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Abstract—This article presents a floating-point exponential
operator generator targeting recent FPGAs with embedded
memories and DSP blocks. A single-precision operator consumes
just one DSP block, 18Kbits of dual-port memory, and 392
slices on Virtex-4. For larger precisions, a generic approach
based on polynomial approximation is used and proves more
resource-efficient than the literature. For instance a double-
precision operator consumes 5 BlockRAM and 12 DSP48 blocks
on Virtex-5, or 10 M9k and 22 18x18 multipliers on Stratix III.
This approach is flexible, scales well beyond double-precision,
and enables frequencies close to the FPGA’s nominal frequency.
All the proposed architectures are last-bit accurate for all
the floating-point range. They are available in the open-source
FloPoCo framework.

I. INTRODUCTION

The exponential function is, after the basic arithmetic oper-

ators, one of the next most useful building block for floating-

point applications. On FPGAs, it has been used for scientific

or financial Monte-Carlo simulations, in phylogenetic tree

reconstruction, in quantum chemistry, in the implementation

of the power function among others.

A. Previous works

Several publications have described exponential implemen-

tations. We list them here, and will discuss in more details the

choices they made and their performance impact in IV-B.

For single precision, Doss and Riley [1] adapted to FPGAs

a software algorithm based on floating-point operations. How-

ever, building a specific fixed-point architecture [2] proved

more efficient. This architecture was later improved [3]. How-

ever, the table-based method used there doesn’t scale up to

double-precision.

As FPGAs are increasingly being used for double-precision

applications, iterative architectures that scale better [4], [5], [6]

were adapted for FPGAs [7]. This architecture was designed

with 5-input LUTs in mind but is actually poorly suited to

DSP-enabled FPGAs, as IV-B will show. It was parameterized

in precision, but to our knowledge was never pipelined.

Another pipelined, but double-precision only implementation

was proposed in [8], [9].

In [10], a CORDIC-based approach using several paral-

lel CORDIC cores was proposed. It has a complex control

including input and output FIFOs. Being radix-2 CORDIC,

it computes one digit per iteration and thus has a very

long latency. Moreover, it is based on a floating-point adder,

whereas CORDIC is inherently a fixed-point computation, so

there is probably room for improvement there.

From a user point of view, the current state of the art is

probably the floating-point exponential function ALTFP_EXP

provided with Altera Megawizard since 2008 [11]. This im-

plementation is parameterized in exponent and mantissa size

and fully pipelined. Being included in the standard Quartus

releases, it is widely available, although only for Altera targets.

Many other publications have addressed the computation of

exponential function in ASIC, e.g. [4], [5], [12], [6]. However,

it is difficult to evaluate the relevance of such works on

FPGAs.

B. Contributions

In the present article, we propose yet another architecture

for the floating-point evaluation of the exponential function,

and its implementation in the open-source FloPoCo project 1.

Its main specificities are the following.

• The algorithm, based on the usual multiplicative range

reduction followed by a polynomial approximation, was

chosen with DSP blocks and embedded memories in

mind, so it makes efficient use of these resources. For

instance, the single-precision version now involves just

one 17x17-bit multiplier and 18Kbits of dual-port mem-

ory, and runs at 375MHz on a Virtex-4, which is a large

improvement in all respects over the state of the art [3].

• As we believe that floating-point on FPGA should exploit

the flexibility of the target and therefore not be limited

to IEEE single and double precision, the algorithm and

implementation we propose are fully parametrized in

exponent and mantissa size.

• They scale to double-precision and beyond.

• They are last-bit accurate for all supported mantissa sizes.

• The implementation is pipelined to a user-specified fre-

quency. We are able to generate operators working at a

frequency close to the DSP nominal frequency, as well

as lower-frequency, lower-resource versions.

• The architectures are generated as synthesizable VHDL

portable to any FPGA target, although many target-

specific optimizations are

• A novel variation of the KCM algorithm, for multiplying

a real constant by an integer, is used.

1http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/



• All this work is freely available from the FloPoCo

project. It is included in the open SVN repository https:

//gforge.inria.fr/scm/?group id=1030 and will be part of

releases 2.1.0 and following. It comes with the test vector

generation framework of FloPoCo [13]. In general, it

should be immediately usable for application designers.

Section II gives an overview of the algorithm used, and

Section III discusses some implementation choices. Section IV

compares implementation results with the literature, and Sec-

tion V concludes.

II. A FLOATING-POINT EXPONENTIAL

A. Special cases

The exponential function is defined on the set of the

reals. However, in this floating-point format, the smallest

representable number is

Xmin = 2−E0

and the largest is

Xmax = (2− 2−wF ) · 22
wE−1−E0 .

The exponential should return zero for all input numbers

smaller than log(Xmin), and should return +∞ for all input

numbers larger than log(Xmax). In single precision (wE = 8,

wF = 23), for instance, the set of input numbers on which a

computation will take place is [−88.03, 88.72]. In addition, as

for small x we have ex ≈ 1 + x+ x2/2, the exponential will

return 1 for all the input x smaller that 2−wF−2.

One consequence is that the testing of a FP exponential

operator should concentrate on numbers between Xmin and

Xmax. In FloPoCo, we use random inputs with exponents

restricted to [−wF − 3, wE − 2].

B. Algorithm overview

The algorithm used is similar to what is typically used in

software [14].
The main idea is to reduce X to an integer E and a fixed-

point number Y such as

X ≈ E · log 2 + Y (1)

where Y ∈ [−1/2, 1/2) – we will see below in II-C how to

ensure this enclosure.

We may then use the identity

eX ≈ 2E · eY (2)

so E is almost the exponent of the result. Indeed, if Y ∈
[−1/2, 1/2), we have eY ∈ [0.6, 1.7]. Thus the exponent and

mantissa of the result are
{

R = 2E · eY if ey ≥ 1)
R = 2E−1 · (2eY ) if ey ≤ 1)

(3)

This test boils-down in testing the most significant bit of eY ,

and the division by 2 is just a shift.

The architecture of this operator is given on Figure 1. This

figure also explicits the alignment of the fixed-point data.

C. Range reduction

To implement equation (1), we have to implement an

approximation of

E =

⌊

X

log 2

⌉

(4)

then

Y = X − E × log 2. (5)

If computed infinitely accurate, this would ensure Y ∈
[− log 2

2 , log 2
2 ]. On one hand, this is not ideal from an architec-

tural point of view, as Y will be input to a table and log 2
2 is

not a power of two (as log 2 ≈ 0.34, the next power of 2 is

1/2, so only 69% of the table would be used). On the other

hand, implementing (4) and (5) accurately enough would be

expensive. A solution to both problems is therefore a relaxed

implementation of (4) that will save on the computation of

(4) and (5) while ensuring Y ∈ [−1/2, 1/2). The idea is that

the computation of E can be grossly approximate, as long as

(5) is accurately implemented. A normalization process (see

below (3) will take care of the cases where E was not directly

computed as the exact result exponent.

As (4) and (5) are inherently fixed-point computations, the

first task is to build a fixed-point representation Xfix of the

input X . The most significant bit (MSB) of this representation

is provided by the condition X > log(Xmax) → exp(X) =
+∞, from which we deduce X > 2wE+1 → exp(X) = +∞.

The MSB of Xfix should therefore have weight wE . The least

significant bit is provided by the condition X < 2−wF−2 →
exp(x) = 1, which defines a LSB of weight −wF − 2.

Actually, we will improve this accuracy to −wF−g with g = 3
(see below in III-A) to allow for rounding error accumulation

in these g guard bits.

Thus the shift to fixed point box on Figure 1 shifts the

mantissa by the value of the exponent. More specifically, if the

exponent is positive, it shifts to the left by up to wE positions

(more means overflow). If the exponent is negative, it shifts to

the right by up to wF + g positions. This box also generates

out-of-range signals.

Let us now turn to the relaxed computation of E. Since E
is almost the final exponent (of size wE), its size in bits will

be wE+1, including one sign bit, the +1 preventing overflow

in the second case of (3). Expliciting all the roundings and

truncations, (4) becomes

E =

⌊

⌊Xfix⌋wE+g′ ×

⌊

1

log 2

⌉

wE+g′

⌉

wE+1

. (6)

The value g′ = 3 ensures that the product is computed with

a relative accuracy of 2× 2−wE−3 with respect to X
log 2 . other

terms E may off by 1 with respect to the ideal
⌊

X
log 2

⌉

when

X is within 1/4 of the middle between two multiples of log 2.

Then, (5) may be implemented as

Y = Xfix − E × log 2. (7)
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Fig. 1. Architecture and fixed-point data alignment

The previous error analysis now ensures that the bound on

Y is now [− log2
2 − log2

8 , log2
2 + log2

8 ) ≈ [−0.44, 0.44). This

computation will cancel the integer part and the first bit of the

fractional part.

In this work, we have also considered reducing to Y ∈ [0, 1)
instead of Y ∈ [−1/2, 1/2). It turns out that guaranteeing this

enclosure, especially Y ≥ 0, is more expensive.

D. Constant multiplications

As both constant multiplications (by 1/ log 2 and log 2)

multiply a large constant by a small input, we use the KCM

algorithm [15]. For the larger multiplication by the real value

log 2, we actually use a variation that is original to our

knowledge and that we briefly present now.

Let α be the LUT input size of the target FPGA. The input

(here E) is split into chunks of size α:

E =

p
∑

i=0

2iαEi

therefore

E log 2 =

p
∑

i=0

2iαEi log 2.

We tabulate in LUTs the products 2iαEi log 2 on just the

required precision, so that its LSB has value 2−wF−g−γ where

γ is again a number of guard bits. Each table may hold the

correctly rounded value of the product of Ei by the real value

log 2 to this precision, so entails an error of 2−wF−g−γ−1.

Finally, the first table actually holds E0 log 2 + 2−wF−g−1

(i.e., it adds one half-ulp of the multiplier result), so that the

truncation of the sum will correspond to a rounding of the

product: this provides one half-ulp accuracy at no cost.

As α ∈ {4..6} for current FPGAs, and practical values of

E are smaller than 15, the value γ = 2 is usually enough to

ensure that this multiplier returns a faithful multiplication by

log 2.

With respect to the technique used by all the previous

works (rounding log 2 to some fixed-point value, then using

an integer constant multiplier, then truncating its result), this

approach saves a few LUTs, but also one half ulp in the error

analysis.

FloPoCo provides an implementation of this KCM with

frequency-directed pipeline.

E. Computation of eY

Let us now turn to the computation of eY . We use a second

range reduction, splitting Y as

Y = A+ Z (8)

where A consists of the k most significant bits of Y , and Z
consists of the wF +g−k least significant bits. Then we have

eY = eA+Z = eA · eZ . (9)

Here eA will be tabulated in a table indexed by , and Z is

small enough to enable us to use the Taylor formula

eZ ≈ 1 + Z + Z2/2 + ... (10)



This formula has the advantage that the three first co-

efficients are powers of two, therefore the corresponding

multiplications can be mere shifts. Actually we define

f(Z) = eZ − Z − 1 (11)

From 0 ≤ Z < 2−k and eZ − Z − 1 ≈ Z2/2 + ..., we

know that the MSB of f(Z) has weight −2k − 1. As f(Z)
will be added to Z, its LSB should have the same weight

−wF − g. The useful size of f(Z) is therefore wF + g − 2k.

As a consequence, we do not need to compute it out of all the

bits of Z. Truncating Z to its wF + g − 2k MSBs will entail

an error of roughly the same weight as the error entailed by

the fixed-point format of f(Z).
Out of Z and f(Z), we compute eZ − 1 = f(Z)+Z. This

addition may overflow, so the result is on wF +g−k+1 bits,

one more bit than Z.

If 1 + wF + g < 17, the final multiplication eY = eA · eZ

may be computed directly as a single DSP block. For larger

precisions, the cost of this multiplication is reduced by imple-

menting it as

eA · (1 + Z + f(Z))
= eA + eA · (Z + f(Z))

(12)

Again, the two addends have LSB weight −wF −g. Again,

the multiplier inputs need not be more accurate than their

output, so we truncate eA to its LSB wF + g − k + 1 bits.

As we need to truncate the result of this multiplier, we may

as well use, for large precisions, truncated multipliers [16], to

save DSP and latency.

A final normalization step possibly shifts left the mantissa

by one bit, then performs the final rounding. The rounding

consists in possibly adding one bit, then truncating. The The

IEEE-754 format has the nice property that we may use an

adder of size wE + wF + 1 to add the rounding bit to the

concatenated exponent and mantissa: carry propagation from

mantissa to exponent will handle the possible exponent change

due to rounding up.

III. IMPLEMENTATION ISSUES

A. Error analysis

This computation involves several approximation and

rounding errors. The purpose of this section is to guarantee

faithful rounding, ie. an error of less than one unit in the last

place (ulp) of the result. Here the ulp has the value 2−wF+g .

In the following, all the errors will be expressed in terms

of unit in the last place of Y . Thus errors expressed this way

can be made as small as required by increasing g.

First, note that the argument reduction is not exact. As

already stated, numerical errors in the computation of E (6)

mostly impact the range of Y . Concerning the computation of

Y (1), there are two exclusive cases:

• If X is large (its exponent is larger than −2), its mantissa

is shifted without loss of information, then the computa-

tion of E × log 2 introduces at most one ulp of error in

Y as seen in II-D.

• Or, X is small, its mantissa is shifted right beyond the

ulp, so its LSBs are lost, which also entails one error

of one ulp in Y . However, in this case E = 0, so the

computation of E × log 2 is exact.

In both cases we may thus have an error of at most one ulp

on Y . Let us now see how it propagates to eY .

eA is tabulated rounded to the nearest, thus with an error

of 1/2 ulp.

eZ−Z−1 is either tabulated (1/2 ulp) or evaluated through

polynomial approximation (1 ulp). As the higher order bits of

Z are used, the error on Y (which is the error on Z) is scaled

down and becomes negligible.

Then eY −1 adds the error on Z and the error on eZ−Z−1,

and thus holds an error of 1.5 or 2 ulps.

The error on the other input to the multiplier (eA truncated)

is of one ulp. The product adds these error as (a+ǫ)×(b+ǫ′) =
ab + bǫ + aǫ′ + ǫǫ′. Here is another subtlety. This formula

shows that the error on eZ − Z − 1 is scaled by the value of

eA. Fortunately, the worst case error will occur for eA < 1,

since in this case the result will be shifted left by one bit. In

the case eA > 1 the error on eZ − Z − 1 may be scaled up

(by up to 1.6) but we will have in this case the extra bit of

precision needed for the other case, so it doesn’t matter.

Truncating the multiplier result would yields another error

of one ulp, however we may instead round it (1/2 ulp only)

at very little cost by adding its round bit to the right of eA,

so the addition of eA will also compute the rounding of the

product.

Finally the product holds an error of 3 or 3.5 ulps.

Adding the error on eA, we deduce that the error on eY

may be up to 3.5 ulp in the dual table case, and 4 ulp in the

polynomial case.

If eY < 1 the final 1-bit shift will multiply this error by 2,

so we need 3 guard bits.

Previous works need more guard bits (5 guard bits in

[2], 8 in [10] for instance), hence a wider datapath. This

improvement in the present work is partly due to a finer error

analysis, partly to a refined implementation, in particular of the

multiplication by log 2. It is proportionnally more important

for lower precisions.

More guard bits will mean a larger percentage of correctly

rounded results. As g is a parameter in our implementation, it

is possible to use any value larger than 3.

B. The case study of single precision

Setting wF = 23 and g = 3 in the previous architecture, it

turns out that k = 9 allows for a highly efficient architecture

on recent FPGAs.

Firstly, we need altogether 29 × 27 bits of RAM for eA

and 29 × 9 bits for eZ − Z − 1. We can group both tables

in a single 29 × 36 table with dual-port access. This perfectly

matches one Xilinx BlockRAM, or two Altera M9K.

Secondly, the multiplication is now 18x18 bits, unsigned.

This perfectly matches the DSP blocks of Altera chips. On

Xilinx chips up to Virtex-4, the multipliers are able of 17x17



unsigned, so the cost is one DSP block plus two 18-bit addi-

tions. On Virtex-5 the DSP block is able of 17x24 unsigned,

so we only need one addition. One more trick allows us to

hide the latency of this addition. We choose to input eA on 17

bits only instead of 18. To keep the same error bound of one

ulp, we now need to round it to 17bits. This rounding requires

an addition (so there is no saving compared to extending the

multiplier input to 18 bit), but this addition is now before the

multiplier, in parallel to the addition of Z to eZ − Z − 1.

C. Polynomial approximation for large precisions

For larger values of wF , a generic polynomial evaluator [17]

is used as a black box. It inputs a function of [0, 1] → [0, 1]

(here e2
−kx − 2−kx− 1) with its input and output precisions

(given on Figure 1) and a degree, and implements a piecewise

polynomial approximation. The input interval is decomposed

into smaller intervals, and the number of such intervals is

computed so that the generated architecture returns a faithfully

rounded result. The architectures are optimized for the target

FPGA (currently Xilinx Virtex-4, Virtex-5 and Virtex-6, and

Altera Stratix II to IV), making efficient use of the DSP blocks

to attain high frequencies.

One advantage of this approach is that it is DSP- and

memory- based. Another one is its genericity, as future

improvements to the polynomial evaluator will immediately

benefit to the exponential. This includes the adaptation of the

polynomial evaluator to newer FPGAs.

More specifically, the function evaluated here is easy to

approximate by a low-degree polynomial approximations. It

turns out that degree 2 is enough for precision up to double-

extended precision.

We now have two parameters to set: k, that fixes the input

to the eA table, and the degree d of the polynomial, that

fixes the trade-off between area of the coefficient table and

DSP count/latency. We have varied these parameters to obtain

the best trade-offs, that is a an architecture well balanced

between DSP and memory consumption, with memories as

full as possible and multipliers used as fully as possible. For

instance, for double precision, on all targets the best choice is

k = 9 and a degree-2 approximation on 512 intervals.

Figure 2 details one instance of this architecture for Virtex-

5.

D. Pipeline tuning

We have designed a component generator framework that

allows us to finely tune the pipelines, and this exponential op-

erator was also a case study for this framework. This is not the

subject of this article, but it explains in particular the relatively

short latency we are able to obtain. For illustration, Figure 3

shows an example of the obtained component hierarchy, with

the pipeline information. It also details the sizes of the various

multipliers on this example.

IV. RESULTS

A. Synthesis results

Table I provides synthesis results for several precisions

and several FPGA targets, and compares with results from
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Fig. 2. The architecture evaluating eZ − Z − 1 for Virtex-5/Virtex-6

previous papers. Our approach is clearly the most efficient of

the literature for all the precisions. It combines very high fre-

quency (close to the nominal DSP block frequency), the lowest

DSP and memory consumption, portability to both Xilinx and

Altera targets, last-bit accuracy, flexibility in precision, and

also flexibility in terms of latency versus frequency.

Note that the synthesis on Stratix III reports 2 DSP blocks

for single precision. One is actually unused. The coarse-grain

DSP block structure of Altera chips since Stratix III prevent

using the 18×18-bit multipliers completely independently.

Of special interest is the last line of this table, which

shows that even a quadruple-precision exponential function

will consume only one tenth of the resources of a high-end

FPGA while still running at a very high frequency.

This work is actually open-source and already available on

the Internet, and the curious reviewer should have no difficulty

to find it to reproduce these results.

B. Comparison with other works

In [7], a double-precision combinatorial operator consumes,

on VirtexII, 2045 slices for a delay of 229 ns. To our

knowledge, it was never pipelined, but we estimate that a high-

frequency pipelined would require a doubling of the area and

roughly 40 cycles.

In addition, this architecture was based on tables inputting

α bits and rectangular multipliers where one dimension was

also α (an integer parameter) and the other dimension varied



TABLE I
SYNTHESIS RESULTS OF THE VARIOUS INSTANCES OF THE FLOATING-POINT EXPONENTIAL OPERATOR. RESULTS OF ALTERA MEGAWIZARD FOR

STRATIXIII WHERE OBTAINED FROM [18]. WE USED QUARTUSII V9.0 FOR STRATIXIII EPSL50F484C2 AND ISE 11.5 FOR VIRTEXIV
XC4VFX100-12-FF1152, VIRTEX5 XC5VFX100T-3-FF1738 AND VIRTEX6 XC6VHX380T-3-FF1923

Precision FPGA Tool
Performance Resource Usage

f (MHz) Latency
Logic Usage

DSPs Memory
(A)LUTs Reg. Slice

(8,23)

StratixIII
Altera MegaWizard 274 17 527 900 - 19 18-bit elem. 0

ours
391 6 832 374 -

2 18-bit elem.
0

405 7 519 382 - 2 M9K
VirtexII 1000 [7] 1/123ns 0 728 0 0

VirtexIV ours
375 17 739 510 392

1 DSP48 1 BRAM
178 8 680 244 367

Virtex5 ours
441 20 560 572 -

1 DSP48E 1 BRAM
188 9 524 256 -

Virtex6 ours
561 17 602 485 -

1 DSP48E1 1 BRAM
241 8 493 229 -

(10,40)
Virtex5 ours (k=5,d=2) 310 30 1377 1141 - 10 DSP48E 4 BRAM
Virtex6 ours (k=5,d=2) 488 32 1469 1344 - 10 DSP48E1 3 BRAM

(11,52)

StratixIII
Altera MegaWizard 205 25 2905 2285 - 58 18-bit elem. 0

ours
327 29 1307 3757 -

22 18-bit elem. 10 M9K
256 15 1437 1984 -

VirtexII 1000 [7] 1/229ns 0 2045 0 0

VirtexIV

[8] ? 0 1293 105 71 DSP48 6 BRAM
[9] 200 30 13614 19704 0 29 BRAM

[10] (CORDIC) 5.25 cycles@100Mhz >61 23455 36 DSP48

ours

319 38 2249 1964 1393
17 DSP48 5 BRAM178 24 2128 1361 1154

97 14 2034 926 1096

Virtex5 ours

310 35 1867 1456 -
12 DSP48E 5 BRAM204 18 1604 1018 -

119 12 1601 806 -

Virtex6 ours

488 38 1928 1791 -
12 DSP48E1 5 BRAM221 22 1642 1184 -

125 10 1547 629 -

(15,64) Virtex6 ours (k=11, d=2) 486 41 2894 2539 - 20 DSP48E1 11 BRAM

(15,112) Virtex6 ours (k=14, d=3) 395 69 8071 7725 - 71 DSP48E1 123 BRAM

from α to the mantissa size. This was a good design choice for

LUT-based FPGAs, but it poorly matches the capabilities of

the DSP blocks and embedded memories of modern FPGAs.

For a short latency, and to use the DSP blocks optimally, one

should choose α = 17, but then the tables would be much too

large (217 entries). Or, one should chose α ≈ 10, but then the

DSPs would be underutilized.

As Altera Megawizard produces readable source files, we

could analyse the algorithm used. The range reduction is the

usual one, and the architecture diverges only for the computa-

tion of eY . For double precision, Altera’s architecture is based

on a decomposition of the input as Y = Y0 + Y1 + Y2 + YL

where Y0 consists of the 9 leading bits, Y1 and Y2 consist

of the two following 9-bit chunks, and YL consists of the

remaining lower bits. The exponential is computed as eY =
(ey0 × ey1)× (ey2eyL), where the three first terms are simply

read from tables with 29 entries, and eyL is approximated as

the Taylor polynomial eYL ≈ 1 + YL. This is very similat

to the method proposed by Wielgosz et al [8], [9], and both

were probably designed independently. However the latter is

not generic in precision.

We weren’t able to synthesize these Altera ALTFP EXP

operator (our Quartus 9 hangs on it), so we report results

from the documentation [18]. They do not use 9Kbit embedded

memories, although this design would be a perfect match for

them (it should consume (61+51+42)/18 = 9 of them, with

a corresponding huge reduction in logic resources).

This approach has a potential of lower latency, as the

multipliers are organized in tree and not in sequence as

in our proposal. Its drawback is that it doesn’t exploit the

structure of the numbers. The three multiplications are of size

roughly 60×60 bits. However, ey1 , ey2 , and eyL are all of the

form 1 + ǫ, so at the bit level, we have a lot of predictible

multiplications by 0, for which the hardware could be saved.

Table I will show the advantage of our approach in terms of

multiplier count and performance.

Finally, we remark that the two references by Wielgosz et al.

[8], [9] seem to use the same architecture, however the first

one reports results using DSP blocks, while the second one

replaces all the DSPs with logic. This actually makes sense,

since in this case the parts of the large multipliers that multiply

by zero will indeed be optimized out by the synthesizer.

C. Comparison with microprocessors

This table allows us to compare the theoretical peak per-

formance, in terms of floating-point exponentials, of a large

FPGA and a high-end processor. These numbers, of course,

should be taken with due care as they ignore the issue of data

movements which are a limiting factor [9].



|---Entity LeftShifter_53_by_max_65:

| Pipeline depth = 1

|---Entity IntAdder_67_f500_slice_SRL_noBUFFER_uid1_Classical:

| Pipeline depth = 2

| |---Entity KCMTable_6_11818_unsigned:

| | Not pipelined

| |---Entity KCMTable_6_11818_signed:

| | Not pipelined

| | |---Entity IntAdder_22_f500_slice_SRL_noBUFFER_uid2_C

| | | Pipeline depth = 1

| |---Entity IntCompressorTree_22_3:

| | Pipeline depth = 2

|---Entity IntIntKCM_14_11818_signed:

| Pipeline depth = 2

| |---Entity KCMTable_6_51145234580810622639_unsigned:

| | Not pipelined

| |---Entity KCMTable_6_51145234580810622639_signed:

| | Not pipelined

| | |---Entity IntAdder_72_f500_slice_SRL_noBUFFER_uid3_C

| | | Pipeline depth = 2

| |---Entity IntCompressorTree_72_2:

| | Pipeline depth = 2

|---Entity IntIntKCM_12_51145234580810622639_signed:

| Pipeline depth = 3

|---Entity IntAdder_67_f500_slice_SRL_noBUFFER_uid4_Classical:

| Pipeline depth = 2

|---Entity firstExpTable_11_56:

| Not pipelined

| |---Entity TableGenerator_7_89:

| | Not pipelined

| | |---Entity SignedIntMultiplier_25_23:

| | | Pipeline depth = 2

| | |---Entity IntAdder_31_f500_slice_SRL_noBUFFER_uid5_C

| | | Pipeline depth = 1

| | | | |---Entity IntAdder_60_f500_slice_SRL_noBUFFE

| | | | | Pipeline depth = 1

| | | |---Entity IntCompressorTree_60_2:

| | | | Pipeline depth = 1

| | |---Entity SignedIntMultiplier_27_31:

| | | Pipeline depth = 4

| | |---Entity IntAdder_64_f500_slice_SRL_noBUFFER_uid7_C

| | | Pipeline depth = 2

| |---Entity PolynomialEvaluator_d2:

| | Pipeline depth = 10

| |---Entity IntAdder_35_f500_slice_SRL_noBUFFER_uid8_Class

| | Pipeline depth = 1

|---Entity FunctionEvaluator:

| Pipeline depth = 14

| | |---Entity IntAdder_75_f500_slice_SRL_noBUFFER_uid9_C

| | | Pipeline depth = 2

| |---Entity IntCompressorTree_75_2:

| | Pipeline depth = 2

|---Entity IntMultiplier_45_45:

| Pipeline depth = 6

|---Entity IntAdder_57_f500_slice_SRL_noBUFFER_uid10_Classica

| Pipeline depth = 1

|---Entity IntAdder_65_f500_slice_SRL_noBUFFER_uid11_Classica

| Pipeline depth = 2

Entity FPExp_11_52:

Pipeline depth = 38

Fig. 3. Component hierarchy for DP exponential on Virtex6

The largest Virtex-6 FPGA (XC6VSX475T) could acco-

modate 168 double-precision exponential cores running above

400 MHz, so the theoretical peak performance of the FPGA

is now over 60 giga FP exponentials per second (GFPexp/s).

For a fair comparison, we have to compare to the highest

performance software implementation currently available, one

which was tuned with comparable effort. To our knowledge, it

is the Intel Vector Math Library (VML), which can achieve a

peak of 6 cycles/DPExp on Itanium-2 or Core i7. On an 8-core

processor running at 3GHz, we obtain a peak performance of

4 GFPExp/s, with a speed-up of 15 in favor of the FPGA. On

single precision, the numbers are in excess of 400GSPExp/s

for the FPGA while the performance of VML is only improved

to 6GSPExp/s. The FPGA speed-up is now above 60.

V. CONCLUSION AND FUTURE WORK

We have presented a state-of-the-art floating-point exponen-

tial operator generator. It produces last-bit accurate architec-

tures for a wide range of FPGA targets, for a wide range of

precisions up to IEEE-754-2008 quadruple precision, and for

a wide range of latency/frequency trade-offs. It is designed

to make good use of the DSP blocks and embedded memo-

ries of high-end FPGAs, and outperforms previous works in

performance and resources consumption.

Two functions already constitute a library: After the loga-

rithm completed in 2009, we intend to extend FloPoCo further

to include a complete open-source and portable mathematical

library (libm) for FPGAs. This is an important enabling step

for the success of C-to-hardware compilers for reconfigurable

computing.
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