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Abstract

In their paper on the “chasm at depth four”, Agrawal and Vinay
have shown that polynomials in m variables of degree O(m) which
admit arithmetic circuits of size 2o(m) also admit arithmetic circuits
of depth four and size 2o(m). This theorem shows that for problems
such as arithmetic circuit lower bounds or black-box derandomization
of identity testing, the case of depth four circuits is in a certain sense
the general case.

In this paper we show that smaller depth four circuits can be ob-
tained if we start from polynomial size arithmetic circuits. For in-
stance, we show that if the permanent of n×n matrices has circuits of
size polynomial in n, then it also has depth 4 circuits of size nO(

√

n log n).
Our depth four circuits use integer constants of polynomial size. These
results have potential applications to lower bounds and deterministic
identity testing, in particular for sums of products of sparse univariate
polynomials.

∗UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.
†A part of this work was done during a visit to the Fields Institute.
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1 Introduction

Agrawal and Vinay have shown that polynomials of degree d = O(m) in
m variables which admit nontrivial arithmetic circuits also admit nontriv-
ial arithmetic circuits of depth four [1]. Here, “nontrivial” means of size
2o(d+d log m

d
). The resulting depth 4 circuits are

∑∏∑∏
arithmetic formu-

las: the output gate (at depth 4) and the gates at depth 2 are addition gates,
and the other gates are multiplication gates. This theorem shows that for
problems such as arithmetic circuit lower bounds or black-box derandom-
ization of identity testing, the case of depth four circuits is in a certain sense
the general case.

But what if we start from arithmetic circuits of size smaller than 2o(m)

(for instance, of size polynomial in m) ? It is reasonable to expect that the
size of the corresponding depth four circuits will be reduced accordingly, but
such a result cannot be found in [1]. One of the main results of this paper is
a depth reduction theorem for VP families (i.e., families (fn) of polynomials
of degree and arithmetic circuit complexity polynomially bounded in n). We
show in Theorem 5 that any VP family (fn) has depth 4 arithmetic formulas

of size nO(
√
dn log dn), where dn is the degree of fn. For instance, this result

shows that if the permanent of n×n matrices has circuits of size polynomial
in n, then it also has depth 4 formulas of size nO(

√
n logn). This is poten-

tially useful for a lower bound proof: to show that the permanent does not
have polynomial size circuits, we “only” have to show that it does not have
depth 4 formulas of size nO(

√
n logn). This is still certainly far away from the

known lower bounds for constant depth arithmetic circuits: currently we
have superpolynomial lower bound for the permanent for circuits of depth
3 only, and only in finite fields [5, 6]. In the restricted setting of multilin-
ear arithmetic circuits, superpolynomial lower bounds can be obtained for
circuits of arbitrary constant depth [14].

As a second contribution we perform an analysis of the size of the in-
teger constants used by the depth 4 circuit simulating a given polynomial
size circuit (a similar analysis for the construction in [1] has not been car-
ried out yet to the author’s knowledge). Roughly speaking, we show that
reduction to depth 4 does not require the introduction of large constants.
In particular, we give in Theorem 6 an analogue of Theorem 5 for VP0 (this
is a constant-free version of VP). This result is used in [9], where we show
that black-box derandomization of identity testing for sums of products of
sparse univariate polynomials with sparse coefficients would imply a lower
bound for the permanent.
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1.1 Main Ideas and Comparison with Previous Work

The main depth reduction result in [1] is as follows.

Theorem 1 Let P (x1, . . . , xm) be a polynomial of degree d = O(m) over a
field F . If there exists an arithmetic circuit of size 2o(d+d log m

d
) for P then

there exists a depth 4 arithmetic circuit of size 2o(d+d log m

d
).

Theorem 2.4 in [1] also provides some bounds on the fan-in of the gates in
the resulting depth 4 circuits.

For multilinear polynomials, their result (Corollary 2.5 in [1]) reads as
follows:

Corollary 1 A multilinear polynomial in m variables which has an arith-
metic circuit of size 2o(m) also has a depth 4 arithmetic circuit of size 2o(m).

We give the (simple) proof, which is omitted from [1]. For d = m the result
is clear since the exponent d+d log m

d
in Theorem 1 is equal to m. Consider

now the case of a polynomial P (X1, . . . ,Xm) of degree d < m, having a
circuit of size 2o(m). Let Q = P +

∏m
i=1 Xi. Since the number of variables

of Q is equal to its degree, we are back to the first case: Q has a depth
four circuit of size 2o(m). We can obtain a circuit of size 2o(m) for P by
subtracting the product

∏m
i=1 Xi (this requires only m additional arithmetic

operations). Note that this corollary (and its proof) hold more generally for
any polynomial of degree d ≤ m.

By specializing the multilinear polynomial to the permanent, Agrawal
and Vinay then state in Corollary 2.6 that if every depth 4 arithmetic circuit
for the permanent requires exponential size, the same is true for arithmetic
circuits of unbounded depth. It is not made precise in [1] what “exponential
size” exactly means. In this context (arithmetic complexity of the perma-
nent) the most standard interpretation is probably that an exponential size
circuit for the n × n permanent is of size 2Ω(n) (note that the number of
variables is m = n2). With this interpretation, it is not clear why Corollary
2.6 of [1] would follow from Theorem 1 or Corollary 1.

Since the permanent of a n × n matrix has degree d = n and m = n2

variables, we can deduce the following from Theorem 1: If there exists an
arithmetic circuit of size 2o(n logn) for the n×n permanent then there exists
also a depth 4 arithmetic circuit of size 2o(n logn). This statement is not very
useful since we already know (by Ryser’s formula [15]) that the permanent
has depth 3 arithmetic formulas of size O(n2n). Note that applying Corol-
lary 1 directly to the permanent would give an even worse bound (namely,
we would obtain depth 4 formulas of size 2o(n

2)). As explained earlier, we
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can show that if the permanent has polynomial size circuits it must also
have depth 4 formulas of size nO(

√
n logn).

Before describing their general depth reduction algorithm, Agrawal and
Vinay begin with the special case of matrix powering. For this problem there
is a very simple and elegant reduction to depth four. Then they treat the
general case with an apparently different approach: their construction builds
on the depth reduction algorithm of Allender, Jiao, Mahajan and Vinay [2].
In this paper we show that the matrix powering idea is powerful enough to
handle arbitrary polynomial-size arithmetic circuits. Weakly skew circuits
are one of the main tools that we use to reduce the evaluation of arbitrary
arithmetic circuits to matrix powering. This class of circuits is known to
capture the complexity of a number a problems from linear algebra such as
e.g. matrix powering, iterated matrix multiplication or computation of the
determinant [16, 12].

1.2 Organization of the paper

In Section 2 we present the two main computation models that we will use:
arithmetic circuits and arithmetic branching programs. We define some of
the corresponding complexity classes, and give some basic properties. In
Section 3, building on a construction of Malod and Portier [12] we give an
efficient simulation of arithmetic circuits by arithmetic branching programs.
Compared to [12], we take extra care to construct branching programs of
small depth because the square root of the depth appears in the exponent of
the size estimate for the final depth 4 circuit. In section 4 we reduce branch-
ing programs to depth 4 circuits using the matrix powering idea from [1].
Then we state our main technical result in Theorem 3. We show in partic-
ular that an arithmetic circuit of size t and formal degree d has a depth 4

circuit of size tO(
√
d log d). Finally we draw some consequences for depth re-

duction of VP families in Section 5, and for depth reduction of VP0 families
in Section 6.

2 Arithmetic Circuits and Branching Programs

We recall that an arithmetic circuit contains addition and multiplication
gates. In addition to these arithmetic gates there are input gates, labelled
by variables or constants from some field K. An output gate is of fan-out
zero. We often assume that there is a single ouptut gate. In this case an
arithmetic circuit therefore represents a polynomial with coefficients in K.
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We often assume that the arithmetic gates have arity 2, but in constant-
depth circuits we naturally allow addition and multiplication gates of un-
bounded fan-in (we often also some explicit upper bounds on the fan-in, see
for instance Theorem 3). In some of our intermediate constructions (e.g.
Proposition 2) we also work with weighted addition gates.

Definition 1 A n-ary weighted addition gate computes a linear combination
a1x1 + · · · + anxn of its inputs x1, . . . , xn. Here ai is the weight associated
to the i-th input of the gate. The total weight of the gate is

∑n
i=1 |ai|.

For instance, a subtraction gate is a binary weighted addition gate with
weights (1,−1). We sometimes refer to binary unweighted addition gates as
“ordinary addition gates”. The size of a circuit is its total number of gates
(including input gates).

Definition 2 Fix a field K. A sequence (fn) of polynomials with coefficients
in K belongs to VP if there exists a polynomial p(n) and a sequence (Cn) of
arithmetic circuits such that deg(fn) ≤ p(n), Cn computes fn and is of size
at most p(n).

The size constraint implies in particular that fn depends on polynomially
many variables. The above definition is fairly robust. For instance we obtain
the same class with circuits using gates of fan-in 2 or of unbounded fan-in,
weighted or unweighted addition gates.

An arithmetic formula is a circuit where all gates are of fan-out one,
except of course the output gate. In the constant depth setting, arithmetic
formulas and arithmetic circuits are polynomially related ([14], Claim 2.2).

The complexity of several problems from linear algebra such as iterated
matrix multiplication or computing the determinant is captured by a re-
stricted class of arithmetic circuits called weakly skew circuits [16, 12] (there
is also an essentially equivalent notion of skew circuit [16, 7, 8]). Let C be
an arithmetic circuit where all multiplication gates are binary. A multipli-
cation gate α in C is said to be disjoint if at least one of its two subcircuits
is disjoint from the remainder of C, except of course for the edge from the
subcircuit to α (removing this edge would therefore disconnect C). The
circuit is weakly skew if its multiplication gates are all disjoint. This defi-
nition is usually given only for circuits where all addition gates are binary
unweighted, but we will use our slightly more general definition instead (see
Propositions 2 and 3).

A circuit where the only constants are from the set {0,−1, 1} is said
to be constant-free. A constant-free circuit represents a polynomial in
Z[X1, . . . ,Xn], where X1, . . . ,Xn are the variables labelling the input gates.
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The constant-free model was systematically studied by Malod [11]. In
particular, he defined a class VP

0 of polynomial families that are “easy to
compute” by constant-free arithmetic circuits. First we need to recall the
notion of formal degree:

(i) The formal degree of an input gate is equal to 1.

(ii) The formal degree of an addition gate is the maximum of the formal
degrees of its incoming gates, and the formal degree of a multiplication
gate is the sum of these formal degrees.

Finally, the formal degree of a circuit is equal to the formal degree of its
output gate. This is obviously an upper bound on the degree of the poly-
nomial computed by the circuit. Note that this definition can be applied to
circuits with weighted addition gates of arbitrary fan-in. For instance, the
polynomial x − 2y can be computed by a circuit containing one ordinary
addition gate, one multiplication gate and three inputs labeled by x, y and
the constant −2. This circuit has formal degree two. The same polynomial
can be computed by another circuit containing a binary weighted adition
gate (of total weight 1+ | − 2| = 3) with inputs x and y. The second circuit
has formal degree 1.

Definition 3 A sequence (fn) of polynomials belongs to VP
0 if there exists

a polynomial p(n) and a sequence (Cn) of constant-free arithmetic circuits
(with unweighted addition gates) such that Cn computes fn and is of size
and formal degree at most p(n).

The constraint on the formal degree forbids the computation of polynomials
of high degree such as e.g. X2n ; it also forbids the computation of large
constants such as 22

n

. The class VP0 is therefore a strict subset of VP (over
the field of rational numbers, or more generally any field of characteristic 0).
As for VP we obtain the same class with gates of fan-in 2 or of unbounded
fan-in, but of course we cannot allow addition gates with arbitrary weights.
We can however allow subtraction gates:

Proposition 1 Let C be a constant-free circuit of size t and formal de-
gree d, where the arithmetic gates are multiplication, unweighted addition or
subtraction gates (all of fan-in 2).

There is an equivalent constant-free circuit C ′ of formal degree d+1 and
size at most 6t+3, where the arithmetic gates are binary multiplications or
ordinary additions.
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Proof. We need to get rid of subtraction gates. A first idea would be to
write each subtraction x − y as x + (−1) × y, but the cumulative effect of
the multiplications (−1) × y could lead to an increase in the formal degree
by more than 1. Instead we will represent each gate α in C by a pair of
gates (α1, α2) in C ′. The output of α will be equal to the differences of
the outputs of α1 and α2. An input x in C can be represented by the pair
(x, 0). To simulate the arithmetic operations in C we use the following rules:
(α1 −α2)+ (β1 −β2) = (α1 + β1)− (α2 +β2); (α1 −α2)− (β1 −β2) = (α1 +
β2)−(α2+β1); (α1−α2)×(β1−β2) = (α1×β1+α2×β2)−(α2×β1+α1×β2).
A straightforward induction shows that the gates in a pair (α1, α2) will have
same formal degree as the gate α that they represent. Finally, to complete
the construction of C ′ we come back to our first idea: if (α1, α2) is the
pair representing the output gate of C, we write the difference α1 − α2 as
α1 + (−1) × α2. This increases the formal degree by 1. Each arithmetic
operation in C is simulated by at most 6 operations in C ′, and we need 3
additional gates to perform the final subtraction. �

This modest increase in the formal degree cannot be avoided: without sub-
traction gates there is no better way to compute the polynomial f(x) = −x
than by the formula f(x) = −1× x, which is of formal degree 2.

Finally we define the notion of arithmetic branching program. This is an
edge-weighted directed acyclic graph with two distinguished vertices s and t.
The output of the branching program is by definition equal to the sum of the
weights of all paths from s to t, where the weight of a path is the product
of the weights of its edges. In this paper we assume that the edge weights
are constants from some field K or variables. Like an arithmetic circuit, a
branching program therefore represents a polynomial with coefficients in K.
The depth of a branching program is the length (in number of edges) of
the longest path from s to t. The term arithmetic (or algebraic) branching
program goes back at least to [13, 3] but these objects were used implicitly
much earlier, for instance in [17].

3 From Circuits to Branching Programs

We first recall Lemma 4 from [12].

Lemma 1 Let C be a circuit of size t and formal degree d, containing only
binary unweighted arithmetic gates. There exists a weakly skew circuit C ′ of
formal degree d and size at most tlog 2d which computes the same polynomial.
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The fact that C ′ has same formal degree as C is not explicitly stated in [12],
but it can be checked that their construction does satisfy this additional
property. We would like to apply this construction not to C itself, but to a
“normal form” of C containing weighted addition gates.

We begin with an easy lemma.

Lemma 2 Let C be a circuit made only of input gates and (ordinary) addi-
tion or subtraction gates. Each gate of C is equivalent to a weighted addition
gate of total weight at most 2s, where s is the number of arithmetic gates in
C.

Proof. By induction on s. The result is true for s ≤ 1 since an input gate can
be viewed as a unary weighted addition gate of weight 1, and an ordinary
addition or subtraction gate as a binary weighted addition gate of weight 2.
For s > 1, consider an addition or subtraction gate which is an output of
C. By induction hypothesis each of the two inputs of the gate computes
a function of the form

∑n
i=1 aixi where x1, . . . , xn are the inputs of C and∑

i |ai| ≤ 2s−1. Therefore the output gate computes a function of the same
form with total weight at most 2s. �

Lemma 3 Let C be a circuit containing s (weighted) addition gates and m
multiplication gates. There is an equivalent circuit C+ such that:

(i) C+ contains at most s addition gates and m multiplication gates.

(ii) Any input to an addition gate is an input of C+ or a multiplication
gate (in other words, the output of an addition gate can be fed only to
multiplication gates).

(iii) If all the addition gates of C are ordinary additions or subtractions,
the total weight of every addition gate of C+ is at most 2s.

Proof. We will keep the same multiplication gates in C+ as in C. Consider
a multiplication gate in C having at least one addition gate as an input.
We can view such an addition gate as the output of a maximal subcircuit
which does not contain any internal multiplication gate (the inputs to the
subcircuit are therefore inputs of C or multiplication gates). The output of
this subcircuit is a linear function of its inputs. We can therefore replace
the subcircuit by a single (weighted) addition gate. Moreover, in the case
where all the addition gates of C are ordinary additions or subtractions, this
weighted addition gate can be taken of weight at most 2s by Lemma 2.
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We perform this replacement simultaenously for all addition gates of C
feeding into a multiplication gate. If the output of C is a multiplication
gate, we are done. If the output is an addition gate, we likewise replace its
maximal subcircuit by a weighted addition gate. �

The same transformation as in Lemma 1 can be applied to C+ instead of C.
The resulting weakly skew circuit contains weighted addition gates.

Proposition 2 Let C be a circuit of size t and formal degree d where all
multiplication gates are binary. There exists a weakly skew circuit C ′ of
degree d and size at most tlog 2d which computes the same polynomial. In C ′,
any input to an addition gate is an input of the circuit or a multiplication
gate. Moreover, if all the addition gates of C are ordinary additions or
subtractions, the total weight of every addition gate of C ′ is at most 2s.

We omit the proof since this is really the same construction as in Lemma 4
of [12]. One can check that this construction indeed preserves properties (ii)
and (iii) from Lemma 3.

Proposition 3 Let C be a weakly skew circuit of size m and formal degree
d, with weights of addition gates coming from some set W . Assume moreover
that any input to an addition gate is an input of C or a multiplication gate.
There exists an equivalent arithmetic branching program G of size at most
m+ 1 and depth at most 3d− 1. The edges of G are labeled by inputs of C
or constants from W .

Proof. The construction is similar to that of ([12], Lemma 5). The main
new point is to check the depth bound. Recall from Section 2 that for
every multiplication gate α in C we have an independent subcircuit which
is connected to the remainder of C only by the arrow from the subcircuit
to α. As in [12] we say that a gate is reusable if it does not belong to
any independent subcircuit. Also as in [12], we will prove a version of
Proposition 3 for circuits with multiple outputs.

We will show by induction that for any reusable gate α of C there is a
vertex tα in G such that the weight of (s, tα) is the polynomial computed
by α. As to the depth, we will show that if α is an addition gate computing
a polynomial of formal degree dα, the depth of tα in G (the length of the
longest path from s to tα) is at most 3dα−1; if α is a multiplication or input
gate, its depth is at most 3dα − 2.

The beginning of the induction is clear: a weakly skew circuit C of
size m = 1 is reduced to a single gate α labeled by some input x. The
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corresponding graph G has two nodes s and t, with an edge from s to t
labeled by x. We take of course tα = t. We have dα = 1, and this gate is
indeed at depth 3dα − 2 = 1.

Consider now a weakly skew circuit C of size m ≥ 2, and let α be one of
its ouptut gates. Removing α from C, we obtain a circuit C ′ of size m− 1.
By induction hypothesis, there is a corresponding graph G′ of size at most
m with a distinguished vertex s.

If α is an input gate labeled by x, we obtain G by adding a vertex tα to
G′, and an edge from s to tα labeled by x.

Assume now that α is a (weighted) addition gate, with k (distinct) inputs
α1, . . . , αk. These k gates must be reusable, so by induction hypothesis we
have vertices tαi

in C ′ so that the weight of (s, tαi
) is equal to the polynomial

computed by αi. Moreover, since α is an addition gate the αi are multipli-
cation or input gates, and are therefore at depth at most 3dαi

−2 ≤ 3dα−2.
We obtain G by adding a new vertex tα to G′, and k new edges from the
tαi

to tα (labeled by the same weights as the incoming edges of the addi-
tion gate α). The weight of (s, tα) in G is clearly equal to the polynomial
computed by α, and tα is at depth at most (3dα − 2) + 1 = 3dα − 1.

Assume finally that α is a multiplication gate with inputs β and γ. Let
Cβ and Cγ be the corresponding subcircuits. Since C is weakly skew, one
of the two subcircuits (say, Cγ) is independent from the rest of C. Hence
m = mβ +mγ + 1 where mβ and mγ are the sizes of Cβ and Cγ . We can
apply separately the induction hypothesis to Cβ and Cγ . This yields two
graphs Gβ and Gγ of respective sizes at mostmβ+1 andmγ+1, with sources
sβ and sγ . In these graphs there are vertices tβ and tγ such that the weight
of (sβ, tβ) in Cβ is equal to the polynomial computed by gate β, and the
weight of (sγ , tγ) in Cγ is equal to the polynomial computed by gate γ. We
construct G from these two graphs by identifying tβ and sγ . The source of G
is s = sβ. This graph is of size at most (mβ+1)+(mγ+1)−1 = m ≤ m+1.
In G, the vertex associated to gate α will be tα = tγ . The weight of (s, tγ) in
G is indeed equal to the polynomial computed by gate α. For vertices v in
Gγ the weight of (s, v) in G is not equal to the weight of (sγ , v) in Gγ , but
as pointed out in [12] this does not matter since these vertices correspond
to non-reusable gates of C.

Let d, dβ and dγ be the formal degrees of the circuits C, Cβ and Cγ .
By induction hypothesis, tγ is at depth at most 3dγ − 1 in Gγ , and tβ is
at depth at most 3dβ − 1 in Gβ . In G, tγ is therefore at depth at most
(3dβ − 1) + (3dγ − 1) = 3d− 2. �

Combining Propositions 2 and 3 yields the following result.
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Theorem 2 Let C be a circuit of size t and formal degree d where all mul-
tiplication gates are binary. There is an equivalent arithmetic branching
program G of size at most tlog 2d +1 and depth at most 3d− 1. The edges of
G are labeled by inputs of C or by constants. Moreover, if all the addition
gates of C are ordinary additions or subtractions then these constants are
integers of absolute value at most 2t.

4 From Branching Programs to Depth-4 Circuits

In this section we complete the reduction to circuits of depth 4.

Lemma 4 Let G be an arithmetic branching program of size m and depth
δ, with edges labeled by elements from some set S. There is an m×m matrix
M such that the polynomial computed by G is equal to the entry at row 1 and
column m of the matrix power Mp, for any p ≥ δ. Moreover, the entries of
M are in the set S ∪ {0, 1}.

Proof. Fix a topological ordering of the nodes of G, with the source s labeled
1 and the target t labeled m. We define M as the adjacency matrix of the
graph G′ obtained from G by adding a loop of weight 1 on vertex t. In other
words, Mmm = 1 and in all other cases Mij is the (possibly null) weight from
node i to node j of G. Note that M is upper-diagonal, with all diagonal
entries equal to 0 except Mmm. It follows from the classical relation between
matrix powering and paths in graphs that (Mp)1m is equal to the sum of
weights of all st-paths of length exactly p in G′. This is also the sum of
weights of all st-paths of length at most p in G, and for p ≥ δ this is the
output of the arithmetic branching program. �

Note that for p ≥ δ all entries of Mp except (Mp)1m are equal to zero.
In the last step in our series of reduction, we explain (following basically

the same strategy as in [1]) how to perform the matrix powering operation
in the above lemma with depth four formulas, and also depth four circuits.

Proposition 4 Let G be an arithmetic branching program of size m and
depth δ. There is an equivalent depth four circuit Γ with m2 +1 unweighted

addition gates and m⌈
√
δ⌉+1 + m⌈

√
δ⌉−1 multiplication gates. There is also

an equivalent depth four formula Γf with m⌈
√
δ⌉−1 + 1 unweighted addition

gates and m⌈
√
δ⌉−1 +m2⌈

√
δ⌉−2 multiplication gates.

The inputs of Γ and Γf are from the set as the edge labels of G, and
their multiplication gates are of fan-in ⌈

√
δ⌉.
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Proof. We need to compute Mp, where p ≥ δ and M is as in Lemma 4.
Let p be the smallest square bigger or equal to δ. From M we will compute
N = M

√
p by a depth 2 circuit Γ2, and then from N we will compute

Mp = N
√
p using the same circuit. With a depth 2 circuit one cannot play

clever tricks: we can only expand a polynomial as a sum of monomials. In
this case we express each entry of N as a sum of m

√
p−1 products of length√

p, by brute-force expansion of the product M
√
p . This yields a circuit Γ2

with m2 addition gates (one for each entry of N) and m
√
p+1 multiplication

gates. We can double those estimates to upper bound the size of Γ. To
arrive at the slightly better estimate in the statement of Proposition 4, note
that the second copy of Γ2 only needs to compute a single entry of N

√
p.

In order to obtain an arithmetic formula, we recompute from scratch
each entry of N whenever it is used by the second copy of Γ2. The arith-
metic formula therefore computes a sum of m

√
p−1 products, where each

product is a sum of m
√
p−1 products of entries of M . We therefore have one

addition and m
√
p−1 products gates in the top two levels, m

√
p−1 addition

and m2(
√
p−1) multiplication gates in the two bottom levels. �

Note the significant saving in the number of addition gates if we use depth
four circuits instead of depth four formulas. We can now prove our main
depth reduction result.

Theorem 3 Let C be an arithmetic circuit of size t and formal degree d
where all multiplication gates are binary. There is an equivalent depth four
circuit Γ with at most (tlog 2d+1)2+1 unweighted addition gates and at most

2(tlog 2d + 1)
√
3d+2 multiplication gates.

There is an equivalent arithmetic formula Γf of depth four with at most

(tlog 2d + 1)
√
3d + 1 unweighted addition gates and at most 2(tlog 2d + 1)2

√
3d

multiplication gates. The inputs of Γ and Γf are inputs of C or constants;
their multiplication gates are of fan-in at most

√
3d+ 1.

If C is constant-free, and if all the addition gates of C are ordinary
additions or subtractions, then these constants are integers of absolute value
at most 2t.

Proof. Combine Theorem 2 and Proposition 4. �

If we start from arithmetic formulas instead of arithmetic circuits, we can
obtain depth four formulas and circuits of significantly smaller size. Also
the proof is much simpler since we do not need Theorem 2. Instead, we use
the classical transformation of arithmetic formulas into arithmetic branching
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programs ([17], see also Lemma 2.15 of [4] and the improved bound in [10]).

Lemma 5 Let F be an arithmetic formula which contains e arithmetic op-
erations. There is an equivalent algebraic branching program G of size at
most e+2 = (t+3)/2 and depth at most e− 1 = (t+1)/2. Here t = 2e+1
is the size of F viewed as an arithmetic circuit. The edges of G are labeled
by the inputs of F .

Theorem 4 Let F be an arithmetic formula which contains e arithmetic
operations. There is an equivalent depth four circuit Γ with at most (e +
2)2 + 1 unweighted addition gates and at most 2(e + 2)

√
e+2 multiplication

gates.
There is an equivalent arithmetic formula Γf of depth four with at most

(e+2)
√
e+1 unweighted addition gates and at most 2(e+2)2

√
e multiplication

gates. The inputs of Γ and Γf are inputs of C, and their multiplication gates
are of fan-in at most

√
e+ 1.

Proof. Combine Lemma 5 and Proposition 4. �

The savings in the number of addition gates in depth four circuits com-
pared to depth four formulas are especially significant in the above theorem:
our circuits contain only quadratically many addition gates. This is a rel-
evant parameter since the number of addition gates (minus 1) is equal to
the number of distinct sparse polynomials in a sum of products of sparse
polynomials [9].

5 Depth Reduction for VP

In accordance with Definition 1, a unary weighted addition gate outputs α·x,
where α is the weight of the gate and x its input. Recall also from the
definition of formal degree in Section 2 that the formal degree of such a gate
is equal to that of its input.

The following result is essentially Lemma 2 from [11], written in a dif-
ferent language. We give the proof because we will build on it in the next
section.

Proposition 5 Any VP family (fn) can be computed by a polynomial-size
family (Cn) of circuits of formal degree deg(fn). The addition gates of Cn

are unary weighted or binary unweighted (i.e., “ordinary”).
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Proof. Since (fn) is in VP, this family can be computed by a family (C ′
n)

of arithmetic circuits of polynomial size where all the arithmetic gates are
binary unweighted. To construct Cn from C ′

n we use a small variation on
the standard homogenization trick. In order to homogenize C ′

n one would
normally represent each gate γ computing a polynomial fγ by a sequence γi
of dn + 1 gates, where i ranges from 0 to dn and γi computes the homoge-
nous component of fγ of degree i. The homogenous components of degree
higher than dn can be discarded since they cannot contribute to the final
output. This construction preserves polynomial circuit size, and each gate
now computes a polynomial of degree at most dn. But formal degree can be
higher due to multiplication by constants (i.e., homogenous components of
degree 0).

To circumvent this difficulty, we get rid of the gates γ0 representing
homogenous components of degree 0. We will therefore construct a circuit
C ′′
n which computes the sum of all homogenous components of fn of degree

at least 1. Our final circuit Cn will then add the output of C ′′
n to the constant

term of fn, at the cost of one additional arithmetic operation.
We will use unweighted addition gates inside C ′′

n. Indeed, let γ be a mul-
tiplication gate of Cn with inputs α and β. To obtain fγ,i, the homogenous
component of degree i, one normally writes fγ,i =

∑i
j=0 fα,jfβ,i−j. This

expression involves fα,0 and fβ,0, which as we have said are not represented
by any gate of C ′′

n. Therefore, to compute e.g. fα,0fβ,i, instead of a multi-
plication gate we use a unary addition gate with input fβ,i and weight fα,0.
A straightforward induction shows that a gate γi in C ′′

n will have formal
degree i. As a result, C ′′

n and Cn will be of formal degree dn. �

Theorem 5 Let (fn) be a VP family of polynomials of degree dn = deg(fn).
This family can be computed by a family (Γn) of depth four circuits with

nO(log dn) addition gates and nO(
√
dn log dn) multiplication gates. The family

(fn) can also be computed by a family (Fn) of depth four arithmetic formu-

las of size nO(
√
dn log dn). The inputs to Γn and Fn are variables of fn or

constants; their multiplication gates are of fan-in at most
√
3dn + 1.

Proof. This is an application of Theorem 3: t is polynomial in n, and by
Proposition 5 we can take d = dn. �

6 Depth Reduction for VP
0

We first show that a circuit of small size and degree where all inputs are in
{−1, 0, 1} cannot compute a large integer.

14



Lemma 6 Let C be a constant-free and variable-free circuit of size t and
formal degree d where all arithmetic gates are binary unweighted. The output
of C is an integer of absolute value at most 2td.

Proof. By induction on t. For t = 1 the circuit contains a single input gate,
which must carry an integer in {−1, 0, 1}. The result is therefore true for
t = 1. Consider now a circuit C of size t ≥ 2, and let d1 and d2 be the formal
degrees of the two inputs to the output gate. By induction hypothesis these
two gates carry integers of absolute value at most 2(t−1)d1 and 2(t−1)d2 . If
the output gate is an addition we have d1, d2 ≤ d and C therefore computes
an integer of absolute value at most 2(t−1)d + 2(t−1)d ≤ 2td. If the output
gate is a multiplication, we have d = d1 + d2 and C computes an integer of
absolute value at most 2(t−1)d1 × 2(t−1)d2 ≤ 2td. �

Proposition 6 Any VP
0 family (fn) can be computed by a family (Cn) of

constant-free circuits of polynomial size and formal degree deg(fn). The
arithmetic gates of Cn are binary multiplication, ordinary addition or sub-
traction gates.

Proof. Since (fn) is in VP
0, this family can be computed by a family (C ′

n)
of constant-free circuits of polynomial size and polynomial formal degree.
All the arithmetic gates of C ′

n can be assumed to be binary unweighted. To
construct Cn from C ′

n we proceed along the same lines as in Proposition 5.
In particular, we will again construct a circuit C ′′

n which computes the sum
of all homogenous components of fn of degree at least 1. Our final circuit
Cn then adds the output of C ′′

n to the constant term of fn (call it cn). By
Lemma 6, cn has polynomial bit size (it is equal to the output of C ′

n when
all variables are set to 0). We can therefore compute |cn| from scratch using
a sequence of multiplications by 2 and additions of bits. We use an addition
to perform a multiplication by 2, so this construction does not require any
multiplication gate. Finally, depending on the sign of cn we add or subtract
|cn| to the output of C ′′

n. The resulting circuit Cn will have same formal
degree as C ′′

n.
We also need to use a similar trick inside C ′′

n. Indeed, let γ be a multi-
plication gate of Cn with inputs α and β. To obtain fγ,i, the homogenous
component of degree i, one normally writes fγ,i =

∑i
j=0 fα,jfβ,i−j. This

expression involves fα,0 and fβ,0, which as explained in the proof of Propo-
sition 5 are not represented by any gate of C ′′

n. Therefore, to compute e.g.
fα,0fβ,i we start from fβ,i and compute the product using a sequence of
multiplications by 2 and additions of fβ,i. As explained above, thanks to
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Lemma 6 this can be done with a polynomial number of addition gates, at
most one subtraction and no multiplication gate. A straightforward induc-
tion shows that a gate γi in C ′′

n will have formal degree i. As a result, C ′′
n

and Cn will be of formal degree dn. �

By Proposition 1, one can get rid of the subtraction gates in Proposition 6
at the cost of a linear increase in circuit size and an increase in the formal
degree by just 1 (using Lemma 3 from [11] instead of Proposition 1 would
give a worse degree bound).

Theorem 6 Let (fn) be a VP
0 family of polynomials of degree dn = deg(fn).

This family can be computed by a family (Γn) of depth four circuits with

nO(log dn) addition gates and nO(
√
dn log dn) multiplication gates. The family

(fn) can also be computed by a family (Fn) of depth four arithmetic formulas

of size nO(
√
dn log dn). The inputs to Γn and Fn are variables of fn or relative

integers of polynomial bit size; their multiplication gates are of fan-in at
most

√
3dn + 1.

Proof. This is an application of Theorem 3: t is polynomial in n, and by
Proposition 6 we can take d = dn. �
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