampli-
tude ∆U ≈ 0.5kBT and a delay time ∆t ≈ 0.26 s. For
both types of perturbations one can write the asymptotic
dependence of 〈U(θt)〉h on t & 15 s as

〈U(θt)〉h = 〈U(θt)〉0 ±∆U sin[2πf0(t−∆t)], (15)

where the positive and negative signs stand for the phase
and amplitude perturbations, respectively. The values of
∆U and ∆t depend on the frequency f0. In figs. 3(c)
and 3(d) we show this dependence. We now compare
these far-from-equilibrium results with those that would
be obtained when applying hs around thermal equilibrium
(F = 0). In such a case the particle motion is tightly con-
fined to the harmonic part of the potential around the
minimum θm = 3π/2: φ(θ) ≈ −1 + (θ − θm)2/2. After
some algebra using this approximation one finds the ex-
pression for 〈U(θt)〉h when perturbing thermal equilibrium

〈U(θt)〉h = 〈U(θt)〉0 ±∆U{sin[2πf0(t−∆t)] +

e−2At sin 2πf0∆t}, (16)

where 〈U(θt)〉0 = −68.3kBT and

∆U = −
h0

A

kBT

2(1 + π2f2
0
/A2)1/2

, (17)

∆t =
1

2πf0
arctan

(

πf0
A

)

, (18)

either for a phase (positive sign) or an amplitude (negative
sign) perturbation. Note that for t ≫ (2A)−1, eq. (16) ex-
hibits the same qualitative behavior as (15). We plot the
curves given by eqs. (17) and (18) in figs. 3(a) and 3(b), re-
spectively, for the same values of the parameters h0 and A
as before. Unlike the behavior close to equilibrium, the os-
cillation amplitude ∆U strongly depends on the perturbed
parameter around the non-equilibrum steady state: it is
more sensitive to amplitude perturbations than to phase
perturbations. In addition, the far-from-equilibrium val-
ues are two orders of magnitude larger than that given by
eq. (17). By contrast, the delay time ∆t is not signifi-
cantly affected by the far-from-equilibrium nature of the
system. It is almost independent of F and of the type of
perturbation and it converges to eq. (18) as f0 increases.

Concluding remarks. – We have experimentally
studied the non-equilibrium linear response of the poten-
tial energy of a Brownian particle in a toroidal optical trap.
We gain insight into the application of the fluctuation-
dissipation relations far from thermal equilibrium in this
non-linear system with a single relevant degree of free-
dom. In particular, we show that the entropic-frenetic ap-
proach is appropriate and feasible for the study of the non-
equilibrium linear response of micron-sized systems with
a small number of degrees of freedom immersed in simple
fluids. Non-trivial linear response information can be ob-
tained from purely unperturbed measurements of the non-
equilibrium fluctuations provided that the parameters de-
scribing the dynamics are known. Our experiment reveals
that the indirect determination of the linear response func-
tion is less time-consuming, more accurate and more flex-
ible than the direct perturbation of the non-equilibrium
system. Similar ideas are expected to be applicable to
more complex micron-sized systems such as atomic-force
microscopy experiments and ensembles of colloidal parti-
cles in simple non-equilibrium conditions.
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