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Abstract

We deploy algebraic complexity theoretic techniques for constructing symmetric
determinantal representations of formulas and weakly skew circuits. Our represen-
tations produce matrices of much smaller dimensions than those given in the convex
geometry literature when applied to polynomials having a concise representation
(as a sum of monomials, or more generally as an arithmetic formula or a weakly
skew circuit). These representations are valid in any field of characteristic different
from 2. In characteristic 2 we are led to an almost complete solution to a question of
Biirgisser on the VNP-completeness of the partial permanent. In particular, we show
that the partial permanent cannot be VNP-complete in a finite field of characteristic
2 unless the polynomial hierarchy collapses.
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1 Introduction

1.1 Motivation

A linear matrix expression is a symmetric matrix with the entries being linear forms in
the variables x1, ..., z, and real number coefficients:

A(xy,...,xn) = Ag + 2141 + - + 2,A,, A; symmetric in R, (1)

A linear matrix inequality (LMI) restricts to those values & € R of the z; such that
A&, ..., &) = 0, ie., is positive semidefinite. The set of all such values defines a
spectrahedron.

A real zero polynomial is a polynomial p with real coefficients such that for every
x € R™ and every pu € C, p(uz) = 0 implies p € R. The Lax conjecture and generalized
Lax conjecture seek for real zero polynomials f(z1, ..., x,) representations (1) with
f = det(A) and Ay = 0. This is in fact an equivalent formulation of the original
Lax conjecture which was stated in terms of hyperbolic polynomials (see [Lewis et al.
2005] for this equivalence). Furthermore, the matrices are required to have dimension
d where d is the degree of the polynomial. For n = 2 such representations always
exist while a counting argument shows that this is impossible for n > 2 [Helton and
Vinnikov 2006] (actually, [Lewis et al. 2005] give the first proof of the Lax conjecture in
its original form based on the results of [Helton and Vinnikov 2006]). Two relaxations
have been suggested to avoid this counting argument: At first it was suggested to remove
the dimension constraint and seek for bigger matrices, and this was further relaxed by
seeking for representations of some power of the input polynomial. Counterexamples to
both relaxations have recently been constructed [Brandén 2010].

Another relaxation is to drop the condition Ay = 0 and represent any f as det(A)
[Helton et al. 2006; Quarez 2008]. However, the purely algebraic construction of [Quarez
2008] leads to exponential matrix dimensions ¢. Here we continue the line of work initi-
ated by [Helton et al. 2006; Quarez 2008] but we proceed differently by symmetrizing the
complexity theoretic construction by Valiant [1979]. Our construction yields smaller di-
mensional matrices not only for polynomials represented as sums of monomials but also
for polynomials represented by formulas and weakly skew circuits [Malod and Portier
2008; Kaltofen and Koiran 2008]. Even though in the most general case the bounds we
obtained are slightly worse than Quarez’s [2008], in a lot of interesting cases such as
polynomials with a polynomial size formula or weakly-skew circuit, or in the case of the
permanent, our constructions yield much smaller matrices (see Section 4). Our construc-
tions are valid for any field of characteristic different from 2. For fields of characteristic 2,
we conjecture that some polynomials cannot be represented as determinants of symmet-
ric matrices. A simple candidate to prove this is the polynomial zy 4 z. This is related
to a question of Biirgisser [2000]: Is the partial permanent VNP-complete over fields of
characteristic 27 We give an almost complete negative answer to this question. Beyond
a proof or a disproof that the polynomial xy + z (or any other polynomial) cannot be
represented as a determinant of a symmetric matrix, it would be interesting to exactly
characterize which polynomials admit such a representation in characteristic 2. It is



shown in the paper that for every polynomial p, p? admits a symmetric determinantal
representation in characteristic 2.

Our results give as a by-product an interesting result which was not known to the
authors’ knowledge: Let A be an (n x n) matrix with indeterminate coefficients (ranging
over a field of characteristic different from 2), then there exists a symmetric matrix B
of size O(n®) which entries are the inderminates from A and constants from the field
such that det A = det B. This relies on the existence of a size-O(n’) weakly-skew circuit
to compute the determinant of an (n x n) matrix [Berkowitz 1984; Malod and Portier
2008], and this weakly-skew circuit can be represented by a determinant of a symmetric
matrix as proved in this paper. Note that the conjecture that zy + z has no symmetric
determinantal representation in characteristic 2 means that the matrix (7 ;) cannot be
“symmetrized.”

Organization. Section 1.2 is devoted to an introduction to the algebraic complexity
theoretic used in our constructions, as well as a reminder of the existing related con-
structions in algebraic complexity. Section 2 deals with symmetric representations of
formulas while Section 3 focuses on weakly-skew circuits. Table 2 page 34 gives an
overview of all the different constructions used in this paper. Section 4 then proceeds
to the comparisons between the results obtained so far and Quarez’s [2008]. The special
case of fields of characteristic 2 is studied in Section 5.

Acknowledgments: We learned of the symmetric representation problem from Markus
Schweighofer’s ISSAC 2009 Tutorial
http://www.math.uni-konstanz.de/~schweigh/presentations/dcssblmi.pdf.

1.2 Known results and definitions

In his seminal paper Valiant [1979] expressed the polynomial computed by an arithmetic
formula as the determinant of a matrix whose entries are constants or variables. If we
define the skinny size e of the formula as its number of arithmetic operations then the
size of the matrix is at most e + 2. The proof uses a weighted digraph construction
where the formula is encoded into paths from a source vertex to a target, sometimes
known as an Algebraic or Arithmetic Branching Program [Nisan 1991; Beimel and Gal
1999]. This theorem shows that every polynomial with a sub-exponential size formula
can be expressed as a determinant with sub-exponential size formula, enhancing the
prominence of linear algebra. A slight variation of the theorem is also used to prove the
universality of the permanent for formulas which is one of the steps in the proof of its
VNP-completeness. In a tutorial, von zur Gathen [1987] gives another way to express
a formula as a determinant: his proof does not use digraphs and his bound is 2e + 2.
Refining his techniques, Liu and Regan [2006] gave a construction leading to a e + 1
bound and an extra property: multiplications by constant are free and do not count into
the size of the formula.

Our purpose here is to express a formula as a determinant of a symmetric matrix.
Multiplications by constant are also given for free. Our construction uses paths in
graphs, similar to the paths in digraphs in original Valiant’s proof. In fact, this original
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construction appears to have a little flaw in it. Interestingly enough, this flaw has never
been mentioned in the literature to the authors’ knowledge. A slight change in the
proof is given in [Biirgisser et al. 1997, Exercise 21.7 (p570)] that settles a part of the
problem. And the same flaw appears in the proof of the universality of the permanent
in [Biirgisser 2000]. When adding two formulas, the resulting digraph can have two arcs
between the source and the target, which can lead to the sum of two variables being an
entry of the matrix, and this is not allowed in this model. The first idea to correct the
proof is to keep the same parity for all s-t-path as in Valiant’s original proof, adding two
new vertices and replacing one of the arcs by a length-three path. This method is very
simple but its disadvantage is that it increases the size of the final matrix to 2e + 3. In
the symmetric case we will use —1 coefficient to correct the parity differences between
paths instead of adding new vertices. Using this technique in the non-symmetric case
allows us to prove Valiant’s theorem with (e + 1) instead of (e + 2). Our technique also
gives for free multiplications by constants as in [Liu and Regan 2006]. It uses digraphs
and is to our opinion more intuitive than direct work on matrices.

In [Toda 1992; Malod and Portier 2008], results of the same flavor were proved for a
more general class of circuits, namely the weakly-skew circuits. Malod and Portier [2008]
can deduce from those results a fairly simple proof of the VQP-completeness of the de-
terminant (under gp-projection). Moreover, they define a new class VP, of polynomials
represented by polynomial-size weakly-skew circuits (with no restriction on the degree
of the polynomials) for which the determinant is complete under p-projection. A for-
mula is a circuit in which every vertex has out-degree 1 (but the output). This means
in particular that the underlying digraph is a tree. A weakly-skew circuit is a kind of
generalization of a formula, with a less constraint structure on the underlying digraph.
For an arithmetic circuit, the only restriction on the digraph is the absence of directed
cycles (that is the underlying digraph is a directed acyclic graph). A circuit is said
weakly-skew if every multiplication gate « has the following property: the sub-circuit
associated with one of its arguments (8 is connected to the rest of the circuit by the only
arrow going from S to a. This means that the underlying digraph is disconnected as
soon as the multiplication gate « is removed. In a sense, one of the arguments of the
multiplication gate was specifically computed for this gate.

Toda [1992] proved that the polynomial computed by a weakly-skew circuit of skinny
size e can be represented by the determinant of a matrix of size (2e 4 2). This result
was improved by Malod and Portier [2008]: The construction leads to a matrix of size
(m + 1) where m is the fat size of the circuit (i.e. its total number of gates, including
the input gates). Note that for a circuit in general and for a weakly-skew circuit in
particular m < 2e 4+ 1. The latter construction uses negated variables in the matrix. It
is actually possible to get rid of them [Kaltofen and Koiran 2008]. Although the skinny
size is well suited for the formulas, the fat size appears more appropriate for weakly-skew
circuits. In Section 3, we symmetrize this construction so that a polynomial expressed by
a weakly-skew circuit equals the determinant of a symmetric matrix. Our construction
yields a size-(2m + 1) symmetric matrix. In fact, this can be refined as well as the
non-symmetric construction. An even more appropriate size for a weakly-skew circuit



is (e + 7) where e is the skinny size and i the number of inputs labelled by a variable
(clearly e +i < m). We can show that the bounds are still valid if we replace m by
(e 4+ i) and even when multiplications by constants are free as in [Liu and Regan 2006]
(see Section 3.2).

Let us now give some formal definitions of the arithmetic circuits and related notions.

Definition 1. An arithmetic circuit is a directed acyclic graph with vertices of in-degree
0 or 2 and exactly one vertex of out-degree 0. Vertices of in-degree 0 are called inputs
and labelled by a constant or a variable. The other vertices, of in-degree 2, are labeled
by x or + and called computation gates. The vertex of out-degree 0 is called the output.
The vertices of a circuit are commonly called gates and its arcs arrows.

An arithmetic circuit with constant inputs in a field £ and variables in a set T
naturally computes a polynomial f € k[Z].

If a is a gate of a circuit C', the sub-circuit associated to a is the subgraph of C' made
of all the gates 8 such that there exists a oriented path from S5 to « in C, including oe. A
gate a receiving arrows from S and « is said to be disjoint if the sub-circuits associated
to 8 and ~ are disjoint from one another. The gates § and v are called the arguments
of a.

A formula is an arithmetic circuit in which all the gates are disjoint.

An arithmetic circuit is said weakly-skew if for any multiplication gate «, the sub-
circuit associated to one of its arguments 3 is only connected to the rest of the circuit
by the arrow going from [ to a: it is called the closed sub-circuit of . A gate which
does not belong to a closed sub-circuit of C' is said to be reusable in C'. The reusability
of a gate depends of course on the considered circuit C'. For instance, in Fig. 1, the
weakly-skew circuit on the left has two closed sub-circuits. The input z1 is in the left
closed sub-circuit and is therefore not reusable. But inside this closed sub-circuit, it
is reusable. On the right of the same figure is an equivalent formula, that is both the
circuit and the formula compute the polynomial 2x1 29 4+ 2z1y + x92 + yz. Let us remark

Figure 1: A weakly-skew circuit (left) and an equivalent arithmetic formula.

a fact that will be useful later: all the multiplication gates of a weakly-skew circuit are
disjoint (but it is not a sufficient condition).

In our constructions, we shall use graphs and digraphs. In particular, the improved
construction based on Valiant’s represents formulas by paths in a digraph. On the



other hand, to obtain symmetric determinantal representations the digraphs have to
be symmetric. These correspond to graphs. In order to avoid any confusion between
directed and undirected graphs, we shall exclusively use the term graph for undirected
ones, and use digraphs else. It is well-known that cycle covers in digraphs are in one-to-
one correspondence with permutations of the vertices and therefore that the permanent
of the adjacency matrix of a digraph can be defined in terms of cycle covers of the
graph. Let us now give some definitions for those facts, and see how it can be extended
to graphs.

Definition 2. A cycle cover of a digraph G = (V, A) is a set of cycles such that each
vertex appears in exactly one cycle. The weight of a cycle cover is defined to be the
product of the weights of the arcs used in the cover. Let the sign of a vertex cover be
the sign of the corresponding permutation of the vertices, that is (—1)" where N is the
number of even cycles. Finally, let the signed weight of a cycle cover be the product of
its weight and sign.

For a graph G = (V, E), let G = (V, A) be the corresponding symmetric digraph.
Then a cycle cover of G is a cycle cover of G%, and the definitions of weight and sign
are extended to this case. In particular, if there is a cycle cover of G with a cycle C' =
(u,...,ux), then a new cycle cover is defined if C' is replaced by the cycle (ug, ..., u7).
Those two cycle covers are considered as different cycle covers of G.

Definition 3. Let G be a digraph. Its adjacency matriz is the (n X n) matrix A such
that A;; is equal to the weight of the arc from 7 to j (A;; = 0 is there is no such
arc). The definition is extended to the case of graphs, seen as symmetric digraphs. In
particular, the adjacency matrix of a graph is symmetric.

Lemma 1. Let G be a (di)graph, and A its adjacency matriz. Then the permanent of
A equals the sum of the weights of all the cycle covers of G, and the determinant of A
is equal to the sum of the signed weights of all the cycle covers of G.

Proof. The cycle covers are obviously in one-to-one correspondence with the permuta-
tions of the set of vertices, and the sign of a cycle cover is defined to match the sign of
the corresponding permutation. Suppose that the vertices of V are {1,...,n} and let
A; ;j be the weight of the arc (i,j) in G. Let C a cycle cover and o the corresponding
permutation. Then it is clear that the weight of C'is Ay 5) -+ Ay o), Whence the
result. O

The validity of this proof for graphs follows from the definition of the cycle covers
of a graph in terms of the cycle covers of the corresponding symmetric digraph. In the
sequel, the notion of perfect matching is used. A perfect matching in a graph G is a set
M of edges of G such that every vertex is incident to exactly one edge of M. The weight
of a perfect matching is defined in the sequel as the weight of the corresponding cycle
cover (with length-2 cycles). This means that this is the product of the weights of the
arcs it uses, or equivalently it is the square of the product of the weights of the edges it
uses. Note that this is the square of the usual definition.



A path P in a digraph is a subset of vertices {uq,...,ux} such that for 1 <i < k-1,
there exists an arc from u; to u; 41 with nonzero weight. The size |P| of such a path is
k.

2 Formulas

2.1 Non-symmetric case

In this section, as in Sections 2.2 and 3, a field k of characteristic different from 2 is fixed
and the constant inputs of the formulas and the weakly-skew circuits are taken from k.
The variables are supposed to belong to a countable set z = {z1,x, ... }. Following [Liu
and Regan 2006], we define a formula size that does not take into account multiplications
by constants.

Definition 4. Consider formulas with inputs being variables or constants from k. The
green size gsize(p) of a formula ¢ is defined inductively as follows:

e The green size of a constant or a variable is 0;
e If ¢ is a constant then the green size of ¢ X ¢ is equal to the green size of ¢;
e If p; and 9 are formulas, then gsize(y1 + p2) = gsize(p1) + gsize(ps2) + 1.

e If p; and ¢y are non-constant formulas, then gsize(yp1 X p2) = gsize(p1)+gsize(p2)+
1

An even smaller size can be defined by deciding that every variable-free formula has
size zero and Theorem 1 can easily be extended to this case. A formal definition of this
size is given is Section 3.2 in the context of weakly-skew circuits.

Theorem 1 ([Liu and Regan 2006]). For every formula ¢ of green size e with at least
one addition there is a square matriz A of size e + 1 whose entries are inputs of the
formula and elements of {0,1,—1,1/2} such that ¢ = det(A).

Remark that if ¢ has no addition it is of the form cx; ...z, and it has size (n — 1).
Then a suitable matrix is the (n 4+ 1) x (n + 1) diagonal matrix made of the n variables
and the constant ¢. Thus the size is at most n+1 =¢e+2, andisn = e+ 1 if ¢ = 1. Note
that this latter bound is minimal as the determinant of a (d x d) matrix is a degree-d
polynomial. The size (n + 1) is not minimal when ¢ # 1 as shown by the (3 x 3) matrix

< K8 O
[S SR
O v

representing 2xyz. One can also see that the n bound cannot be general as there is no
(2 x 2) matrix representing the polynomial 2xy.



Lemma 2. Let ¢ be an arithmetic formula of green size e. Then there exists a constant
co and an edge-weighted digraph G with at most e + 2 vertices and two distinct vertices

s and t such that
o - Z (=D)IPlw(P) = .
s-t-path P

Proof of Lemma 2. We prove the lemma by induction on formulas. If ¢ is equal to a
variable x (resp. a constant ¢) then G has two vertices s and ¢ and an edge (s,t) labelled
by x (resp. ¢) and the constant ¢ is equal to 1.

If o = ¢ x ¢ let G’ be the digraph and ¢, the constant satisfying the lemma for the
formula ¢'. Then obviously G = G’ and ¢y = ¢{c satisfy the lemma for ¢.

If o = p1 X2, let G and ¢1 (resp. G2 and c9) satisfying the lemma for ;1 (resp. 2).
Then let ¢ = ¢1co and G be the disjoint union of G and G5, except for t; and sy which are
merged (see Fig 2). The size of G is equal to |G1|+|G2| —1 < gsize(p;) +gsize(p2) +3 =

¥1 P2 . @
5 S

t

Figure 2: G1,c; and Ga, ¢y are respectively associated to @1 and po; 0 = @1 X ©a.

gsize(p) + 2. A s-t-path P in G is a sj-t1-path P; in Gy followed by a sa-te-path P, in
G and we have |P| = |Pi| + |P2| — 1 and w(P) = w(P;) x w(P2), hence the result.

If o = @1 + @2, let G1 and ¢; (resp. G2 and c¢3) satisfying the lemma for ¢ (resp.
w2). If ¢; = 0 then ¢ and ¢ compute the same polynomial and we just have to take
G = G4 and ¢ = c9. Suppose now ¢; # 0. Then we define G as the disjoint union of
G1 and Ga, except for s; and sy which are merged, and with an edge (t2,%1) of weight
—co/c1 (see Fig 3). The size of G satisfies the same relation as in the multiplication

S

©1 ©2 V
—_— t

2
@ )

Figure 3: G1,c1 and Ga, ¢y are respectively associated to ¢1 and po; 0 = @1 + ©a.

—62/61

case. Let ¢g = ¢1. A s-t-path P in G is a si-tj-path in Gy or a sg-ts-path P in Go
followed by the edge (t2,¢1), and in the second case we have w(P) = w(P;)(—c2/c1)
and |P| = |Py| + 1, hence the result. Remark that ¢ has only one outgoing edge and



its weight is a constant, and that this property will not be changed in the inductive
construction. This property will be useful to prove the bound in the theorem. ]

Proof of Theorem 1. Let p be an arithmetic formula of green size e and let G and ¢y be
given by Lemma 2. Let G be the digraph obtained from G in the following way. We
merge s and t. As remarked in the proof of Lemma 2 there is a vertex v that has only
one outgoing edge and its weight is a constant ¢ (as ¢ is supposed to have at least one
addition). We change its weight to cyc and add a loop weighted by ¢y on v. We put a
loop with weight 1 on every other vertex than v and s.

Let {1,...,e + 1} be the vertices of G and A its adjacency matrix. Let us have a
closer look at cycle covers of G. The cycles in G are cycles containing s (which are in
bijection with s-t-paths in ) and loops. In a cycle cover C' the vertex s belongs to
a cycle S. Its weight w(s) is the weight of the corresponding s-t-path P in G and its
cardinal is |S| = |P| — 1. If the vertex v appears in S then w(S) = cow(P) and every
other cycle in C' is a loop of weight 1. Otherwise w(S) = w(P) and C contains the loop
v of weight cp. In both case w(C) = cow(P). Let us recall that sgn(C) is the signature
of the underlying permutation: here it is —1 if S is even and 1 otherwise, and so it is
equal to (—1)IPl. Using Lemma 1 we get

det(4) = > sgn(Cw(C) =co- Y (DT w(P)=¢.
cycle cover s-t-path
Cof G PeG

2.2 Symmetric case

The aim of this section is to write an arithmetic formula as a determinant of a sym-
metric matrix, whose entries are constants or variables. Recall that in this section as in
Section 3, a field k of characteristic different from 2 is fixed, and the input constants are
taken from this field. In the sequel, every constructed graph is undirected. At first, the
result is proved for the skinny size of the formula. We recall that the skinny size of ¢ is
the number of arithmetic operators it contains.

Theorem 2. Let ¢ be an arithmetic formula of skinny size e. Then there exists a
matriz A of size at most 2e + 3 whose entries are inputs of the formula and elements of

{0,1,—1,1/2} such that ¢ = det A.
This theorem is a corollary of the following lemma.

Lemma 3. Let ¢ be an arithmetic formula of skinny size e. Then there exists a graph
G with at most 2e + 2 vertices and two distinct vertices s and t such that

1. The graph G has an even number of vertices, every cycle in G is even and every
s-t-path has an even number of vertices.



2. The subgraph G\ {s,t} is empty if e = 0 and for e > 1 it has only one cycle cover:
it is a perfect matching of weight 1. For every s-t-path P in G, the subgraph G\ P
18 empty or has only one cycle cover: as above it is a perfect matching of weight 1.

3. The following equality holds in G:

Y Y ) =

s-t-path P

The graph G is called the graph associated to .

The first property of the lemma ensures that because of a parity argument every
cycle cover of the final constructed graph G used in the proof of Theorem 2 (see Fig. 4)
includes exactly one path between s and ¢. The second property ensures that the weight
of the cycle cover is the weight of the cycle involving s and ¢, that is every other cycle
has weight 1, and that other cycles of the cover are of length 2. The third property gives
the relation between the graph and the formula.

As in Valiant’s construction for the non necessarily symmetric case, the formula ¢
will be encoded in the weights of paths between s and ¢, but in a slightly different way.
In Valiant’s construction, a cycle cover of the digraph is made of a cycle including a
s-t-path, other cycles being loops. Moreover every s-t-path has the same parity and so
every cycle cover has the same parity of odd cycles and the underlying permutation has
the same signature. With this property of the digraph the determinant of its adjacency
matrix is equal to its permanent up to the sign. In our construction a cycle cover of
the graph is made of a cycle including a s-t-path, other cycles being length-2 cycles.
A length-2 cycle has a negative signature and every s-t-path of the graph has an even
cardinality, so the sign of the cycle permutation is —1 to the number of length 2 cycles.
This shows that the sign of the cycle permutation is a function of the length of the
involved s-t-path modulo 4. There is a way to ensure that this sign does not depend on
the chosen s-t-path: replace the graph G associated to a size-0 formula z in the proof
of Lemma 3 by a 4-vertices path with weight = on its first edge, and replace weights —1
(Fig. 4, Fig. 6 and Fig. 7) by weights 1. This yields a matrix with entries in kU Z whose
determinant and permanent are equal to ¢, but its size can be 4e + 5. To achieve the
2e 4+ 3 bound, we construct a matrix A whose determinant can be very different from
the permanent: For example, the permanent of the matrix associated to ¢ = x + z is 0
when its determinant is 2z. Nonetheless we can very easily obtain a matrix B having
the same size that A and such that perm B = ¢ by replacing every —1 entry in A by 1.

Proof of Theorem 2. Let G be the graph associated to ¢ and let G be the graph G
augmented with a new vertex ¢ and the edges tc of weight 1/2 and cs of weight (—1)I¢1/2-1
(see Fig. 4).

Conditions (1) and (2) imply that there is a bijection between paths from s to ¢ or ¢
to s and cycle covers in G. More precisely, every cycle cover in G has a unique odd cycle
and it is of the form cPc where P is a s-t-path or a t-s-path. Indeed, the graph G has

10



Figure 4: Construction of G from G.

an odd number of vertices. Suppose there is a cycle cover of G involving the length-2
cycle tet. Other cycles of this cover are cycles of G and thus by (1) they are all even.
This is not possible as an odd set can not be partitioned into even subsets. For the same
reason, there is no cycle cover of G involving the cycle scs. Thus every cycle cover of G
has a cycle including ¢ and a path P between s and t.

Let us recall that the sign of a cycle cover is the sign of the underlying permutation,
i.e. —1ifit has an odd number of even cycles and 1 otherwise, and let us define the signed
weight of a cycle cover as the product of its weight and sign. Let C be a cycle cover of G
involving the s-t-path P. By property (2) there is only one way to complete the cover.
Thus the weight of the cycle cover is the weight of P multiplied by (1/2 (—1)I¢1/2+1)
and its sign is the sign of a perfect matching of cardinality |G\ PJ, so it is (—1)(1G\PD/2,
By symmetry, the inverse cycle cover has the same signed weight. So the sum of the
signed weights of all cycle covers of G is equal to twice the sum over all s-t-path P of
(1/2 (—=1)IPV/2+1 4y(P)). According to Lemma 3 it is equal to ¢. The result follows from
Lemma 1.

O

Proof of Lemma 3. Let ¢ = x be an arithmetic formula of size 0. Then the graph G
associated to ¢ by definition has two vertices s and ¢t and an edge st of weight x. It verifies
trivially properties (1) and (2) and its only s-t-path is st and we have: (—1)%/21z = ¢.

Let ¢ = ¢1 + 9 and Gy and G2 be the graphs associated to @1 and po. First let
us suppose sit; or soto has weight 0. It means in particular that ¢ or o is of size at
least 1. Let s = s = sy and t = ¢; = t5. Suppose G \ {s1,t1} and Ga \ {s2,%2} have
disjoints sets of vertices and let G = G1 U G2 (see Fig. 5). Then |G| = |G1]| + |G2| — 2 <
21| + 2|p2] +2 = 2|

¥1 P2
@ t
Figure 5: Graph associated to ¢ = ¢1 + 2.

If s1t1 is an edge in G7 and soto is an edge in GGo then the preceding construction
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would lead to two edges between s and ¢. They could be transformed into a single edge
if adding the two weights, but then the weight could be a sum of two variables, and
it is something that is not allowed in this context. So the graph G is transformed
into a graph G} by adding two vertices u and v, removing the edge sit; with weight
x and adding the edges sju with weight =, uv with weight 1 and vt; with weight —1
(see Fig. 6). We can verify easily that G/ verifies the three conditions of Lemma 3. In

51 51

T u
—

v
=1
121 121

Figure 6: Transformation of Gy into GY.

particular for the third condition, the term x corresponding to the path sit; in G in the
sum is replaced by the term corresponding to the path sjuvt; in G): —(—1)4/ 2+l
We then construct the graph G associated to ¢ as above but with G/ replacing Gp. It
size is at most 2|p| + 2.

Now let us prove that the graph associated to ¢ satisfies the three properties of the
lemma.

Tr =.

1. G has an even number of vertices and the cardinality of every s-t-path is even. A
cycle in G is a cycle in G, or a cycle in Go, or a path from s to ¢ in G| or Gs
followed by path from ¢ to s in G; or G2, and consequently every cycle in G is
even.

2. If Gy \ {s1,t1} and Ga \ {s2,t2} are non-empty they are disconnected, and a cycle
cover of the subgraph G'\ {s,t} is constituted by a cycle cover of G1\ {s1,¢1} and a
cycle cover of Ga \ {s2,%2}. So G\ {s,t} has only one cycle cover and it is a perfect
matching of weight 1. If G \ {s1,t1} is empty then G \ {s,t} = G2\ {s2,t2} and
has only one cycle cover and it is a perfect matching of weight 1.

Let P be a path between s and ¢ in G. We can suppose wlog that the subgraph
G\ P is the union of the two graphs G\ P and G2\ {s2, t2}, which are disconnected

from one another. The property to prove is then straightforward from the induction
hypothesis.

3. A path of GG is a path of Gy or a path of G9, which proves the equality.

Let ¢ = 1 X g and G and G2 be the graphs associated to ¢1 and ¢o. Suppose
G1 and G5 have disjoints sets of vertices and let G be G; U G5 with an additional edge
t1s9 of weight —1, and let s = s; and t = t9 (see Fig.7). Then |G| = |G| + |Ga| <
2|¢1] + 2|p2| +4 = 2|¢| + 2. Let us prove that G satisfies the three properties of the
lemma.

12



P1 P2 t
® 9

Figure 7: Graph associated to ¢ = ¢1 X 2.

1. G has an even number of vertices and every path from s to ¢ has an even cardinality.
A cycle in G is either a cycle in G, or a cycle in G5 or the length-2 cycle ¢1s9, and
consequently every cycle in G is even.

2. Let us consider a cycle cover of G\ {s,t}. The vertex ¢; can be in a cycle of G; or
in the cycle ts,. If it is in a cycle of G then we have a cycle cover of Gy \ {s1},
which is not possible because it is an odd set and all its cycles are even. Thus the
cycle cover of G'\ {s,t} can be partitioned into ¢1s5 of weight (—1)2, a cycle cover
of G1 \ {s1,t1} and a cycle cover of G2 \ {s2,t2}. Those cycle covers are unique
and so there is only one cycle cover of G\ {z,y} and it is a perfect matching of
weight 1.

Let P be a path between s and ¢ in G. It is a path P; from s; to ¢1 in G7 followed
by t1s2 and a path P from sy to t2 in G3. So G\ P is the union of the two graphs
G1\ P1 and G2\ Py, which are disconnected (if non empty) from one another. The
property to prove is then straightforward from the induction hypothesis.

3. A s-t-path P in GG can be decomposed into three paths: a sq1-t;-path P;, 159 which
is of weight —1 and a so-to-path Ps.

Thus
(D)E T wp) = (-1 (P (—1)w(Py)

and so

Y1 X P2
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The upper bound (2¢e + 2) of Lemma 3 is tight as shown by Fig. 8. It can be shown
easily that this construction yields a graph of size at least || + 2, and this lower bound
is tight as shown by Fig. 9.

Figure 8: Graph associated to ¢ =1 + -+ + Zpy1: || =n and |G| = 2n + 2.

Figure 9: Graph associated to ¢ = z12) +xoxhy - - +xp2), +y: |@| = 2n and |G| = 2n+2.

In fact, as in the non-symmetric case, the skinny size can be replaced by the green
size of the formula defined in Definition 4.

Theorem 3. For every formula ¢ of green size e there is a square matriz A of size
2e + 3 whose entries are inputs of the formula and elements of {0,1,—1,1/2} such that
© = det A.

Proof. 1t is sufficient to show how to have the constants for free in the construction of
Lemma 3. In fact, the construction remains almost the same but with the last property
changed. For an arithmetic formula ¢ of green size e, there exists a graph G that satisfies
the conditions of Lemma 3 but the third one is replaced by the existence of a constant

¢ such that
o - Z (=PI (P) = .
s-t-path P

Let ¢ = x be an arithmetic formula of size 0. Then the graph G associated to ¢ by
definition has two vertices s and t and an edge st of weight . The associated constant
is cg = 1.

Let ¢ = ¢y and G, ¢y be associated to ©. Then G, ccq is associated to .

Let ¢ = ¢1 X 9 and G1, ¢1 (resp. Ga, ¢2) be associated to ¢ (resp. ps2). The graph
G associated to ¢ is exactly the same as in the proof of Lemma 3 and the constant is
C1Co.

14



Let ¢ = ¢1 + 2 and Gy, ¢1 (resp. Ga, c2) be the graph and constant associated
to 1 (resp. 2). We suppose that G and Gg have distinct sets of vertices except for
s1 = s9. The graph G is obtained by adding a new vertex w, an edge tou with weight 1
and an edge ut; with weight —cy/c1, and the associated constant is ¢; (see Fig. 10).

1 ©2 V
—_ t

2

@ t1 —62/61

Figure 10: ¢ = 1 + @o; G1,c1 and Ga, co are respectively associated to ¢ and o.

This defines a size-(2e +2) graph G associated to a green size-e formula ¢. It remains
to turn this graph into a matrix. Let G be the graph G augmented with a new vertex c
and the edges tc of weight ¢q/2 and ¢s of weight (—1)I¢/2=1 The adjacency matrix A
of G satisfies ¢ = det(A) and the proof is similar to the one of Theorem 2. O

The bound obtained in Theorem 3 can be sharpened when k& = R or C. The idea is
to build G by merging s and ¢ instead of adding a new vertex. Suppose that ¢ has at
least one addition gate. Let w = /|cp|/2. In the construction for this addition gate (see
Fig. 10), multiply the weights of tou and ut; by w. A cycle cover of the graph either
goes through the path touty, or contains the edge uts in its perfect matching part. In
both cases, its weight is multiplied by w?. Now if (—1)I¢/2+1¢/2 > 0, then the graph
obtained has the satisfying properties, and the new bound is 2e+4 1. If it is negative, two
solutions can be applied. Either k is the field of complex numbers and it is sufficient to
replace w by iw (where 2 = —1) to get the same bound 2e + 1. Otherwise, if k is the
field of real numbers, it is sufficient to add a new vertex with a loop of weight —1 (this
corresponds to adding a new line and a new column, filled with zeroes but the diagonal
element with —1) to get the bound (2e + 2).

3 Weakly skew circuits

In this section, we extend the previous results to the case of weakly-skew circuits. Recall
that those circuits are defined from arithmetic circuits by a restriction on the multipli-
cation gate: the sub-circuit associated to one of the arguments of a multiplication gate
« has to be closed, that is only connected to the rest of the circuit by the arrow going
to a. A gate that is not in any such closed sub-circuit is said to be reusable.

The main difficulty to extend the results in the existence of several reusable gates. In
the case of formulas, there is a single output. Therefore, there is a single vertex ¢ in the
graph for which the sum of the weights of the s-t-paths has to equal a given expression.
This is no longer the case for weakly-skew circuits. If the matrix we wish to construct
is not symmetric, that is if the graph is oriented, this difficulty is overcome by ensuring
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that the graph is a directed acyclic graph. In that way, adding a new vertex cannot
change the expressions computed at previously added vertices. But in the symmetric
case, adding a new vertex, for example in the case of an addition gate, creates some new
paths in the graph. Thus it changes the sum of the weights of the s-f,-paths for some
vertex .

A solution to this problem is given in Lemma 4 by introducing the notion of accept-
able paths: A path P in a graph G is said acceptable if G\ P admits a cycle cover.

3.1 Symmetric determinantal representation

For the weakly-skew circuits, the green size is no longer appropriate. Hence, the results
of this section are expressed in terms of the fat size of the circuits: the fat size of a
circuit is its total number of gates, including the input gates. This measure of the size
of the circuits is refined in Section 3.2.

Theorem 4. Let f be a polynomial computable by a weakly-skew circuit of fat size m.
Then there exists a symmetric matriz A of size at most 2m + 1 whose entries are inputs
of the circuit and elements from {0,1,—1,1/2} such that f = det A.

The proof relies on the following lemma. It applies to so-called multiple-output
weakly-skew circuits. This generalization just consists in circuits for which there exist
several out-degree-0 gates.

Lemma 4. Let C be a multiple-output weakly-skew circuit of fat size m. There exists a
graph G with at most 2m + 1 vertices and a distinguished vertezx s such that |G| is odd,
every cycle in G is even, and for every reusable gate o € C' there exists a vertex t, € G
such that

1. Every s-to-path has an odd number of vertices (even if not acceptable);

2. For every acceptable s-to-path P in G, the subgraph G \ P is either empty or has
a unique cycle cover, which is a perfect matching of weight 1;

3. The following equality holds in G:

acceptable
s-to-path P

where f, is the polynomial computed by the gate a.

Furthermore, the graph G\ {s} has a unique cycle cover which is a perfect matching of
weight 1.

Proof. The graph G is built by induction on the (fat) size of the circuit, the required
properties being verified at each step of the induction. If « is a reusable gate of C', then
t, is said to be a reusable vertex of G.
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A size-1 circuit is an input gate o with label x. The corresponding graph G has three
vertices: s, t, and an additional vertex v,. There is an edge between s and v, of weight
x, and an edge between v, and t, of weight —1. It is straightforward to check that G
satisfy the conditions of the l