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Abstract

The advent of reconfigurable co-processors based on

field-programmable gate arrays has renewed interest in

hardware architectures for elementary functions. This ar-

ticle studies operators for the logarithm function in the

context of this target technology. An old algorithm is

generalized, fine-tuned and implemented as an architecture

generator, exposing a wide range of trade-offs between

resources (memory, logic and multipliers) and performance

(frequency and pipeline depth). A single pipelined operator

computes five times more double-precision floating-point

logarithms per second than a high-end processor core,

while consuming only a few percents of the resources of

a high-end FPGA. This generator is available under the

LGPL as part of the FloPoCo project.

Keywords Floating-point elementary functions, hard-

ware operator, FPGA, logarithm.

I. Introduction

Virtually all the computing systems that support some

form of floating-point (FP) also include a floating-point

mathematical library (libm) providing elementary func-

tions such as exponential, logarithm, trigonometric and

hyperbolic functions, etc. Modern systems usually comply

with the IEEE-754 standard for floating-point arithmetic

[1] and offer hardware for basic arithmetic operations in

single- and double-precision formats (32 bits and 64 bits

respectively). Most libms implement a superset of the

functions mandated by language standards such as C99

[2].

A. Hardware versus software for the
floating-point elementary functions

The question wether elementary functions should be im-

plemented in hardware was controversial in the beginning

of the PC era [3]. The literature indeed offers many articles

describing hardware implementations of FP elementary

functions [4], [5], [6], [7], [8], [9]. In the early 80s, Intel

chose to include elementary functions to their first math

co-processor, the 8087.

However, for cost reasons, in this co-processor, as well

as in its successors by Intel, Cyrix or AMD, these functions

did not use the hardware algorithm mentioned above, but

were microcoded, thus slow. Indeed, software libms were

soon written which were more accurate and faster than the

hardware version. For instance, as memory went larger and

cheaper, one could speed-up the computation using large

tables (several kilobytes) of precomputed values [10], [11].

It would not be economical to cast such tables to silicon

in a processor: The average computation will benefit much

more from the corresponding silicon if it is dedicated

to more cache, or more floating-point units for example.

Besides, the hardware functions lacked the flexibility of

the software ones, which could be optimized in context by

advanced compilers.

These observations contributed to the move from CISC

to RISC (Complex to Reduced Instruction Sets Computers)

in the 90s. Intel themselves now also develop software

libms for their processors that include a hardware libm

[12]. Research on hardware elementary functions has since

then mostly focused on approximation methods for fixed-

point evaluation of functions [13], [14], [15], [16].

B. Floating-point and reconfigurable com-
puting

Lately, a new kind of programmable circuit has been

gaining momentum: The FPGA, for Field-Programmable



Gate Array. Designed to emulate arbitrary logic circuits,

an FPGA consists of a very large number of configurable

elementary blocks, linked by a configurable network of

wires. A circuit emulated on an FPGA is typically one or-

der of magnitude slower than the same circuit implemented

directly in silicon. For instance, a floating-point adder

or multiplier never works at more than 400MHz in this

technology. However, FPGAs are reconfigurable and there-

fore offer much greater flexibility than classical ASICs,

including microprocessors. In particular, an operator will

consume silicon only if it is useful to the computation

under consideration. With this new technological target,

the subject of hardware implementation of elementary

functions becomes a hot topic again.

FPGAs have been used as co-processors to accelerate

specific tasks, typically those for which the hardware avail-

able in processors is poorly suited. This, of course, does

not seem the case of floating-point computing. Indeed, mi-

croprocessors are built with highly optimized floating-point

units. However, FPGA capacity has increased steadily with

the progress of VLSI integration, and it is now possible to

pack many FP operators on one chip: Massive parallelism

allows one to recover the performance overhead [17],

[18], and accelerated FP computing has been reported in

single precision [19], then in double-precision [20], [21].

Mainstream computer vendors such as Silicon Graphics

and Cray now build computers with FPGA accelerators. A

challenge is to use them as floating-point accelerators.

The FloPoCo project1 helps addressing this chal-

lenge by providing high-quality floating-point operators.

FloPoCo is an open-source operator generator written in

C++. It provides the basic operations of an FPU, but

actually focuses on operators not available on processors,

for which there is greater acceleration potential [22]. The

logarithm is an example of such an operator.

The present article is supported by the FPLog operator

of FloPoCo, implemented as the FPLog.cpp class in the

FloPoCo distribution version 1.15.1.

C. Related works, contributions and out-
line

Previous work has shown that a single instance of an

exponential or logarithm operator can provide ten times the

performance of the processor, while consuming a small

fraction of the resources of current FPGAs [23]. The

reason is that such an operator may perform most of

the computation in optimized fixed point with specifically

crafted datapaths, and is highly pipelined. However, the

architecture of [23] uses a generic table-based approach

[16] which doesn’t scale well beyond single precision: Its

size grows exponentially.

1http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

In this article, we demonstrate a more algorithmic

approach which works well beyond double precision. It is a

synthesis of much older works, including the Cordic/BKM

family of algorithms [24], the radix-16 multiplicative nor-

malization of [4], Chen’s algorithm [5], an ad-hoc algo-

rithm by Wong and Goto [8], and probably many others

[24]. All these approaches boil down to the same basic

properties of the logarithm function, and are synthesized

in Section II. The specificity of the FPGA hardware target

are summarized in Section III, and the algorithm and its

implementation are detailed in Section IV. Section VI

provides performance results from actual synthesis, and

discusses them. Section VII compares these results with

estimations for a finely tuned polynomial approximation

method.

This article builds upon an article published in the

Arith 17 conference [25]. Focusing only on the logarithm

function, it improves [25] in several respects. All the proofs

that were omitted in [25] for lack of space are given.

This algorithm is generalized to make use of features that

have become commonplace in high-performance FPGAs:

embedded multipliers and memory blocks. A trade-off is

exposed and discussed in this context, supported by experi-

mental results. The choice of the algorithm itself is justified

by comparing it with a more classical polynomial approx-

imation approach. Some of the sub-components, such as

the constant multiplications, have been optimized. Last but

not least, the operators discussed here are pipelined.

II. Iterative reciprocal, logarithm, and expo-

nential

Wether we want to compute the logarithm or the expo-

nential, the idea common to most previous methods may

be summarized by the following iteration. Let (xi) and (li)
be two given sequences of reals such that ∀i, xi = eli . It

is possible to define two new sequences (x′

i) and (l′i) as

follows: l′0 and x′

0 are such that x′

0 = el
′

0 , and

∀i > 0

{
l′i+1 = li + l′i
x′

i+1 = xi × x′

i
(1)

This iteration maintains the invariant x′

i = el
′

i , since

x′

0 = el
′

0 and xi+1 = xix
′

i = eliel
′

i = eli+l′
i = el

′

i+1 .

Therefore, if x is given and one wants to compute l =
log(x), one may define x′

0 = x, then read from a table

a sequence (li, xi) such that the corresponding sequence

(l′i, x
′

i) converges to (0, 1). The iteration on x′

i is computed

for increasing i, until for some n we have x′

n sufficiently

close to 1 so that one may compute its logarithm using

the Taylor series l′i ≈ x′

n − 1 − (x′

n − 1)2/2, or even

l′i ≈ x′

n − 1. This allows one to compute log(x) = l = l′0
by the recurrence (1) on l′i for i decreasing from n to 0.



Now if l is given and one wants to compute its expo-

nential, one will start with (l′0, x
′

0) = (0, 1). The tabulated

sequence (li, xi) is now chosen such that the corresponding

sequence (l′i, x
′

i) converges to (l, x = el).

There are also variants where x′

i converges from x to

1, meaning that (1) computes the reciprocal of x as the

product of the xi. Several of the aforementioned papers

explicitely propose to use the same hardware to compute

the reciprocal [4], [8], [24]. This makes sense in the context

of a processor, but in the context of reconfigurable comput-

ing, it seems more pertinent to implement an independent,

high-quality divider when needed, and only then.

The various methods presented in the literature vary in

the way they unroll this iteration, in what they store in

tables, and in how they chose the value of xi to minimize

the cost of multiplications. Comparatively, the additions in

the l′i iteration are less expensive.

Let us now study the optimization of such an iteration

for an FPGA platform. We need addition, multiplication,

and tables of precomputed values.

III. A primer on arithmetic for FPGAs

We assume the reader has basic notions about the

hardware complexity of arithmetic blocks such as adders,

multipliers, and tables in VLSI technology (otherwise

see textbooks like [26]), and we highlight here the main

differences when implementing a hardware algorithm on

an FPGA.

• An FPGA consists of tens of thousand of elementary

blocks, laid out as a rectangular grid. This grid also

includes routing channels which may be configured

to connect blocks together almost arbitrarily.

• The basic universal logic element in most current

FPGAs is the m-input Look-Up Table (LUT), a small

2m-bit memory whose content may be set at configu-

ration time. Thus, any m-input boolean function can

be implemented by filling a LUT with the appropriate

value. More complex functions can be built by wiring

LUTs together. FPGAs have long used m = 4, but

some recent circuits use m = 6.

For our purpose, as we will use tables of precomputed

values, it means that m-input, n-output tables make

the optimal use of the basic structure of the FPGA.

A table with m+1 inputs is twice as large as a table

with m inputs, and a table with m − 1 inputs is not

smaller.

• Recent FPGAs also include flexible embedded mem-

ory block with a capacity of a few tens of Kbits. For

instance, the Virtex-4 memory blocks are configurable

from 16K addresses of 1 bit, to 512 addresses of 36

bits. For tables of precomputed values, the choice of

using this resources or not may be dictated by the

requirements of the rest of the application.

• As addition is an ubiquitous operation, the elementary

blocks also contain additional circuitry dedicated to

addition. As a consequence, there is no need for fast

adders or carry-save representation of intermediate

results: The plain carry-propagate adder is smaller,

and faster for all but very large additions.

• Recent computing-oriented FPGAs include a large

number of small multipliers or multiply-accumulators,

typically for 18 bits times 18 bits.

IV. Overview of the logarithm operator

The logarithm is only defined for positive floating-

point numbers, and does not overflow nor underflow.

Exceptional cases are therefore trivial to handle and will

not be mentioned further. A positive input X is written

in floating-point format X = 2EX−E0 × 1.FX , where EX

is the exponent stored on wE bits, FX is the significand

stored on wF bits, and E0 is the exponent bias (as per the

IEEE-754 standard).

Now we obviously have log(X) = log(1.FX)+(EX −
E0) · log 2. However, if we use this formula, for a small ǫ
the logarithm of 1− ǫ will be computed as log(2− 2ǫ)−
log(2), entailing a catastrophic cancellation. To avoid this

case, the following error-free transformation is applied to

the input:
{

Y0 = 1.FX , E = EX − E0 when 1.FX ∈ [1, 1.5),
Y0 = 1.FX

2 , E = EX − E0 + 1 when 1.FX ∈ [1.5, 2).
(2)

And the logarithm is evaluated as follows:

log(X) = log(Y0) + E · log 2 with Y0 ∈ [0.75, 1.5).
(3)

Then log(Y0) will be in the interval (−0.288, 0.406).
This interval is not very well centered around 0, and other

authors use in (2) a case boundary closer to
√
2, as a

well-centered interval allows for a better approximation

by a polynomial. We prefer that the comparison resumes

to testing the first bit of F , called FirstBit in the

following (see Figure 1).

Now consider equation (3), and let us discuss the

normalization of the result: We need to know which will be

the exponent of log(X). There are two mutually exclusive

cases.

• Either E 6= 0, and there will be no catastrophic

cancellation in (3). We may compute E log 2 as a

fixed-point value of size wF + wE + g, where g is a

number of guard bit to be determined. This fixed-point

sum will be added to a fixed-point value of log(Y0)
on wF + 1 + g bits, then a combined leading-zero-

counter and barrel-shifter will determine the exponent



and mantissa of the result. In this case the shift will

be at most of wE bits.

• Or, E = 0. In this case the logarithm of Y0 may

vanish, which means that a shift to the left will be

needed to normalize the result2.

– If Y0 is close enough to 1, specifically if Y0 =
1 + Z0 with |Z0| < 2−wF /2, the left shift

may be predicted thanks to the Taylor series

log(1+Z) ≈ Z−Z2/2: Its value is the number of

leading zeroes (if FirstBit=0) or leading ones

(if FirstBit=1) of Y0. We actually perform

the shift before computing the Taylor series, to

maximize the accuracy of this computation. Two

shifts are actually needed, one on Z and one on

Z2, as seen on Figure 1.

– Or, E = 0 but Y0 is not sufficiently close to 1
and we have to use a range reduction, knowing

that it will cancel at most wF /2 significant bits.

The simpler is to use the same LZC/barrel shifter

than in the first case, which now has to shift by

wE + wF /2.

Figure 1 depicts the corresponding architecture. A detailed

error analysis will be given in V-D.

V. Multiplicative range reduction

This section describes the work performed by the box

labelled Range Reduction on Figure 1. Consider the cen-

tered mantissa Y0. If FirstBit= 0, Y0 has the form

1.0xx...xx, and its logarithm will eventually be posi-

tive. If FirstBit= 1, Y0 has the form 0.11xx...xx

(where the first 1 is the former implicit 1 of the floating-

point format), and its logarithm will be negative.

A. First iteration

Let A0 be the first α0 bits of the mantissa (including

FirstBit), α0 > 4. A0 is used to index a table

which gives an approximation Ỹ −1
0 of the reciprocal of

Y0 on α0 + 1 bits. Noting Ỹ0 the mantissa where the

bits lower than those of A0 are zeroed (Ỹ0 = 1.0a...a
or Ỹ0 = 0.11a...a, depending on FirstBit), the first

reciprocal table stores

Ỹ −1
0 = 2−α0+1

⌈
2α0−1

Ỹ0

⌉
(4)

Theorem V.1. If α0 > 4, for all Y0 ∈ [0.75, 1.5),

Y0Ỹ
−1
0 = 1 + Z1 with 0 ≤ Z1 < 2.5 · 2−α0

2This may seem a lot of shifts to the reader. Consider that there are
barrel shifters in all the floating-point adders: In a software logarithm,
there are many more hidden shifts, and one pays for them even when
one doesn’t use them.

Proof: The truncation of Y0 to Ỹ0 means Ỹ0 = Y0(1−
ǫ) with 0 ≤ ǫ < 2−α0 . Indeed, if FirstBit = 1, Ỹ0 =
0.11a2...aα0

. The absolute truncation error is 0 ≤ δ <
2−α0−1, and as Y0 ≥ 1/2, the corresponding relative error

is bounded by 0 ≤ ǫ < 2−α0 . If FirstBit = 0, Ỹ0 =
1.0a2...aα0

, therefore 0 ≤ δ < 2−α0 , Y0 ≥ 1, hence 0 ≤
ǫ < 2−α0 as in the other case.

It follows that
1

Ỹ0

=
1

Y0
(1 + ǫ+ ǫ2 + ...) =

1

Y0
(1 + ǫ′)

with 0 ≤ ǫ′ < 2−α0 + 2−α0−4 since α0 > 4.

As Y0 ∈ [0.75, 1.5), it follows that 0 <
1

Ỹ0

< 2 and

0 <
2α0−1

Ỹ0

< 2α0 . The ceil operation on this result yields

a second error:

⌈
2α0−1

Ỹ0

⌉
=

2α0−1

Y0
(1 + ǫ′)(1 + ǫ′′) with

0 < ǫ′′ < 2−α0 .

Therefore we have Ỹ −1
0 = 1

Y0
(1 + ǫ′ + ǫ′′ + ǫ′ǫ′′) =

1
Y0
(1 + Z1) and Y0Ỹ

−1
0 = 1 + Z1. The bounds on Z1 are

deduced from those on ǫ′ and ǫ′′: 0 ≤ Z1 < 2.5 · 2−α0 .

This theorem means that the multiplication Y0 × Ỹ −1
0

will set to zero the bits of weight 2−1 to 2−α0+2 of its

result.

Actually, in the case α0 = 5, one more bit is set to zero:

The max error of the ⌈⌉ operation – which is independent

of the other bits of Y0 – happens to be small enough to

ensure Y0 × Ỹ −1
0 ∈ [1, 1 + 2−4]. This bit of luck is best

proven by enumeration. It doesn’t seem to occur for larger

values of α0.

We now define Y1 = 1 + Z1 = Y0 × Ỹ −1
0 and

0 ≤ Z1 < 2−p1 , with p1 = α0 − 2 in the general

case, and p1 = 4 in the case α0 = 5. The multiplication

Y0 × Ỹ −1
0 is a rectangular one, since Ỹ −1

0 is a α0 + 1-bit

number. A0 is also used to index a first logarithm table,

that contains an accurate approximation L0 of log(Ỹ −1
0 )

(the exact precision will be given later). This provides the

first step of an iteration similar to (1):

log(Y0) = log(Y0 × Ỹ −1
0 )− log(Ỹ −1

0 )

= log(1 + Z1)− log(Ỹ −1
0 )

= log(Y1)− L0

(5)

and the problem is reduced to evaluating log(Y1).

B. Following iterations

The following iterations will similarly build a sequence

Yi = 1+Zi with 0 ≤ Zi < 2−pi . However, these iterations

will differ in several ways.

• The sign of log(Y0) is given by that of L0, which

is itself entirely defined by FirstBit. However,

log(1 + Z1) will be non-negative, as will be all the
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Fig. 1. Overview of the logarithm

following Zi. This choice, motivated by simplicity, is

discussed further in V-F.

• The following iterations no longer need a reciprocal

table: A first-order Taylor approximation will be

enough.

Let us now describe in detail the general iteration,

starting from i = 1. We assume we have Yi = 1 + Zi

with 0 ≤ Zi < 2−pi , and we want to build Zi+1 with

0 ≤ Zi+1 < 2−pi+1 (see Figure 2 for an illustration).

Let Ai be the subword composed of the αi leading

bits of Zi (bits of absolute weight 2−pi−1 to 2−pi−αi , see

Figure 2). An approximation of the reciprocal of Yi =
1 + Zi is defined by

Ỹ −1
i = 1−Ai + Ei. (6)

The term Ei is a single bit that will be defined below

to ensure that the following holds:

Theorem V.2. For all i ≥ 1, we have

0 ≤ Yi+1 = 1+Zi+1 = Ỹ −1
i ×Yi < 1+2−pi−αi+1 (7)

or, equivalently,

pi+1 = pi + αi − 1. (8)

In other words, using αi bits in the computation (and,

below, as inputs to the tables), we are able to zero out

αi − 1 bits of our argument. This is slightly better than

Wong and Goto [8] where 8 bits are zeroed using 10 bits.

Approaches inspired by division algorithms [4] are able to

zero αi bits (one radix-2αi digit), but at a higher hardware

cost due to the need for signed digit arithmetic.

Let us now try to prove theorem V.2 and define the

value of Ei in the process.

Proof: As previously, let us call Ỹi = 1 + Ai the

approximation to Yi obtained by considering only the αi

bits of Yi of binary weights −pi − 1 to −pi − αi. This
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Fig. 2. Notations for one step of range reduction

truncation of Yi corresponds to an absolute error Ỹi =
Yi − δ with 0 ≤ δ < 2−pi−αi . As Yi ≥ 1, this absolute

error also corresponds to a relative error Ỹi = Yi(1 − ǫ)
with 0 ≤ ǫ < 2−pi−αi .

It follows that
1

Ỹi

=
1

Yi
(1 + ǫ+ ǫ2 + ...) =

1

Yi
(1 + ǫ′)

with 0 ≤ ǫ′ < 2−pi−αi + 2−2pi−2αi+1.

Besides, the Taylor formula gives
1

Ỹi

= 1−Ai +A2
i −

A3
i ... = 1 − Ai + δ′ with 0 ≤ δ′ < 2−2pi . If we use

as approximation to 1/Yi the value 1 − Ai =
1

Ỹi

− δ′,

the product by Yi could become negative. This is why

we add the term Ei = max(δ′) = 2−2pi . Now we have

1−Ai + Ei =
1

Ỹi

+ δ′′ with 0 < δ′′ ≥ 2−2pi .

Finally, 1−Ai+Ei =
1
Yi

(1+ǫ′+Yiδ
′′) = 1

Yi

(1+Zi+1)

with 0 ≤ Zi+1 < 2−pi−αi + 2−2pi−2αi+1 + 2−2pi(1 +
2−pi).

To ensure that 0 ≤ Zi+1 < 2−pi−αi+1 it is enough that

pi > αi. As a balanced architecture requires all the αi to

be roughly equal, we will have pi ≈ i × αi, so this will

be true from the third iteration (i = 2) onwards.

For the second iteration (i = 1), we add a small subtlety.

The first iteration has defined p1 = α0 − 2. To have p2 =
p1 + α1 − 1, we would need need to take α1 = p1 − 1
(at most), thus α1 = α0 − 3. The resulting architecture

would not be balanced, in the sense that the first iteration

requires 8 times more table storage than the following one,

use larger multipliers, etc.

Our current implementation therefore uses for this iter-

ation a value of Ei that is dependent on the value of Ai:

Ei = 2−2pi when the most significand bit of Ai is equal

to 1, and Ei = 2−2pi−1 when this bit is equal to 0. This

ensures 0 ≤ δ′′ < 2−2pi−1 in both cases. We may now use

α1 = p1 = α0 − 2 and still ensure p2 = p1 + α1 − 1. The

cost is only one additional multiplexer in the computation

of Zi+1.

To compute Zi+1, a full multiplication is not needed.

Noting Zi = Ai+Bi (Bi consists of the lower bits of Zi),

we have 1 + Zi+1 = Ỹ −1
i × (1 + Zi) = (1− Ai + Ei)×

(1 +Ai +Bi), hence

Zi+1 = Bi −AiZi + Ei(1 + Zi) (9)

Here the multiplication by Ei is just a shift, and the only

real multiplication is the product AiZi: The full compu-

tation of (9) amounts to the equivalent of a rectangular

multiplication of (αi + 2)× si bits. Here si is the size of

Zi, which will vary between wF and 3wF /2 (see below).

Finally, at each iteration, Ai is also used to index a

logarithm table Li (see Figure 3). All these logarithms have

to be added, which can be done in parallel to the reduction

of 1 + Zi. The output of the Range Reduction box is the

sum of Zmax and this sum of tabulated logarithms, so it

only remains to subtract the second-order term (Figure 1).

C. Iteration termination and error analysis

An important remark is that theorem V.2 still holds if

Zi+1 (computed as per (9)) is truncated. Indeed, in the

architecture, we will need to truncate it to limit the size of

the computation datapath. Let us now address this question.

Let us denote l the index of the last iteration. We will

stop the iteration as soon as Zi is small enough for a

second-order Taylor formula to provide sufficient accuracy.

This also defines the threshold on leading zeroes/ones at

which we choose to use the path computing Z0 − Z2
0/2

directly.

In log(1+Zi) ≈ Zi −Zi
2/2+Zi

3/3, with Zi < 2−pi ,

the third-order term is smaller than 2−3pi−1. We therefore

stop the iteration at pl such that pl ≥ ⌈wF

2 ⌉. This sets

the target absolute precision of the whole datapath to pl+
wF + g ≈ ⌈3wF /2⌉+ g.

The computation defined by (9) increases the size of Zi.

We will therefore truncate Zi as soon as its LSB becomes

smaller than this target precision. Figure 3 give an instance

of this datapath in double precision.

Note that the architecture counts as many rectangular

multipliers as there are stages, and may therefore be fully

pipelined. Reusing one single multiplier would be possible

[8], and would save a significant amount of hardware, but

a high-throughput architecture is preferable in the FPGA

context.



Z0 : 0.11110011001100110011001100110011001100110011001100110

Z1 : 100111111111111111111111111111111111111111111111110010

Z2 : 110101111111111111111111111111111111111111111110010011100000

Z3 : 011101010111001111111111111111111111111111110010100001010011000100000

Z4 : 011010110100000010010001101111111111111110010100001101000111101111001

Z5 : 100110011111101101010110011100110111011000100001101011010010000110

Z6 : 100011111101100000100101001011111000000110100010101100101111110

Z7 : 101111101100000011100110000011101011101110100111010100110001

Z8 : 101101100000011100100000110100000000101001011011011000110

Z9 : 011100000011100100000100101000101000000000100100111101

Z9Sq : 0011000100110001111100001

LogY9 : 011100000011100100000100101000001111011010010101011100

L0 : -0.001011011110000110100101000101011100101011010110100101110011011111001001001100110

L1 : 100000100000101011101100010011110011101000100010001000111000000010111001111000

L2 : 110010001001110011100011100000100101011001101101111001011000011100100110100

L3 : 011010000000010101001000010110111001000110100100010010111100000000111110

L4 : 010110000000000001111001000000001101110111010111000111101110000101000

L5 : 100010000000000000100100001000000000110011001011010110100110111001

L6 : 011110000000000000000011100001000000000000100011001010000000000

L7 : 101010000000000000000000110111001000000000000001100000011110

L8 : 101010000000000000000000000110111001000000000000000001100

LogY0 : -0.000110100100001100011101010110111100110000011001001111100100101101101001100010101

Fig. 3. Double-precision computation of log(Y0) for Y0 = 0.95. Parameters are α0 = 5 and αi = 4 for

i > 0

D. Error analysis

We compute E log 2 with wE +wF + g1 precision, and

the sum E log 2 + log Y0 cancels at most one bit, so g1 =
2 ensures faithful accuracy of the sum, assuming faithful

accuracy of log Y0.

In general, the computation of log Y0 is much too

accurate: As illustrated by Figure 3, the most significant

bit of the result is that of the first non-zero Li (L0 in

the example), and we have computed almost wF /2 bits of

extra accuracy. The errors due to the rounding of the Li

and the truncation of the intermediate computations are

absorbed by this extra accuracy. However, two specific

worst-case situation require more attention.

• When Z0 < 2−pl , we compute log Y0 directly as

Z0 − Z2
0/2, and this is the sole source of error. The

shift that brings the leading one of |Z0| in position pl
ensures that this computation is done on wF + g bits,

hence faithful rounding.

• The real worst case are when the exponent is zero and

the higher bits of the mantissa are Y0 = 1− 2−pl+1:

In this case we use the range reduction, knowing that

it will cancel pl − 1 bits of L0 one one side, and

accumulate rounding errors on the other side. We

have l stages, each contributing at most 3 ulps of

error: To compute (9), we first truncate Zi to min-

imize multiplier size, then we truncate the product,

and also truncate Ei(1 + Zi). Therefore we need

g = ⌈log2(3l)⌉ guard bits. For instance, for double-

precision, we need g = 4 or g = 5, depending on the

choice of αi discussed below in VI-A.

E. Remarks on the Li tables

When one looks at the Li tables, one notices that

some of their bits are constantly zeroes: Indeed they

hold Li ≈ − log(1 − (Ai − Ei)) which can for larger i
be approximated by a Taylor series. We chose to leave

the task of optimizing out these zeroes to the logic

synthesizer. A natural idea would also be to store only

log(1 − (Ai − ǫi)) + (Ai − ǫi), and construct Li out of

this value by subtracting (Ai−ǫi). However, the delay and

LUT usage of this reconstruction would in fact be higher

than that of storing the corresponding bits. With the FPGA

target, the simpler approach is also the better.

There is another implementation trick. As Li ≈
− log(1 − (Ai − Ei)) with Ei smaller than the unit in

the last place of (Ai), all the entries are positive except

the one for Ai = 0. To avoid having to manage signs in

the reconstruction (which has a slight overhead) we add

a small offset (equal to Ei) to all the table values except

L0, and we remove from L0 the sum of all these offsets.

F. Discussion on the choice of unsigned
arithmetic

Another option would be to keep all the Zi as signed,

two’s compliment numbers. We have explored this option

on paper, but it has not been fully implemented. This

option is summarized as follows:

• All the Zi are now signed, and bounded by |Zi| <
2−pi , which defines pi;

• Take as Ai the rounded value of Zi to the bit of weight

2−pi−αi , instead of the truncated value;



• Take as approximation to the inverse Ỹ −1
i = 1 − Ai

(no correcting term Ei)

• The reduction iteration is simplified to Zi+1 = Bi −
AiZi.

We are then able to ensure pi+1 = pi + αi instead of

pi+1 = pi+αi−1 (the proof is too similar to the previous

one to deserve detailing – it also requires special care for

the first and second iterations), so it seems we gain one

bit per iteration. However we now also need one more bit

to address the tables (the sign bit of Ai), so the required

table size will be equivalent. The only real gain is to save

the addition of the wide term Ei(1 + Zi), at the expense

of a much smaller addition to obtain Ai by rounding, both

being in the critical path.

We also now have to manage signed Li, which means

sign-extended additions. This should not impact neither

area nor performance.

All things considered, we expect a small reduction in

area and no improvement in performance or cycle count.

This is currently not validated by an implementation.

VI. Implementation trade-offs

The FloPoCo implementation of the presented algo-

rithms inputs wE (the exponent size), wF (the mantissa

fraction size), and a third integer parameter introduced

below, builds the architecture, and output synthesisable

VHDL. It uses several sub-operators: pipelined integer

multipliers, an integer squarer [27], a constant multiplier

using the KCM algorithm [28], leading zero/one counters

and shifters.

The exponent size has little impact on the performance

and area of the design, and we will also not discuss it

further.

Let us now discuss how to chose the value of the αi

parameters.

A. Setting the parameters

As suggested in Section III, sensible choices of αi are

either m (the LUT input size) if we want a LUT-only

implementation (this was the focus of [25]), or, if we

want to use embedded RAM and multiplier blocks, the

maximum size that will balance their consumption. We

want the user in control of this aspect. Any other choices

could lead to a different area/speed tradeoff.

The current interface lets the user chose a maximum

table input size αmax (an integer between 5 and 16). The

default is αmax = 12.

The implementation first tries to perform a range re-

duction using the parameters αi and pi set as follows (see

V-B):

α0 = αmax

p1 = αmax − 2
α1 = αmax − 2
p2 = p1 + α1 − 1

i = 2
while 2pi ≤ wF

αi = αmax

pi+1 = pi + αi − 1

However, when exiting the while loop, we have usually

reduced more than strictly needed. It then makes sense to

try to reduce the αi: removing 1 to some αi means halving

the corresponding Li table. The sum of the αi is too large

by pl−⌊wF /2⌋−1 bits. This is the total number of bits that

may be removed from the αi. The heuristic is as follows.

First, all the αi are decremented by the same value, then

we decrease in priority the earlier ones, as they have more

output bits and this will entail a larger memory saving.

For instance, for double precision,

• starting with αmax = 12, we end up with

(α0, α1, α2) = (11, 9, 11).
• Starting with αmax = 10, we need one more range

reduction step and end up with (α0, α1, α2, α3) =
(9, 7, 8, 8).

B. Implementation trade-offs

We may now discuss the main implementation trade-off,

taking double-precision as an example. Table I provides the

corresponding synthesis results for a Virtex4 (xc4vlx15-

12-sf363 using ISE 10.2). The target frequency is set to

200 MHz. The purpose of this table is not to expose all

the possible trade-offs, but to convince the reader that

the presented implementation is generic enough to be

sucessfully targeted to different contexts.

The first line of this table (αmax = 12) represents the

soft spot for a high-performance architecture with balanced

consumption of embedded memories and multipliers. The

second line (αmax = 10) requires overall less memory: al-

though it needs one more table, each table is much smaller

(our tables are expressed as truth tables, and we leave

to the synthesis tool, here Xilinx ISE 10, the low-level

decomposition into embedded memory blocks). On the

other hand it needs more embedded multipliers, because it

performs more iterations. The third line uses αmax = 6, a

value that matches well a LUT-only implementation. We

give two results: one where only the tables are imple-

mented as LUTs, and one where the multiplications are

also implemented as LUTs3. In this case the cycle count

3In both cases, this requires editing the generated VHDL to add
attributes, or changing default synthesis options in the ISE tool



version αi resources performance

αmax = 12 11, 9, 11 1780 slices, 14 DSP48, 21 RAMB16 29 cycles @ 176 MHz

αmax = 10 9, 7, 8, 8 1870 slices, 18 DSP48, 10 RAMB16 35 cycles @ 176 MHz

αmax = 6 6, 4, 6, 6, 6, 6 2849 slices, 25 DSP48 29 cycles @ 131 MHz

4012 slices 29 cycles @ 148 MHz

TABLE I. Some implementation trade-offs for double-precision logarithm.

is the same as for αmax = 12: Although there are more

iterations, the multiplications are smaller, and FloPoCo

doesn’t pipeline them as deeply as in the first case. As

the frequency is lower, this shows that the performance

model of the pipeline, internally built by the operator [29],

lacks accuracy in this case. Hopefully, it will be refined,

so that all frequencies come closer to the target frequency

of 200MHz (probably at the expense of a longer latency).

It should be noted that the Virtex DSP blocks are

always under-utilized in this architecture. Indeed, we need

rectangular multipliers where one dimension is (more or

less) αi, and the other dimension is of the order of wF ,

here more than 50. Such multipliers are built by assembling

the 17x17-bit multipliers of the DSP48 blocks, but each

DSP block is actually used as a αix17-bit multiplier. Some

Altera FPGA offer the opportunity to partition a 18x18-bit

multiplier into two 9x18 ones, and this would ensure near-

optimal utilization in the αmax = 10 case.

All these results should improve as the FloPoCo frame-

work is refined. In particular, we are currently refining

the delay models and the associated generation of sub-

components such as multipliers and shifters. The objective

of FloPoCo is also to be portable to any FPGA family,

which makes this task very complex. These issues are out

of scope of this article, although the logarithm generator

makes a good case study.

C. Varying the precision

If we consider αmax fixed, the cost of the operator

is roughly quadratic with wF : The number of iterations

is proportional to wF , and each iteration consists of a

table look-up and a rectangular multiplication with one

dimension constant (roughly αmax) and one dimension

roughly proportional to wF . This is illustrated by the

synthesis results given in Table II (for a Virtex4 xc4vlx15-

12-sf363 using ISE 10.2).

This table also provides results for the previous state of

the art: FPLibrary operators4, which are pipelined versions

of those published in [23]. It uses a table-based method

which grows exponentially with wF , and will not be

relevant beyond single precision. However, it compares

well to the iterative algorithm for single precision, and

4http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/

Slices DSP48E RAM blocks

available 37,440 1,056 1,032

used 2,247 14 12

percent 6% 1.3% 1.16%

TABLE III. A double-precision logarithm on

the largest Virtex-5 chip

is definitely more attractive for lower precisions. The

conclusion is that eventually, the table-based algorithm

should be ported to FloPoCo, too.

D. Comparing with processor performance

In this section, we target our operator at the largest

computation-oriented Xilinx FPGA currently commer-

cially available, the Virtex-5 XC5VSX240T. Synthesis

results for this target are summarized in Table III. The

corresponding operator runs at 208MHz and thus computes

200 MFPLog/s. This table also shows that we can theo-

retically pack 16 such operators on a single FPGA circuit,

for a theoretical peak performance of 3.2 GFPLog/s.

By comparison, the best reported double-precision log-

arithm implementation on a processor are due to Intel on

the Itanium-2 (36 cycles/FPLog at 2GHz [30]), exploiting

the dual, extended precision fused multiply-and-add of

this architecture. On IA32 processors, carefully optimized

implementations still require more than 100 cycles at 4GHz

[12]. We conclude that the peak single-core performance

of a contemporary processor is about 50 MFPLog/s.

If we now exploit parallelism, a four-core processor can

offer the throughput of one of our logarithm operators,

about 200 MFPLog/s. However, we can also pack 16

logarithm operators on a single FPGA chip. The peak

MFPLog/s performance of a high-end FPGA is thus 16

times that of a high-end processor. This is much better

than the balanced MFLops comparison one obtains when

considering only floating-point additions and multiplica-

tions [18].



(wE , wF ) resources performance

(15,63) (double-extended) 2365 slices, 20 DSP48, 17 RAMB16 33 cycles @ 130 MHz

(11,52) (double precision) 1780 slices, 14 DSP48, 21 RAMB16 29 cycles @ 176 MHz

(9, 38) 1194 slices, 11 DSP48, 6 RAMB16 24 cycles @ 208 MHz

(8, 23) (single precision) 601 slices, 5 DSP48, 3 RAMB16 17 cycles @ 250 MHz

(8, 23) FPLibrary 1073 slices, 0 DSP48, 3 RAMB16 11 cycles @ 201 MHz

(7, 16) 415 slices, 4 DSP48, 2 RAMB16 16 cycles @ 263 MHz

(7,16) FPLibrary 621 slices, 1 DSP48, 0 RAMB16 9 cycles @ 200 MHz

TABLE II. Maximum frequency operators for several precisions on Virtex-4

k d coefficients multipliers

10 4 54, 44, 34, 24, 14 44x44, 34x34, 24x24, 14x14

10 RAMB16 (9 +) 9 + 4 + 4 +1 = 27 DSP48

12 3 54, 42, 30, 18 42x42, 30x30, 18x18

32 RAMB16 (9 +) 9 + 4 +1 = 23 DSP48

TABLE IV. Estimated cost of double-precision polynomial-based logarithm implementations on

Virtex-4

VII. Multiplicative range reduction versus

polynomial approximation

As (to our knowledge) all libm implementations use

polynomial approximation to compute logarithms, we can-

not escape a comparison with this solution. The initial

range-reduction is identical, so we get back to the problem

of computing log Y0 with Y0 ∈ [0.75, 1.5].

Let us first make some remarks on the evaluation of

a polynomial of degree d for an argument z such that

|z| < 2−k. The Horner scheme allows us to evaluate this

polynomial in d additions and d multiplications:

p(z) = a0 + z × (a1 + z × (a2 + ...+ ad × z))...)

The Horner scheme is very stable if |z| < 2−k: any

error performed at one step is multiplied by z, in other

terms scaled down. An often overlooked consequence of

this is that a1 need not be as accurate as a0, a2 need not be

as accurate as a1, etc. As a numerical rule of thumb (valid

if the derivatives of the function are reasonably bounded,

which is true for the logarithm around 1), if we want p bits

of accuracy, we need a0 accurate at least to p bits, but a1
may be accurate to p−k bits, a2 to p−2k bits, etc. Beyond

this rule of thumb, the Sollya polynomial approximation

tool5 optimises the actual sizes of the coefficients [31].

What’s more, it is possible to truncate also z in the

earlier steps of the computation, and still get an accurate

result at the end. Numerically, z need not be more accurate

than the term it is multiplied to, which is of the order of

the corresponding coefficient ai. Such truncation is never

5http://sollya.gforge.inria.fr/

performed in software as it would entail more work, not

less, but it can save hardware when targeting an FPGA.

Let us now describe an architecture parameterized by

k. The interval [0.75, 1.5] is split into 2k sub-intervals.

On each sub-interval, the logarithm is approximated by a

polynomial of degree d, chosen as the smallest degree such

that the absolute error of the polynomial approximation

is smaller than 2−3wF /2 (we still have to manage the

vanishing logarithm around 1). We therefore have 2k

polynomials with d+1 coefficients each. These coefficient

are read from a table indexedby the k leading bits of Y0,

and z is composed of the remaining bits (a wE − k-bit

number), considered as an offset with respect to the center

of the interval, so that |z| < 2k.

It is easy to obtain the degree corresponding to a given

k, using Maple [24] or the guessdegree function of

the Sollya tool. In turn, the previous rule of thumb allows

us to evaluate the coefficient size, hence the memory

requirements, and the multiplier sizes, hence the embedded

multiplier requirements. This is only an evaluation, and

for the purpose of comparison we keep it optimistic with

respect to an actual implementation.

For double-precision (wF = 53, 3wF /2 = 80), we

get for instance the following implementation point: for

k = 13, we need a polynomial of degree 5. The coefficient

sizes are 80, 67, 54, 41, 28, and 15 bits. The total memory

needed is 213 × (80 + 67 + 54 + 41 + 28 + 15). Dividing

this amount by the size (18Kbits) of an embedded memory

block of the Virtex-4 family (RAMB16) we conclude

that we need 127 RAMB16. The multiplications are of

sizes 40x67, 40x54, 40x41, 40x28 and 40x15. We also

divide them by the size of a Virtex-4 DSP48 embedded

multiplier (18x18 bits), and we get a DSP48 consumption

of 9+9+9+6+3= 36 DSP48 blocks. Comparing these two



numbers with Table I, the iterative range reduction seems

definitely more attractive.

The problem is that we have suggested to compute with

80-bit absolute accuracy. But this accuracy is only needed

when E = 0 and Y0 is very close to 1, because the loga-

rithm vanishes and we need wF bits of the result. In this

region, evaluating the polynomial in floating-point would

make much more sense, but be much more expensive.

A trick will save us the price of a full floating-point

computation. Let us rewrite the logarithm as

log(1 + z) = z × log(1 + z)

z
.

We may now evaluate
log(1+z)

z as a piecewise polynomial

in fixed point, to 2−wF only. Then the multiplication by

z = Y0−1 is computed exactly – using a square multiplier

of (wF + g) × (wF + g) bits – and the product needs to

be normalized. The position of the leading bit is almost

known already thanks to the L0/1C box of figure 1. The

cost of this normalization is thus similar to the cost of the

normalizer in the iterative approach.

If we now evaluate the cost of approximating
log(1+z)

z
as a piecewise polynomial, we get, for double-precision,

the implementation points reported in Table IV (which

includes, between parentheses, the cost of the final multi-

plication by z).

Again, the comparison with Table I is favourable to the

iterative range reduction. The margin is smaller, but still

sufficient to convince us that even a finely optimized poly-

nomial implementation will yield no clear improvement.

Note that many software implementations use a table-

based range reduction [11] very similar to our first iteration

(typically with α0 = 8) before approximating log(1+Z1)
as a polynomial of small degree. This is yet another

intermediate option, but there is no reason to believe it

will bring in any decisive improvement.

VIII. Conclusion and future work

By retargeting an old algorithm to the specific fine-

grained structure of FPGAs, this work shows that ele-

mentary functions, up to double precision and beyond,

can be implemented in a small fraction of current FPGAs.

The resulting operators have low resource usage and high

troughput. Their raw performance surpasses the equivalent

processor implementations. They have a long latency com-

pared to adders or multipliers, but this latency is still much

shorter than that of their software equivalent. They are

flexible, exposing a trade-off between memory resources

and computing resources.

FPGAs, when used as co-processors, are often limited

by their input/output bandwidth to the processor or mem-

ory. From an application point of view, the availability

of compact elementary functions for the FPGA, bringing

elementary functions on-board, will also help conserve this

bandwidth.

The roadmap ahead is that of a complete libm, with

exponential, [25], sine and cosine [32], [8] and their

inverses, arctan x
y [8], and others.

In the shorter term, the presented implementation will

be optimized further, in particular to increase its working

frequency. It should also be optimized for lower frequen-

cies, regrouping iterations to reduce the cycle count and

the pipeline overhead in this case.

As the most complex operator written in FloPoCo so

far, the logarithm will be a precious case study driving

improvements to the framework itself [29]. It actually

contributed to motivate it.

But this logarithm implementation is also a flagship of

the FloPoCo project, supporting the thesis [22] that FPGAs

can offer tremendous floating-point performance thanks to

non-standard operators.
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