Florent De Dinechin
email: florent.de.dinechin@ens-lyon.fr

A flexible floating-point logarithm for reconfigurable computers LIP research report RR2010-22

Keywords: Floating-point elementary functions, hardware operator, FPGA, logarithm

The advent of reconfigurable co-processors based on field-programmable gate arrays has renewed interest in hardware architectures for elementary functions. This article studies operators for the logarithm function in the context of this target technology. An old algorithm is generalized, fine-tuned and implemented as an architecture generator, exposing a wide range of trade-offs between resources (memory, logic and multipliers) and performance (frequency and pipeline depth). A single pipelined operator computes five times more double-precision floating-point logarithms per second than a high-end processor core, while consuming only a few percents of the resources of a high-end FPGA. This generator is available under the LGPL as part of the FloPoCo project.

I. Introduction

Virtually all the computing systems that support some form of floating-point (FP) also include a floating-point mathematical library (libm) providing elementary functions such as exponential, logarithm, trigonometric and hyperbolic functions, etc. Modern systems usually comply with the IEEE-754 standard for floating-point arithmetic [START_REF]ANSI/IEEE, Standard 754-1985 for Binary Floating-Point Arithmetic (also IEC 60559)[END_REF] and offer hardware for basic arithmetic operations in single-and double-precision formats (32 bits and 64 bits respectively). Most libms implement a superset of the functions mandated by language standards such as C99 [2].

A. Hardware versus software for the floating-point elementary functions

The question wether elementary functions should be implemented in hardware was controversial in the beginning of the PC era [START_REF] Paul | Should the elementary functions be incorporated into computer instruction sets?[END_REF]. The literature indeed offers many articles describing hardware implementations of FP elementary functions [START_REF] Ercegovac | Radix-16 evaluation of certain elementary functions[END_REF], [START_REF] Wrathall | Convergence guarantee and improvements for a hardware exponential and logarithm evaluation scheme[END_REF], [START_REF] Farmwald | High-bandwidth evaluation of elementary functions[END_REF], [START_REF] Cosnard | The FELIN arithmetic coprocessor chip[END_REF], [START_REF] Wong | Fast hardware-based algorithms for elementary function computations using rectangular multipliers[END_REF], [START_REF]Fast evaluation of the elementary functions in single precision[END_REF]. In the early 80s, Intel chose to include elementary functions to their first math co-processor, the 8087.

However, for cost reasons, in this co-processor, as well as in its successors by Intel, Cyrix or AMD, these functions did not use the hardware algorithm mentioned above, but were microcoded, thus slow. Indeed, software libms were soon written which were more accurate and faster than the hardware version. For instance, as memory went larger and cheaper, one could speed-up the computation using large tables (several kilobytes) of precomputed values [START_REF] Tang | Table-driven implementation of the exponential function in IEEE floating-point arithmetic[END_REF], [START_REF]Table-driven implementation of the logarithm function in IEEE floating-point arithmetic[END_REF]. It would not be economical to cast such tables to silicon in a processor: The average computation will benefit much more from the corresponding silicon if it is dedicated to more cache, or more floating-point units for example. Besides, the hardware functions lacked the flexibility of the software ones, which could be optimized in context by advanced compilers.

These observations contributed to the move from CISC to RISC (Complex to Reduced Instruction Sets Computers) in the 90s. Intel themselves now also develop software libms for their processors that include a hardware libm [START_REF] Anderson | Accurate math functions on the Intel IA-32 architecture: A performance-driven design[END_REF]. Research on hardware elementary functions has since then mostly focused on approximation methods for fixedpoint evaluation of functions [START_REF] Hassler | Function evaluation by table look-up and addition[END_REF], [START_REF] Stine | The symmetric table addition method for accurate function approximation[END_REF], [START_REF] Lee | Optimizing hardware function evaluation[END_REF], [START_REF] Detrey | Table-based polynomials for fast hardware function evaluation[END_REF].

B. Floating-point and reconfigurable computing

Lately, a new kind of programmable circuit has been gaining momentum: The FPGA, for Field-Programmable Gate Array. Designed to emulate arbitrary logic circuits, an FPGA consists of a very large number of configurable elementary blocks, linked by a configurable network of wires. A circuit emulated on an FPGA is typically one order of magnitude slower than the same circuit implemented directly in silicon. For instance, a floating-point adder or multiplier never works at more than 400MHz in this technology. However, FPGAs are reconfigurable and therefore offer much greater flexibility than classical ASICs, including microprocessors. In particular, an operator will consume silicon only if it is useful to the computation under consideration. With this new technological target, the subject of hardware implementation of elementary functions becomes a hot topic again.

FPGAs have been used as co-processors to accelerate specific tasks, typically those for which the hardware available in processors is poorly suited. This, of course, does not seem the case of floating-point computing. Indeed, microprocessors are built with highly optimized floating-point units. However, FPGA capacity has increased steadily with the progress of VLSI integration, and it is now possible to pack many FP operators on one chip: Massive parallelism allows one to recover the performance overhead [START_REF] Underwood | FPGAs vs. CPUs: Trends in peak floating-point performance[END_REF], [START_REF] Strenski | Revaluating FPGAs for 64-bit floating-point calculations[END_REF], and accelerated FP computing has been reported in single precision [START_REF] Lienhart | Using floating-point arithmetic on FPGAs to accelerate scientific N-body simulations[END_REF], then in double-precision [START_REF] Delorimier | Floating-point sparse matrix-vector multiply for FPGAs[END_REF], [START_REF] Dou | 64-bit floating-point FPGA matrix multiplication[END_REF]. Mainstream computer vendors such as Silicon Graphics and Cray now build computers with FPGA accelerators. A challenge is to use them as floating-point accelerators.

The FloPoCo project 1 helps addressing this challenge by providing high-quality floating-point operators.

FloPoCo is an open-source operator generator written in C++. It provides the basic operations of an FPU, but actually focuses on operators not available on processors, for which there is greater acceleration potential [START_REF] De Dinechin | When FPGAs are better at floating-point than microprocessors[END_REF]. The logarithm is an example of such an operator.

The present article is supported by the FPLog operator of FloPoCo, implemented as the FPLog.cpp class in the FloPoCo distribution version 1.15.1.

C. Related works, contributions and outline

Previous work has shown that a single instance of an exponential or logarithm operator can provide ten times the performance of the processor, while consuming a small fraction of the resources of current FPGAs [START_REF] Detrey | Parameterized floating-point logarithm and exponential functions for FPGAs[END_REF]. The reason is that such an operator may perform most of the computation in optimized fixed point with specifically crafted datapaths, and is highly pipelined. However, the architecture of [START_REF] Detrey | Parameterized floating-point logarithm and exponential functions for FPGAs[END_REF] uses a generic table-based approach [START_REF] Detrey | Table-based polynomials for fast hardware function evaluation[END_REF] which doesn't scale well beyond single precision: Its size grows exponentially.

1 http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/ In this article, we demonstrate a more algorithmic approach which works well beyond double precision. It is a synthesis of much older works, including the Cordic/BKM family of algorithms [START_REF] Muller | Elementary Functions, Algorithms and Implementation[END_REF], the radix-16 multiplicative normalization of [START_REF] Ercegovac | Radix-16 evaluation of certain elementary functions[END_REF], Chen's algorithm [START_REF] Wrathall | Convergence guarantee and improvements for a hardware exponential and logarithm evaluation scheme[END_REF], an ad-hoc algorithm by Wong and Goto [START_REF] Wong | Fast hardware-based algorithms for elementary function computations using rectangular multipliers[END_REF], and probably many others [START_REF] Muller | Elementary Functions, Algorithms and Implementation[END_REF]. All these approaches boil down to the same basic properties of the logarithm function, and are synthesized in Section II. The specificity of the FPGA hardware target are summarized in Section III, and the algorithm and its implementation are detailed in Section IV. Section VI provides performance results from actual synthesis, and discusses them. Section VII compares these results with estimations for a finely tuned polynomial approximation method.

This article builds upon an article published in the Arith 17 conference [START_REF] Detrey | Return of the hardware floating-point elementary function[END_REF]. Focusing only on the logarithm function, it improves [START_REF] Detrey | Return of the hardware floating-point elementary function[END_REF] in several respects. All the proofs that were omitted in [START_REF] Detrey | Return of the hardware floating-point elementary function[END_REF] for lack of space are given. This algorithm is generalized to make use of features that have become commonplace in high-performance FPGAs: embedded multipliers and memory blocks. A trade-off is exposed and discussed in this context, supported by experimental results. The choice of the algorithm itself is justified by comparing it with a more classical polynomial approximation approach. Some of the sub-components, such as the constant multiplications, have been optimized. Last but not least, the operators discussed here are pipelined.

II. Iterative reciprocal, logarithm, and exponential

Wether we want to compute the logarithm or the exponential, the idea common to most previous methods may be summarized by the following iteration. Let (x i) and (l i) be two given sequences of reals such that ∀i, x i = e li . It is possible to define two new sequences (x ′ i) and (l ′ i) as follows: l ′ 0 and x ′ 0 are such that x ′ 0 = e l ′ 0 , and

∀i > 0 l ′ i+1 = l i + l ′ i x ′ i+1 = x i × x ′ i (1)
This iteration maintains the invariant

x ′ i = e l ′ i , since x ′ 0 = e l ′ 0 and x i+1 = x i x ′ i = e li e l ′ i = e li+l ′ i = e l ′ i+1 . Therefore, if
x is given and one wants to compute l = log(x), one may define x ′ 0 = x, then read from a table a sequence (l i , x i) such that the corresponding sequence (l ′ i , x ′ i) converges to (0, 1). The iteration on x ′ i is computed for increasing i, until for some n we have x ′ n sufficiently close to 1 so that one may compute its logarithm using the Taylor series l

′ i ≈ x ′ n -1 -(x ′ n -1) 2 /2, or even l ′ i ≈ x ′ n -1.
This allows one to compute log(x) = l = l ′ 0 by the recurrence (1) on l ′ i for i decreasing from n to 0. Now if l is given and one wants to compute its exponential, one will start with (l ′ 0 , x ′ 0) = (0, 1). The tabulated sequence (l i , x i) is now chosen such that the corresponding sequence (l ′ i , x ′ i) converges to (l, x = e l). There are also variants where x ′ i converges from x to 1, meaning that (1) computes the reciprocal of x as the product of the x i . Several of the aforementioned papers explicitely propose to use the same hardware to compute the reciprocal [START_REF] Ercegovac | Radix-16 evaluation of certain elementary functions[END_REF], [START_REF] Wong | Fast hardware-based algorithms for elementary function computations using rectangular multipliers[END_REF], [START_REF] Muller | Elementary Functions, Algorithms and Implementation[END_REF]. This makes sense in the context of a processor, but in the context of reconfigurable computing, it seems more pertinent to implement an independent, high-quality divider when needed, and only then.

The various methods presented in the literature vary in the way they unroll this iteration, in what they store in tables, and in how they chose the value of x i to minimize the cost of multiplications. Comparatively, the additions in the l ′ i iteration are less expensive. Let us now study the optimization of such an iteration for an FPGA platform. We need addition, multiplication, and tables of precomputed values.

III. A primer on arithmetic for FPGAs

We assume the reader has basic notions about the hardware complexity of arithmetic blocks such as adders, multipliers, and tables in VLSI technology (otherwise see textbooks like [START_REF] Ercegovac | Digital Arithmetic[END_REF]), and we highlight here the main differences when implementing a hardware algorithm on an FPGA.

• An FPGA consists of tens of thousand of elementary blocks, laid out as a rectangular grid. This grid also includes routing channels which may be configured to connect blocks together almost arbitrarily.

IV. Overview of the logarithm operator

The logarithm is only defined for positive floatingpoint numbers, and does not overflow nor underflow. Exceptional cases are therefore trivial to handle and will not be mentioned further. A positive input X is written in floating-point format X = 2 E X -E0 × 1.F X , where E X is the exponent stored on w E bits, F X is the significand stored on w F bits, and E 0 is the exponent bias (as per the IEEE-754 standard). Now we obviously have log(X) = log(1.F X) + (E X -E 0) • log 2. However, if we use this formula, for a small ǫ the logarithm of 1 -ǫ will be computed as log(2 -2ǫ)log(2), entailing a catastrophic cancellation. To avoid this case, the following error-free transformation is applied to the input:

Y 0 = 1.F X , E = E X -E 0 when 1.F X ∈ [1, 1.5), Y 0 = 1.F X 2 , E = E X -E 0 + 1 when 1.F X ∈ [1.5, 2).
(2) And the logarithm is evaluated as follows:

log(X) = log(Y 0) + E • log 2 with Y 0 ∈ [0.75, 1.5).
(3) Then log(Y 0) will be in the interval (-0.288, 0.406). This interval is not very well centered around 0, and other authors use in (2) a case boundary closer to √ 2, as a well-centered interval allows for a better approximation by a polynomial. We prefer that the comparison resumes to testing the first bit of F , called FirstBit in the following (see Figure 1). Now consider equation (3), and let us discuss the normalization of the result: We need to know which will be the exponent of log(X). There are two mutually exclusive cases. and mantissa of the result. In this case the shift will be at most of w E bits.

• Or, E = 0. In this case the logarithm of Y 0 may vanish, which means that a shift to the left will be needed to normalize the result 2 .

-

If Y 0 is close enough to 1, specifically if Y 0 = 1 + Z 0 with |Z 0 | < 2 -w F /2
, the left shift may be predicted thanks to the Taylor series log(1+Z) ≈ Z-Z 2 /2: Its value is the number of leading zeroes (if FirstBit=0) or leading ones (if FirstBit=1) of Y 0 . We actually perform the shift before computing the Taylor series, to maximize the accuracy of this computation. Two shifts are actually needed, one on Z and one on Z 2 , as seen on Figure 1.

-Or, E = 0 but Y 0 is not sufficiently close to 1
and we have to use a range reduction, knowing that it will cancel at most w F /2 significant bits.

The simpler is to use the same LZC/barrel shifter than in the first case, which now has to shift by w E + w F /2. Figure 1 depicts the corresponding architecture. A detailed error analysis will be given in V-D.

V. Multiplicative range reduction

This section describes the work performed by the box labelled Range Reduction on Figure 1. Consider the centered mantissa Y 0 . If FirstBit= 0, Y 0 has the form 1.0xx...xx, and its logarithm will eventually be positive. If FirstBit= 1, Y 0 has the form 0.11xx...xx (where the first 1 is the former implicit 1 of the floatingpoint format), and its logarithm will be negative.

A. First iteration

Let A 0 be the first α 0 bits of the mantissa (including FirstBit), α 0 > 4. A 0 is used to index a table which gives an approximation Y -1 0 of the reciprocal of Y 0 on α 0 + 1 bits. Noting Y 0 the mantissa where the bits lower than those of A 0 are zeroed (Y 0 = 1.0a...a or Y 0 = 0.11a...a, depending on FirstBit), the first reciprocal table stores

Y -1 0 = 2 -α0+1 2 α0-1 Y 0 (4) Theorem V.1. If α 0 > 4, for all Y 0 ∈ [0.75, 1.5), Y 0 Y -1 0 = 1 + Z 1 with 0 ≤ Z 1 < 2.5 • 2 -α0
2 This may seem a lot of shifts to the reader. Consider that there are barrel shifters in all the floating-point adders: In a software logarithm, there are many more hidden shifts, and one pays for them even when one doesn't use them.

Proof: The truncation of Y

0 to Y 0 means Y 0 = Y 0 (1- ǫ) with 0 ≤ ǫ < 2 -α0 . Indeed, if FirstBit = 1, Y 0 = 0.11a 2 ...a α0 .
The absolute truncation error is 0 ≤ δ < 2 -α0-1 , and as Y 0 ≥ 1/2, the corresponding relative error is bounded by

0 ≤ ǫ < 2 -α0 . If FirstBit = 0, Y 0 = 1.0a 2 ...a α0 , therefore 0 ≤ δ < 2 -α0 , Y 0 ≥ 1, hence 0 ≤ ǫ < 2 -α0
as in the other case.

It follows that 1

Y 0 = 1 Y 0 (1 + ǫ + ǫ 2 + ...) = 1 Y 0 (1 + ǫ ′) with 0 ≤ ǫ ′ < 2 -α0 + 2 -α0-4 since α 0 > 4.
As Y 0 ∈ [0.75, 1.5), it follows that 0 < 1

Y 0 < 2 and 0 < 2 α0-1 Y 0 < 2 α0 .
The ceil operation on this result yields a second error:

2 α0-1 Y 0 = 2 α0-1 Y 0 (1 + ǫ ′)(1 + ǫ ′′) with 0 < ǫ ′′ < 2 -α0 . Therefore we have Y -1 0 = 1 Y0 (1 + ǫ ′ + ǫ ′′ + ǫ ′ ǫ ′′) = 1 Y0 (1 + Z 1) and Y 0 Y -1 0 = 1 + Z 1 .
The bounds on Z 1 are deduced from those on ǫ ′ and ǫ ′′ :

0 ≤ Z 1 < 2.5 • 2 -α0 .
This theorem means that the multiplication Y 0 × Y -1 0 will set to zero the bits of weight 2 -1 to 2 -α0+2 of its result.

Actually, in the case α 0 = 5, one more bit is set to zero: The max error of the ⌈⌉ operation -which is independent of the other bits of Y 0 -happens to be small enough to ensure

Y 0 × Y -1 0 ∈ [1, 1 + 2 -4
]. This bit of luck is best proven by enumeration. It doesn't seem to occur for larger values of α 0 .

We now define

Y 1 = 1 + Z 1 = Y 0 × Y -1 0 and 0 ≤ Z 1 < 2 -p1
, with p 1 = α 0 -2 in the general case, and p 1 = 4 in the case α 0 = 5. The multiplication

Y 0 × Y -1 0 is a rectangular one, since Y -1 0 is a α 0 + 1-bit number.
A 0 is also used to index a first logarithm table, that contains an accurate approximation L 0 of log(Y -1 0) (the exact precision will be given later). This provides the first step of an iteration similar to (1):

log(Y 0) = log(Y 0 × Y -1 0) -log(Y -1 0) = log(1 + Z 1) -log(Y -1 0) = log(Y 1) -L 0 (5)
and the problem is reduced to evaluating log(Y 1).

B. Following iterations

The following iterations will similarly build a sequence Y i = 1+Z i with 0 ≤ Z i < 2 -pi . However, these iterations will differ in several ways.

• The sign of log(Y 0) is given by that of L 0 , which is itself entirely defined by FirstBit. However, log(1 + Z 1) will be non-negative, as will be all the L0/1C × log 2

× ± 1 Z 2 LZC/<< E X F X E 0 M 1 + w F 1 sign E E 0 |E| w E w E + 1 2 + w F w F w E + w F + g 1 (F X ≥ 1.5) w F + g w F /2 + g 3w F /2 + g E R F R S R w E + 3w F /2 + g w F + g < 0? Z l Z l + L i -p l

Fig. 1. Overview of the logarithm

following Z i . This choice, motivated by simplicity, is discussed further in V-F.

• The following iterations no longer need a reciprocal table : A first-order Taylor approximation will be enough.

Let us now describe in detail the general iteration, starting from i = 1. We assume we have Y i = 1 + Z i with 0 ≤ Z i < 2 -pi , and we want to build Z with 0 ≤ Z i+1 < 2 -pi+1 (see Figure 2 for an illustration).

Let A i be the subword composed of the α i leading bits of Z i (bits of absolute weight 2 -pi-1 to 2 -pi-αi , see Figure 2). An approximation of the reciprocal of

Y i = 1 + Z i is defined by Y -1 i = 1 -A i + E i . (6)
The term E i is a single bit that will be defined below to ensure that the following holds: Theorem V.2. For all i ≥ 1, we have

0 ≤ Y i+1 = 1+Z i+1 = Y -1 i ×Y i < 1+2 -pi-αi+1 (7)
or, equivalently,

p i+1 = p i + α i -1. (8)
In other words, using α i bits in the computation (and, below, as inputs to the tables), we are able to zero out α i -1 bits of our argument. This is slightly better than Wong and Goto [START_REF] Wong | Fast hardware-based algorithms for elementary function computations using rectangular multipliers[END_REF] where 8 bits are zeroed using 10 bits. Approaches inspired by division algorithms [START_REF] Ercegovac | Radix-16 evaluation of certain elementary functions[END_REF] are able to zero α i bits (one radix-2 αi digit), but at a higher hardware cost due to the need for signed digit arithmetic.

Let us now try to prove theorem V.2 and define the value of E i in the process.

Proof: As previously, let us call Y i = 1 + A i the approximation to Y i obtained by considering only the α i bits of Y i of binary weights -p i -1 to -p i -α i . This 0 0 1 1 0 0 0 0 0 0 1 0

1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 A i B i Z i+1 α i p i Z i Y i = Y i+1 = p i+1
Y i = Y i -δ with 0 ≤ δ < 2 -pi-αi . As Y i ≥ 1, this absolute error also corresponds to a relative error Y i = Y i (1 -ǫ) with 0 ≤ ǫ < 2 -pi-αi .
It follows that 1

Y i = 1 Y i (1 + ǫ + ǫ 2 + ...) = 1 Y i (1 + ǫ ′) with 0 ≤ ǫ ′ < 2 -pi-αi + 2 -2pi-2αi+1 .
Besides, the Taylor formula gives 1

Y i = 1 -A i + A 2 i - A 3 i ... = 1 -A i + δ ′ with 0 ≤ δ ′ < 2 -2pi . If we use as approximation to 1/Y i the value 1 -A i = 1 Y i -δ ′ ,
the product by Y i could become negative. This is why we add the term

E i = max(δ ′) = 2 -2pi . Now we have 1 -A i + E i = 1 Y i + δ ′′ with 0 < δ ′′ ≥ 2 -2pi . Finally, 1-A i +E i = 1 Yi (1+ǫ ′ +Y i δ ′′) = 1 Yi (1+Z i+1) with 0 ≤ Z i+1 < 2 -pi-αi + 2 -2pi-2αi+1 + 2 -2pi (1 + 2 -pi).
To ensure that 0 ≤ Z i+1 < 2 -pi-αi+1 it is enough that p i > α i . As a balanced architecture requires all the α i to be roughly equal, we will have p i ≈ i × α i , so this will be true from the third iteration (i = 2) onwards.

For the second iteration (i = 1), we add a small subtlety. The first iteration has defined p 1 = α 0 -2. To have p 2 = p 1 + α 1 -1, we would need need to take α 1 = p 1 -1 (at most), thus α 1 = α 0 -3. The resulting architecture would not be balanced, in the sense that the first iteration requires 8 times more table storage than the following one, use larger multipliers, etc.

Our current implementation therefore uses for this iteration a value of E i that is dependent on the value of A i : E i = 2 -2pi when the most significand bit of A i is equal to 1, and E i = 2 -2pi-1 when this bit is equal to 0. This ensures 0 ≤ δ ′′ < 2 -2pi-1 in both cases. We may now use

α 1 = p 1 = α 0 -2 and still ensure p 2 = p 1 + α 1 -1.
The cost is only one additional multiplexer in the computation of Z i+1 .

To compute Z i+1 , a full multiplication is not needed.

Noting Z i = A i + B i (B i consists of the lower bits of Z i), we have 1 + Z i+1 = Y -1 i × (1 + Z i) = (1 -A i + E i) × (1 + A i + B i), hence Z i+1 = B i -A i Z i + E i (1 + Z i) (9)
Here the multiplication by E i is just a shift, and the only real multiplication is the product A i Z i : The full computation of (9) amounts to the equivalent of a rectangular multiplication of (α i + 2) × s i bits. Here s i is the size of Z i , which will vary between w F and 3w F /2 (see below). Finally, at each iteration, A i is also used to index a logarithm table L i (see Figure 3). All these logarithms have to be added, which can be done in parallel to the reduction of 1 + Z i . The output of the Range Reduction box is the sum of Z max and this sum of tabulated logarithms, so it only remains to subtract the second-order term (Figure 1).

C. Iteration termination and error analysis

An important remark is that theorem V.2 still holds if Z i+1 (computed as per (9)) is truncated. Indeed, in the architecture, we will need to truncate it to limit the size of the computation datapath. Let us now address this question.

Let us denote l the index of the last iteration. We will stop the iteration as soon as Z i is small enough for a second-order Taylor formula to provide sufficient accuracy. This also defines the threshold on leading zeroes/ones at which we choose to use the path computing Z 0 -Z 2 0 /2 directly.

In log(1

+ Z i) ≈ Z i -Z i 2 /2 + Z i 3 /3, with Z i < 2 -pi
, the third-order term is smaller than 2 -3pi-1 . We therefore stop the iteration at p l such that p l ≥ ⌈ w F 2 ⌉. This sets the target absolute precision of the whole datapath to p l + w F + g ≈ ⌈3w F /2⌉ + g.

The computation defined by (9) increases the size of Z i . We will therefore truncate Z i as soon as its LSB becomes smaller than this target precision. Figure 3 give an instance of this datapath in double precision.

Note that the architecture counts as many rectangular multipliers as there are stages, and may therefore be fully pipelined. Reusing one single multiplier would be possible [START_REF] Wong | Fast hardware-based algorithms for elementary function computations using rectangular multipliers[END_REF], and would save a significant amount of hardware, but a high-throughput architecture is preferable in the FPGA context.

D. Error analysis

We compute E log 2 with w E + w F + g 1 precision, and the sum E log 2 + log Y 0 cancels at most one bit, so g 1 = 2 ensures faithful accuracy of the sum, assuming faithful accuracy of log Y 0 .

In general, the computation of log Y 0 is much too accurate: As illustrated by Figure 3, the most significant bit of the result is that of the first non-zero L i (L 0 in the example), and we have computed almost w F /2 bits of extra accuracy. The errors due to the rounding of the L i and the truncation of the intermediate computations are absorbed by this extra accuracy. However, two specific worst-case situation require more attention.

• When Z 0 < 2 -p l , we compute log Y 0 directly as Z 0 -Z 2 0 /2, and this is the sole source of error. The shift that brings the leading one of |Z 0 | in position p l ensures that this computation is done on w F + g bits, hence faithful rounding.

• The real worst case are when the exponent is zero and the higher bits of the mantissa are Y 0 = 1 -2 -p l +1 : In this case we use the range reduction, knowing that it will cancel p l -1 bits of L 0 one one side, and accumulate rounding errors on the other side. We have l stages, each contributing at most 3 ulps of error: To compute (9), we first truncate Z i to minimize multiplier size, then we truncate the product, and also truncate E i (1 + Z i). Therefore we need g = ⌈log 2 (3l)⌉ guard bits. For instance, for doubleprecision, we need g = 4 or g = 5, depending on the choice of α i discussed below in VI-A.

E. Remarks on the L i tables

When one looks at the L i tables, one notices that some of their bits are constantly zeroes: Indeed they hold L i ≈ -log(1 -(A i -E i)) which can for larger i be approximated by a Taylor series. We chose to leave the task of optimizing out these zeroes to the logic synthesizer. A natural idea would also be to store only log(1 -(A i -ǫ i)) + (A i -ǫ i), and construct L i out of this value by subtracting (A i -ǫ i). However, the delay and LUT usage of this reconstruction would in fact be higher than that of storing the corresponding bits. With the FPGA target, the simpler approach is also the better.

There is another implementation trick. As L i ≈ -log(1 -(A i -E i)) with E i smaller than the unit in the last place of (A i), all the entries are positive except the one for A i = 0. To avoid having to manage signs in the reconstruction (which has a slight overhead) we add a small offset (equal to E i) to all the table values except L 0 , and we remove from L 0 the sum of all these offsets.

F. Discussion on the choice of unsigned arithmetic

Another option would be to keep all the Z i as signed, two's compliment numbers. We have explored this option on paper, but it has not been fully implemented. This option is summarized as follows:

• All the Z i are now signed, and bounded by |Z i | < 2 -pi , which defines p i ;

• Take as A i the rounded value of Z i to the bit of weight 2 -pi-αi , instead of the truncated value;

• Take as approximation to the inverse

Y -1 i = 1 -A i (no correcting term E i) • The reduction iteration is simplified to Z i+1 = B i - A i Z i .
We are then able to ensure p i+1 = p i + α i instead of p i+1 = p i + α i -1 (the proof is too similar to the previous one to deserve detailing -it also requires special care for the first and second iterations), so it seems we gain one bit per iteration. However we now also need one more bit to address the tables (the sign bit of A i), so the required table size will be equivalent. The only real gain is to save the addition of the wide term E i (1 + Z i), at the expense of a much smaller addition to obtain A i by rounding, both being in the critical path.

We also now have to manage signed L i , which means sign-extended additions. This should not impact neither area nor performance.

All things considered, we expect a small reduction in area and no improvement in performance or cycle count. This is currently not validated by an implementation.

VI. Implementation trade-offs

The FloPoCo implementation of the presented algorithms inputs w E (the exponent size), w F (the mantissa fraction size), and a third integer parameter introduced below, builds the architecture, and output synthesisable VHDL. It uses several sub-operators: pipelined integer multipliers, an integer squarer [START_REF] De Dinechin | Large multipliers with fewer DSP blocks[END_REF], a constant multiplier using the KCM algorithm [START_REF] Chapman | Fast integer multipliers fit in FPGAs (EDN 1993 design idea winner)[END_REF], leading zero/one counters and shifters.

The exponent size has little impact on the performance and area of the design, and we will also not discuss it further.

Let us now discuss how to chose the value of the α i parameters.

A. Setting the parameters

As suggested in Section III, sensible choices of α i are either m (the LUT input size) if we want a LUT-only implementation (this was the focus of [START_REF] Detrey | Return of the hardware floating-point elementary function[END_REF]), or, if we want to use embedded RAM and multiplier blocks, the maximum size that will balance their consumption. We want the user in control of this aspect. Any other choices could lead to a different area/speed tradeoff.

The current interface lets the user chose a maximum table input size α max (an integer between 5 and 16). The default is α max = 12.

The implementation first tries to perform a range reduction using the parameters α i and p i set as follows (see V-B):

α 0 = α max p 1 = α max -2 α 1 = α max -2 p 2 = p 1 + α 1 -1 i = 2 while 2p i ≤ w F α i = α max p i+1 = p i + α i -1
However, when exiting the while loop, we have usually reduced more than strictly needed. It then makes sense to try to reduce the α i : removing 1 to some α i means halving the corresponding L i table. The sum of the α i is too large by p l -⌊w F /2⌋-1 bits. This is the total number of bits that may be removed from the α i . The heuristic is as follows. First, all the α i are decremented by the same value, then we decrease in priority the earlier ones, as they have more output bits and this will entail a larger memory saving.

For instance, for double precision,

• starting with α max = 12, we end up with (α 0 , α 1 , α 2) = [START_REF]Table-driven implementation of the logarithm function in IEEE floating-point arithmetic[END_REF][START_REF]Fast evaluation of the elementary functions in single precision[END_REF][START_REF]Table-driven implementation of the logarithm function in IEEE floating-point arithmetic[END_REF].

• Starting with α max = 10, we need one more range reduction step and end up with

(α 0 , α 1 , α 2 , α 3) = (9, 7, 8, 8).

B. Implementation trade-offs

We may now discuss the main implementation trade-off, taking double-precision as an example. Table I provides the corresponding synthesis results for a Virtex4 (xc4vlx15-12-sf363 using ISE 10.2). The target frequency is set to 200 MHz. The purpose of this table is not to expose all the possible trade-offs, but to convince the reader that the presented implementation is generic enough to be sucessfully targeted to different contexts.

The first line of this table (α max = 12) represents the soft spot for a high-performance architecture with balanced consumption of embedded memories and multipliers. The second line (α max = 10) requires overall less memory: although it needs one more table, each table is much smaller (our tables are expressed as truth tables, and we leave to the synthesis tool, here Xilinx ISE 10, the low-level decomposition into embedded memory blocks). On the other hand it needs more embedded multipliers, because it performs more iterations. The third line uses α max = 6, a value that matches well a LUT-only implementation. We give two results: one where only the tables are implemented as LUTs, and one where the multiplications are also implemented as LUTs 3 is the same as for α max = 12: Although there are more iterations, the multiplications are smaller, and FloPoCo doesn't pipeline them as deeply as in the first case. As the frequency is lower, this shows that the performance model of the pipeline, internally built by the operator [START_REF] De Dinechin | Generating highperformance custom floating-point pipelines[END_REF], lacks accuracy in this case. Hopefully, it will be refined, so that all frequencies come closer to the target frequency of 200MHz (probably at the expense of a longer latency).

It should be noted that the Virtex DSP blocks are always under-utilized in this architecture. Indeed, we need rectangular multipliers where one dimension is (more or less) α i , and the other dimension is of the order of w F , here more than 50. Such multipliers are built by assembling the 17x17-bit multipliers of the DSP48 blocks, but each DSP block is actually used as a α i x17-bit multiplier. Some Altera FPGA offer the opportunity to partition a 18x18-bit multiplier into two 9x18 ones, and this would ensure nearoptimal utilization in the α max = 10 case.

All these results should improve as the FloPoCo framework is refined. In particular, we are currently refining the delay models and the associated generation of subcomponents such as multipliers and shifters. The objective of FloPoCo is also to be portable to any FPGA family, which makes this task very complex. These issues are out of scope of this article, although the logarithm generator makes a good case study.

C. Varying the precision

If we consider α max fixed, the cost of the operator is roughly quadratic with w F : The number of iterations is proportional to w F , and each iteration consists of a table look-up and a rectangular multiplication with one dimension constant (roughly α max) and one dimension roughly proportional to w F . This is illustrated by the synthesis results given in Table II (for a Virtex4 xc4vlx15-12-sf363 using ISE 10.2).

This table also provides results for the previous state of the art: FPLibrary operators 4 , which are pipelined versions of those published in [START_REF] Detrey | Parameterized floating-point logarithm and exponential functions for FPGAs[END_REF]. It uses a table-based method which grows exponentially with w F , and will not be relevant beyond single precision. However, it compares well to the iterative algorithm for single precision, and

D. Comparing with processor performance

In this section, we target our operator at the largest computation-oriented Xilinx FPGA currently commercially available, the Virtex-5 XC5VSX240T. Synthesis results for this target are summarized in Table III. The corresponding operator runs at 208MHz and thus computes 200 MFPLog/s. This table also shows that we can theoretically pack 16 such operators on a single FPGA circuit, for a theoretical peak performance of 3.2 GFPLog/s. By comparison, the best reported double-precision logarithm implementation on a processor are due to Intel on the Itanium-2 (36 cycles/FPLog at 2GHz [START_REF] Cornea | Scientific Computing on Itanium R -based Systems[END_REF]), exploiting the dual, extended precision fused multiply-and-add of this architecture. On IA32 processors, carefully optimized implementations still require more than 100 cycles at 4GHz [START_REF] Anderson | Accurate math functions on the Intel IA-32 architecture: A performance-driven design[END_REF]. We conclude that the peak single-core performance of a contemporary processor is about 50 MFPLog/s.

If we now exploit parallelism, a four-core processor can offer the throughput of one of our logarithm operators, about 200 MFPLog/s. However, we can also pack 16 logarithm operators on a single FPGA chip. The peak MFPLog/s performance of a high-end FPGA is thus 16 times that of a high-end processor. This is much better than the balanced MFLops comparison one obtains when considering only floating-point additions and multiplications [START_REF] Strenski | Revaluating FPGAs for 64-bit floating-point calculations[END_REF].

VII. Multiplicative range reduction versus polynomial approximation

As (to our knowledge) all libm implementations use polynomial approximation to compute logarithms, we cannot escape a comparison with this solution. The initial range-reduction is identical, so we get back to the problem of computing log Y 0 with Y 0 ∈ [0.75, 1.5].

Let us first make some remarks on the evaluation of a polynomial of degree d for an argument z such that |z| < 2 -k . The Horner scheme allows us to evaluate this polynomial in d additions and d multiplications:

p(z) = a 0 + z × (a 1 + z × (a 2 + ... + a d × z))...)
The Horner scheme is very stable if |z| < 2 -k : any error performed at one step is multiplied by z, in other terms scaled down. An often overlooked consequence of this is that a 1 need not be as accurate as a 0 , a 2 need not be as accurate as a 1 , etc. As a numerical rule of thumb (valid if the derivatives of the function are reasonably bounded, which is true for the logarithm around 1), if we want p bits of accuracy, we need a 0 accurate at least to p bits, but a 1 may be accurate to p-k bits, a 2 to p-2k bits, etc. Beyond this rule of thumb, the Sollya polynomial approximation tool 5 optimises the actual sizes of the coefficients [START_REF] Brisebarre | Efficient polynomial L ∞ -approximations[END_REF].

What's more, it is possible to truncate also z in the earlier steps of the computation, and still get an accurate result at the end. Numerically, z need not be more accurate than the term it is multiplied to, which is of the order of the corresponding coefficient a i . Such truncation is never performed in software as it would entail more work, not less, but it can save hardware when targeting an FPGA.

Let us now describe an architecture parameterized by k. The interval [0.75, 1.5] is split into 2 k sub-intervals. On each sub-interval, the logarithm is approximated by a polynomial of degree d, chosen as the smallest degree such that the absolute error of the polynomial approximation is smaller than 2 -3w F /2 (we still have to manage the vanishing logarithm around 1). We therefore have 2 k polynomials with d + 1 coefficients each. These coefficient are read from a table indexedby the k leading bits of Y 0 , and z is composed of the remaining bits (a w E -k-bit number), considered as an offset with respect to the center of the interval, so that |z| < 2 k .

It is easy to obtain the degree corresponding to a given k, using Maple [START_REF] Muller | Elementary Functions, Algorithms and Implementation[END_REF] or the guessdegree function of the Sollya tool. In turn, the previous rule of thumb allows us to evaluate the coefficient size, hence the memory requirements, and the multiplier sizes, hence the embedded multiplier requirements. This is only an evaluation, and for the purpose of comparison we keep it optimistic with respect to an actual implementation.

For double-precision (w F = 53, 3w F /2 = 80), we get for instance the following implementation point: for k = 13, we need a polynomial of degree 5. The coefficient sizes are 80, 67, 54, 41, 28, and 15 bits. The total memory needed is 2 13 × (80 + 67 + 54 + 41 + 28 + 15). Dividing this amount by the size (18Kbits) of an embedded memory block of the Virtex-4 family (RAMB16) we conclude that we need 127 RAMB16. The multiplications are of sizes 40x67, 40x54, 40x41, 40x28 and 40x15. We also divide them by the size of a Virtex-4 DSP48 embedded multiplier (18x18 bits), and we get a DSP48 consumption of 9+9+9+6+3= 36 DSP48 blocks. Comparing these two numbers with Table I, the iterative range reduction seems definitely more attractive.

The problem is that we have suggested to compute with 80-bit absolute accuracy. But this accuracy is only needed when E = 0 and Y 0 is very close to 1, because the logarithm vanishes and we need w F bits of the result. In this region, evaluating the polynomial in floating-point would make much more sense, but be much more expensive.

A trick will save us the price of a full floating-point computation. Let us rewrite the logarithm as log(1 + z) = z × log(1 + z) z .

We may now evaluate log(1+z) z as a piecewise polynomial in fixed point, to 2 -w F only. Then the multiplication by z = Y 0 -1 is computed exactly -using a square multiplier of (w F + g) × (w F + g) bits -and the product needs to be normalized. The position of the leading bit is almost known already thanks to the L0/1C box of figure 1. The cost of this normalization is thus similar to the cost of the normalizer in the iterative approach.

If we now evaluate the cost of approximating log(1+z) z as a piecewise polynomial, we get, for double-precision, the implementation points reported in Table IV (which includes, between parentheses, the cost of the final multiplication by z).

Again, the comparison with Table I is favourable to the iterative range reduction. The margin is smaller, but still sufficient to convince us that even a finely optimized polynomial implementation will yield no clear improvement.

Note that many software implementations use a tablebased range reduction [START_REF]Table-driven implementation of the logarithm function in IEEE floating-point arithmetic[END_REF] very similar to our first iteration (typically with α 0 = 8) before approximating log(1 + Z 1) as a polynomial of small degree. This is yet another intermediate option, but there is no reason to believe it will bring in any decisive improvement.

VIII. Conclusion and future work

By retargeting an old algorithm to the specific finegrained structure of FPGAs, this work shows that elementary functions, up to double precision and beyond, can be implemented in a small fraction of current FPGAs. The resulting operators have low resource usage and high troughput. Their raw performance surpasses the equivalent processor implementations. They have a long latency compared to adders or multipliers, but this latency is still much shorter than that of their software equivalent. They are flexible, exposing a trade-off between memory resources and computing resources.

FPGAs, when used as co-processors, are often limited by their input/output bandwidth to the processor or memory. From an application point of view, the availability of compact elementary functions for the FPGA, bringing elementary functions on-board, will also help conserve this bandwidth.

The roadmap ahead is that of a complete libm, with exponential, [START_REF] Detrey | Return of the hardware floating-point elementary function[END_REF], sine and cosine [START_REF] Detrey | Floating-point trigonometric functions for FPGAs[END_REF], [START_REF] Wong | Fast hardware-based algorithms for elementary function computations using rectangular multipliers[END_REF] and their inverses, arctan x y [START_REF] Wong | Fast hardware-based algorithms for elementary function computations using rectangular multipliers[END_REF], and others. In the shorter term, the presented implementation will be optimized further, in particular to increase its working frequency. It should also be optimized for lower frequencies, regrouping iterations to reduce the cycle count and the pipeline overhead in this case.

As the most complex operator written in FloPoCo so far, the logarithm will be a precious case study driving improvements to the framework itself [START_REF] De Dinechin | Generating highperformance custom floating-point pipelines[END_REF]. It actually contributed to motivate it.

But this logarithm implementation is also a flagship of the FloPoCo project, supporting the thesis [START_REF] De Dinechin | When FPGAs are better at floating-point than microprocessors[END_REF] that FPGAs can offer tremendous floating-point performance thanks to non-standard operators.

Fig. 2 .

 2 Fig. 2. Notations for one step of range reduction

Fig. 3 .

 3 Fig. 3. Double-precision computation of log(Y 0) for Y 0 = 0.95. Parameters are α 0 = 5 and α i = 4 for i > 0

 . In this case the cycle count

	version	α i	resources	performance
	αmax = 12	11, 9, 11	1780 slices, 14 DSP48, 21 RAMB16 29 cycles @ 176 MHz
	αmax = 10	9, 7, 8, 8	1870 slices, 18 DSP48, 10 RAMB16 35 cycles @ 176 MHz
	αmax = 6	6, 4, 6, 6, 6, 6	2849 slices, 25 DSP48	29 cycles @ 131 MHz
			4012 slices	29 cycles @ 148 MHz

TABLE I . Some implementation trade-offs for double-precision logarithm.

 I

TABLE III . A double-precision logarithm on the largest Virtex-5 chip is

 III definitely more attractive for lower precisions. The conclusion is that eventually, the table-based algorithm should be ported to FloPoCo, too.

TABLE II . Maximum frequency operators for several precisions on Virtex-4

 II

	k	d	coefficients	multipliers
	10	4	54, 44, 34, 24, 14	44x44, 34x34, 24x24, 14x14
			10 RAMB16	(9 +) 9 + 4 + 4 +1 = 27 DSP48
	12	3	54, 42, 30, 18	42x42, 30x30, 18x18
			32 RAMB16	(9 +) 9 + 4 +1 = 23 DSP48

TABLE IV . Estimated cost of double-precision polynomial-based logarithm implementations on Virtex-4

 IV

• Either E = 0, and there will be no catastrophic cancellation in (3). We may compute E log 2 as a fixed-point value of size w F + w E + g, where g is a number of guard bit to be determined. This fixed-point sum will be added to a fixed-point value of log(Y 0) on w F + 1 + g bits, then a combined leading-zerocounter and barrel-shifter will determine the exponent

In both cases, this requires editing the generated VHDL to add attributes, or changing default synthesis options in the ISE tool

http://sollya.gforge.inria.fr/