
HAL Id: ensl-00496368
https://ens-lyon.hal.science/ensl-00496368

Preprint submitted on 30 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scaling Newton-Raphson division iterations to avoid
double rounding

Jean-Michel Muller

To cite this version:
Jean-Michel Muller. Scaling Newton-Raphson division iterations to avoid double rounding. 2010.
�ensl-00496368�

https://ens-lyon.hal.science/ensl-00496368
https://hal.archives-ouvertes.fr

Scaling Newton-Raphson division iterations to

avoid double rounding

Jean-Michel Muller

CNRS, ENS Lyon, INRIA, UCBL, Université de Lyon

Laboratoire LIP, Ecole Normale Supérieure de Lyon,

46 allée d’Italie, 69364 Lyon Cédex 07

France

Jean-Michel.Muller@ens-lyon.fr

This is LIP research report number RRLIP2010-21
June 2010

Abstract

When performing divisions using Newton-Raphson (or similar) itera-
tions on a processor with a floating-point fused multiply-add instruction,
one must sometimes scale the iterations, to avoid over/underflow and/or
loss of accuracy. This may lead to double-roundings, resulting in output
values that may not be correctly rounded when the quotient is in the
subnormal range. We show how to avoid this problem.

1 introduction

Throughout the paper, we assume a radix-2, precision-p, floating-point system
that is compliant with the IEEE 754-2008 Standard for Floating-Point Arith-
metic [4]. We also assume that a fused multiply-add (FMA) instruction is
available. That instruction evaluates expressions of the form xy + z with one
final rounding only. We also assume that the ambient rounding mode is round to
nearest (this is the only one for which the problem we are dealing with, namely
double rounding, occurs).

Many algorithms have been suggested for performing divisions. Here, as-
suming we wish to evaluate the quotient b/a of two floating-point numbers, we
focus on algorithms that first provide an initial approximation q to the quotient
and an approximation y to 1/a, and refine it using a “correcting step” [6].

r = RN (b − aq),
q′ = RN (q + ry),

(1)

where RN(u) is u rounded to nearest (even). Under some conditions made
explicit in Theorem 2—roughly speaking, if q and y are close enough to b/a and
1/a, respectively, and no underflow occurs—, then q′ = RN(b/a).

1

In most applications of that property presented in the literature, the ap-
proximations y and q are obtained through variants of the Newton-Raphson
iteration, but they might as well result from other means. What matters in this
paper is that the correcting step (1) is used.

That correcting step method is applicable only under some conditions. More
precisely, what makes the method working is the following lemma, which shows
that, still under some conditions, r = b− aq exactly. That lemma can be traced
back at least to Markstein’s work [6]. The presentation we give here is close to
that of Boldo and Daumas [1, 7].

Lemma 1 (Computation of division residuals using an FMA) Assume a
and b are precision-p, radix-2, floating-point numbers, with a 6= 0 and |b/a| below
the overflow threshold. If q is defined as

• b/a if it is exactly representable;

• one of the two floating-point numbers that surround b/a otherwise;

then
b − aq

is exactly computed using one FMA instruction, with any rounding mode, pro-
vided that

ea + eq ≥ emin + p − 1,

and

q 6= α or |b/a| ≥ α
2
,

(2)

where ea and eq are the exponents of a and q and α = 2emin−p+1 is the smallest
positive subnormal number.

For this result to be applicable, we need ea + eq ≥ emin + p − 1. This
condition will be satisfied if eb ≥ emin + p. Other conditions will be needed for
the correcting iterations to work (see Theorem 2 below). Also, the intermediate
iterations used for computing q and y may require the absence of over/underflow.
All this gives somewhat complex conditions on a and b, that can very roughly
be summarized as “the quotient and the residual r must be far enough from the
underflow and overflow thresholds”. More precisely,

Theorem 2 (Peter Markstein [6, 2, 5, 3]) Assume a precision-p binary floating-
point arithmetic, and let a and b be normal numbers. If

• q is a faithful approximation to b/a, and

• q is not in the subnormal range, and

• eb ≥ emin + p, and

• y approximates 1/a with a relative error less than 2−p, and

2

• the calculations
r = ◦(b − aq), q′ = ◦(q + ry)

are performed using a given rounding mode ◦, taken among round to near-
est even, round toward zero, round toward −∞, round toward +∞,

then q′ is exactly ◦(b/a) (that is, b/a rounded according to the same rounding
mode ◦).

A natural way to make sure that the conditions of Theorem 2 be satisfied
is to scale the iterations. This can be done as follows: a quick preliminary
checking on the exponents of a and b determines if the conditions of Theorem 2
may not be satisfied, or if there is some risk of over/underflow in the iterations
that compute y and q. If this is the case, operand a, or operand b is multiplied
by some adequately chosen power of 2, to get new, scaled, operands a∗ and b∗

such that the division b∗/a∗ is performed without any problem. An alternate,
possibly simpler, solution is to always scale: for instance, we chose a∗ and b∗

equal to the significands of a and b, i.e., we momentarily set their exponents to
zero. In any case, we assume that we now perform a division b∗/a∗ such that:

• for that “scaled division”, the conditions of Theorem 2 are satisfied;

• the exact quotient b/a is equal to 2σb∗/a∗, where σ is an integer straight-
forwardly deduced from the scaling.

Assuming now that the scaled iterations return a scaled approximate quo-
tient q∗ and a scaled approximate reciprocal y∗, we perform a scaled correcting
step

r = RN (b∗ − a∗q∗),
q′ = RN (q∗ + ry∗),

Notice that q′ is in the normal range (i.e., its absolute value is larger than
or equal to 2emin): the scaling was partly done in order to make this sure. If
2σq′ is a floating-point number (e.g., if |2σq′| ≥ 2emin), then we clearly should
return 2σq′. The trouble is when 2σq′ falls in the subnormal range: we cannot
just return RN(2σq′) because a double rounding phenomenon might occur and
lead to the delivery of a wrong result. Consider the following example. Assume
the floating-point format being considered is binary32 (that format was called
single precision in the previous version of IEEE 754: precision p = 24, extremal
exponents emin = −126 and emax = 127). Consider the two floating-point input
values:

{

b = 1.000000000011000110011012 × 2−113 = 839495710 × 2−136,
a = 1.000000000000110110011002 × 223 = 839034810.

The number b/a is equal to

0.1000000000010010000000000000101101001111011001100100000010 · · ·×2−135,

3

so that the correctly-rounded, subnormal value that must be returned when
computing a/b should be

0.00000000010000000000101 × 2−126.

Now, if, to be able to use Theorem 2, b was scaled, for instance by multiplying
it by 2128 to get a value b∗, the exact value of b∗/a would be

0.1000000000010010000000000000101101001111011001100100000010 · · · × 2−7,

which would imply that the computed correctly rounded approximation to b∗/a
would be

1.00000000001001000000000 × 2−8.

Multiplied by 2−128, this result would be equal equal to

1.00000000001001000000000 × 2−136,

which means—since it is in the subnormal range— that, after rounding to the
nearest (even) floating-point number, we would get

0.00000000010000000000100 × 2−126.

This phenomenon may appear each time the scaled result q′, once multiplied
by 2σ, is exactly equal to a (subnormal) midpoint, i.e., a value exactly halfway
between two consecutive floating-point numbers. Notice that if we just use this
scaled result without any other information, it is impossible to deduce if the
exact, infinitely precise, result is above or below the midpoint, so it is hopeless
to try to return a correctly rounded value.

Fortunately, values computed during the last correction iteration will contain
enough information to allow for a correctly rounded final result, as we are now
going to see.

2 Avoiding double rounding

As stated in the previous section, we assume we have performed the correcting
step:

r = RN (b∗ − a∗q∗),
q′ = RN (q∗ + ry∗),

and that the scaled operands a∗, b∗, as well as the approximate scaled quotient
q∗ and scaled reciprocal y∗ satisfy the conditions of Theorem 2. We assume
that the scaling was such that the exact quotient b/a is equal to 2σb∗/a∗. We
assume that we are interested in quotients rounded to the nearest (“even”, yet
with round to nearest “away” the reasoning is not so different). To simplify the
presentation, we assume that a and b (and, therefore, a∗, b∗, y∗, q∗ and q′) are
positive (separately handling the signs of the input operands is straightforward).
Since q∗ is a faithful approximation to b∗/a∗, we deduce that

q− <
b∗

a∗
< q+,

4

where q− and q+ are the floating-point predecessor and successor of q∗. Also,
since q′ = RN(b∗/a∗), we immediately deduce that q′ ∈ {q−, q, q+}. This is
illustrated by Figure 1.

excluded

q− q∗ q+

area where b∗/a∗ can be located,
the endpoints q− and q+ being

Figure 1: The number q∗ is a faithful rounding of b∗/a∗: this means that
q− < b∗/a∗ < q+, where q− and q+ are the floating-point predecessor and
successor of q∗.

As stated before, the “double rounding” problem occurs when 2σq′ is a
(subnormal) midpoint of the floating-point format. In such a case, to return a
correctly rounded quotient, one must know if the exact quotient b/a is strictly
below, equal to, or strictly above that midpoint. Of, course, this is equivalent
to knowing if b∗/a∗ is strictly below, equal to, or strictly above q′. Lemma 1
says that r = b∗ − a∗q∗ exactly. Therefore, when 2σq′ is a midpoint:

1. if r = 0 then q′ = q∗ = b∗/a∗, hence b/a = 2σq′ exactly. Therefore, one
should return RN(2σq′);

2. if q′ 6= q∗ and r > 0 (which implies q′ = q+), then q′ overestimates b∗/a∗.
Therefore, one should return 2σq′ rounded down. This is illustrated by
Figure 2;

3. if q′ 6= q∗ and r < 0 (which implies q′ = q−), then q′ underestimates b∗/a∗.
Therefore, one should return 2σq′ rounded up;

4. if q′ = q∗ and r > 0, then q′ underestimates b∗/a∗. Therefore, one should
return 2σq′ rounded up. This is illustrated by Figure 3;

5. if q′ = q∗ and r < 0, then q′ overestimates b∗/a∗. Therefore, one should
return 2σq′ rounded down.

When 2σq′ is not a midpoint, one should of course return RN(2σq′).

References

[1] S. Boldo and M. Daumas. Representable correcting terms for possibly un-
derflowing floating point operations. In J.-C. Bajard and M. Schulte, editors,

5

q′

q− q∗ q+

b∗/a∗

Figure 2: The number q′ is equal to q+. In this case, the “residual” r was
positive, and—since q− < b∗/a∗ < q+—, q′ is an overestimation of b∗/a∗.

q′

q− q∗ q+

b∗/a∗

Figure 3: The number q′ is equal to q∗. In this case, the “residual” r was
positive, and q′ is an underestimation of b∗/a∗.

Proceedings of the 16th Symposium on Computer Arithmetic, pages 79–86.
IEEE Computer Society Press, Los Alamitos, CA, 2003.

[2] M. Cornea, R. A. Golliver, and P. Markstein. Correctness proofs outline for
Newton–Raphson-based floating-point divide and square root algorithms. In
Koren and Kornerup, editors, Proceedings of the 14th IEEE Symposium on
Computer Arithmetic (Adelaide, Australia), pages 96–105. IEEE Computer
Society Press, Los Alamitos, CA, April 1999.

[3] J. Harrison. Formal verification of IA-64 division algorithms. In M. Aagaard
and J. Harrison, editors, Proceedings of the 13th International Conference
on Theorem Proving in Higher Order Logics, TPHOLs 2000, volume 1869 of
Lecture Notes in Computer Science, pages 234–251. Springer-Verlag, 2000.

[4] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008. available at http://ieeexplore.

ieee.org/servlet/opac?punumber=4610933.

6

[5] P. Markstein. IA-64 and Elementary Functions: Speed and Precision.
Hewlett-Packard Professional Books. Prentice-Hall, Englewood Cliffs, NJ,
2000.

[6] P. W. Markstein. Computation of elementary functions on the IBM
RISC System/6000 processor. IBM Journal of Research and Development,
34(1):111–119, January 1990.

[7] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre
Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien
Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser
Boston, 2010. ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-
4704-9.

7

