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We give a survey of various recent developments in orbit equivalence and measured group theory. This subject aims at studying infinite countable groups through their measure preserving actions.

Introduction

Orbit equivalence and measure equivalence theories deal with countable groups Γ acting on standard measure spaces and with the associated orbit partitions of the spaces. This is very much connected from its birth with operator algebras [START_REF] Murray | On rings of operators[END_REF]; many of the recent progresses in both areas were made conjointly (see [START_REF] Popa | Deformation and rigidity for group actions and von Neumann algebras[END_REF][START_REF] Vaes | Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa)[END_REF][START_REF] Vaes | Rigidity for von neumann algebras and their invariants[END_REF]). It turns out to be also connected with geometric group theory (see section 9 and [START_REF] Furman | A survey of measured group theory[END_REF]), descriptive set theory (see [START_REF] Jackson | Countable Borel equivalence relations[END_REF][START_REF] Kechris | Topics in orbit equivalence[END_REF]), percolation on graphs (see [START_REF] Lyons | Probability on Trees and Networks[END_REF])... with fruitful crosspollination.

There are many examples of mathematical domains where the orbit equivalence or measured approach helps solving delicate questions involving countable groups Γ. For instance, in connection with group ℓ 2 -Betti numbers β (2) n (Γ), this was useful to attack: -various vanishing results in [START_REF] Gaboriau | Invariants L 2 de relations d'équivalence et de groupes[END_REF][START_REF] Sauer | A spectral sequence to compute L 2 -betti numbers of groups and groupoids[END_REF]; -the study of harmonic Dirichlet functions on percolation subgraphs [START_REF] Gaboriau | Invariant percolation and harmonic Dirichlet functions[END_REF]; -the comparison between the uniform isoperimetric constant and β (2) 1 (Γ) [START_REF] Lyons | Uniform non-amenability, cost, and the first l 2 -Betti number[END_REF]; -problems of topological nature, related to the work of Gromov about the minimal volume [START_REF] Sauer | Amenable covers, volume and L 2 -Betti numbers of aspherical manifolds[END_REF].

In geometric group theory, the quasi-isometry invariance of various cohomological properties for amenable groups [START_REF] Shalom | Harmonic analysis, cohomology, and the large-scale geometry of amenable groups[END_REF] was obtained that way. Gaboriau-Lyons' measurable solution to von Neumann's problem [START_REF] Gaboriau | A measurable-group-theoretic solution to von Neumann's problem[END_REF] happens to be a way to extend results about groups containing a copy of the free group F 2 to every non-amenable group (see section 10). This was used by [START_REF] Epstein | Orbit inequivalent actions of non-amenable groups[END_REF] and in Dixmier's unitarizability problem [START_REF] Epstein | Nonunitarizable representations and random forests[END_REF][START_REF] Monod | The Dixmier problem, lamplighters and Burnside groups[END_REF].

The purpose of this survey is to describe some foundations of the theory and some of its most recent developments. There are many aspects upon which we shall inevitably not touch here, and many results are just alluded to, with as far as possible the relevant bibliography.

There are several excellent books and surveys with various focuses on orbit equivalence to which the reader is referred for further information, for instance [START_REF] Kechris | Topics in orbit equivalence[END_REF][START_REF] Gaboriau | Examples of groups that are measure equivalent to the free group[END_REF][START_REF] Shalom | Measurable group theory[END_REF][START_REF] Popa | Deformation and rigidity for group actions and von Neumann algebras[END_REF][START_REF] Furman | A survey of measured group theory[END_REF][START_REF] Kechris | Global aspects of ergodic group actions[END_REF].

Setting and examples

The measure spaces X will always be assumed to be standard Borel spaces and unless specified otherwise, the measure µ will be a non-atomic probability measure. Measurably, (X, µ) is isomorphic to the interval ([0, 1], Leb) equipped with the Lebesgue measure. Moreover, the actions Γ α (X, µ) we shall consider will be by Borel automorphisms and probability measure preserving (p.m.p.), i.e. ∀γ ∈ Γ, A ⊂ X: µ(γ.A) = µ(A) (We only considers Borel sets). Shortly, α is a p.m.p. action of Γ. In this measured context, null sets are neglected. Equality for instance is always understood almost everywhere. The action α is (essentially) free if µ{x : γ.x = x} > 0 ⇒ γ = id. The action is ergodic if the dynamics is indecomposable, i.e. whenever X admits a partition X = A ∪ c A into invariant Borel subsets, then one of them is trivial, i.e. µ(A)µ( c A) = 0.

We now present a series of basic examples which shall already exhibit a rich variety of phenomena.

Examples 2.1 The action of Z n on the circle S 1 by rationally independent rotations.

Examples 2.2 The standard action SL(n, Z)

T n on the n-torus R n /Z n with the Lebesgue measure. The behavior is drastically different for n ≥ 3 and for n = 2. The higher dimensional case was central in the super-rigidity results of Zimmer [START_REF] Zimmer | Ergodic theory and semisimple groups[END_REF] and Furman [START_REF] Furman | Gromov's measure equivalence and rigidity of higher rank lattices[END_REF][START_REF] Furman | Orbit equivalence rigidity[END_REF] (see section 12). The 2-dimensional case SL(2, Z)

T 2 played a particularly important role in the recent developments of the theory, mainly because of its relation with the semi-direct product SL(2, Z) ⋉ Z 2 , in which Z 2 is known to have the so called relative property (T) (see section 11), while SL(2, Z) is a virtually free group (it has a finite index free subgroup).

Examples 2.3 Volume-preserving group actions on finite volume manifolds.

Examples 2.4 Given two lattices Γ, Λ in a Lie group H (or more generally a locally compact second countable group) the actions by left (resp. right by the inverse) multiplication on H induce actions on the finite measure standard spaces Γ H/Λ and Λ Γ\H.

Examples 2.5 A compact group K, its Haar measure µ and the action of a countable subgroup Γ by left multiplication on K.

Examples 2.6 Let (X 0 , µ 0 ) be a standard probability measure space, possibly with atoms1 . The standard Bernoulli shift action of Γ is the action on the space X Γ of sequences (x γ ) γ∈Γ by shifting the indices g.(x γ ) γ∈Γ = (x g -1 γ ) γ∈Γ , together with the Γ-invariant product probability measure ⊗ Γ µ 0 . In particular, every countable group admits at least one p.m.p. action. The action is free (and ergodic) iff Γ is infinite. More generally, consider some action Γ V of Γ on some countable set V. The generalized Bernoulli shift action of Γ is the action on the space X V of sequences (x v ) v∈V by shifting the indices g.(x v ) v∈V = (x g -1 .v ) v∈V , with the invariant product probability measure.

Examples 2.7 Profinite actions. Consider an action Γ (T, v 0 ) of Γ on a locally finite rooted tree. The action preserves the equiprobability on the levels, and the induced limit probability measure on the set of ends of the tree is Γ-invariant. For instance, if Γ is residually finite, as witnessed by a chain of finite index subgroups

Γ = Γ 0 > Γ 1 > Γ 2 > • • • Γ i > • • • with trivial intersection, such a rooted tree (T, (v 0 = Γ/Γ 0 )
) is naturally built with vertex set (of level i) the cosets Γ/Γ i and edges given by the reduction maps Γ/Γ i+1 → Γ/Γ i . The action is ergodic iff it is transitive on the levels.

A first connection with functional analysis is made through the following. The Koopman representation of a p.m.p. action Γ α (X, µ) is the representation

κ α of Γ on L 2 0 (X, µ) given by 2 κ α (γ)(ξ)(x) = ξ(α(γ -1 )(x)) [Koo31].
A lot of dynamical properties of the action are read from this unitary representation and its spectral properties. For instance, the action is ergodic if and only if its Koopman representation has no Γ-invariant unit vector. In examples 2.1 and 2.2 or 2.6, various properties are deduced from the fact that the Koopman representation admits a Hilbert basis which is either made of eigenvectors or permuted by Γ (see for instance [START_REF] Schmidt | Asymptotically invariant sequences and an action of SL(2, Z) on the 2-sphere[END_REF], [START_REF] Kechris | Amenable actions and almost invariant sets[END_REF]). The classical ergodic theory considers such actions up to conjugacy (notation:

Γ 1 α 1 X 1 Conj ∼ Γ 2 α 2 X 2 )
. We now introduce a weaker notion of equivalence and turn from classical ergodic theory to orbit equivalence theory. Here Γ.x denotes the orbit of x under the Γ-action.

Definition 2.8 (Orbit equivalence) Two actions Γ i α i (X i , µ i ) (for i = 1, 2) are or- bit equivalent (OE) (notation: Γ 1 α 1 X 1 OE ∼ Γ 2 α 2 X 2 ) if there is a measured space isomorphism 3 f : X 1 → X 2 that sends orbits to orbits: for a.a. x ∈ X 1 : f (Γ 1 .x) = Γ 2 .f (x).
In particular, the groups are no longer assumed to be isomorphic. When studying actions up to orbit equivalence, what one is really interested in, is the partition of the space into orbits or equivalently the orbit equivalence relation:

R α := {(x, y) ∈ X : ∃γ ∈ Γ s.t. α(γ)(x) = y}.
(1)

This equivalence relation satisfies the following three properties: (1) its classes are (at most) countable, (2) as a subset of X ×X, it is measurable, (3) it preserves the measure µ: this means that every measurable automorphism φ : X → X that is inner (x and φ(x) belong to the same class for a.a. x ∈ X) has to preserve µ.

Axiomatically [START_REF] Feldman | Ergodic equivalence relations, cohomology, and von Neumann algebras[END_REF], the object of study is an equivalence relation R on (X, µ) satisfying the above three conditions: we simply call it a p.m.p. equivalence relation. Two p.m.p. equivalence relations R 1 , R 2 will be orbit equivalent if there is a measured space isomorphism f : X 1 → X 2 sending classes to classes.

This abstraction is necessary when one wants to consider, for instance, the restriction R|A of R to some non-null Borel subset A ⊂ X: the standard Borel space A is equipped with the normalized probability measure µ A (C) = µ(C)/µ(A) and (x, y) ∈ R|A ⇔ x, y ∈ A and (x, y) ∈ R.

In fact, this more general context allows for much more algebraic flexibility since the lattice of subrelations of R α for some Γ-action α is much richer than that of subgroups of Γ (see von Neumann's problem in section 10). Also, R α is easier to decompose as a "free product or a direct product" than Γ itself (see section 7 and [START_REF] Alvarez | Free products, orbit equivalence and measure equivalence rigidity[END_REF]).

By an increasing approximation R n ր R of a p.m.p. equivalence relation R we mean an increasing sequence of standard (p.m.p.) equivalence subrelations with

∪ n R n = R.
An important notion is that of hyperfiniteness: a p.m.p. equivalence relation R is hyperfinite if it admits an increasing approximation by finite equivalence subrelations R n (i.e. the classes of the R n are finite). Obviously all the actions of locally finite groups (i.e. groups all of whose finitely generated subgroups are finite) generate orbit equivalence relations in this class; for instance such groups as Γ = ⊕ N Λ n , where the Λ n are finite. This is also the case for all Z-actions. Dye's theorem is among the fundamental theorems in orbit equivalence theory: Theorem 2.9 ([Dye59]) All the ergodic hyperfinite p.m.p. equivalence relations are mutually orbit equivalent.

A series of results due in particular to Dye, Connes, Krieger, Vershik... leads to Ornstein-Weiss' theorem (see [START_REF] Connes | An amenable equivalence relation is generated by a single transformation[END_REF] for a more general version):

Theorem 2.10 ([OW80]) If Γ is amenable then all its p.m.p. actions are hyperfinite.

In particular, when ergodic, these actions are indistinguishable from the orbit equivalence point of view! All the usual ergodic theoretic invariants are lost. This common object will be denoted R hyp . On the other hand, if Γ admits a free p.m.p. hyperfinite action, then Γ has to be amenable, thus showing the border of this huge singular area that produces essentially a single object. The non-amenable world is much more complicated and richer.

The full group

The full group of R denoted by [R] is defined as the group of p.m.p. automorphisms of (X, µ) whose graph is contained in R:

[R] := {T ∈ Aut(X, µ) : (x, T (x)) ∈ R for a.a. x ∈ X}.

It was introduced and studied by Dye [START_REF] Dye | On groups of measure preserving transformation[END_REF], and it is clearly an OE-invariant. But conversely, its algebraic structure is rich enough to remember the equivalence relation:

Theorem 3.1 ([Dye63]
) (Dye's reconstruction theorem) Two ergodic p.m.p. equivalence relations R 1 and R 2 are OE iff their full groups are algebraically isomorphic; moreover the isomorphism is then implemented by an orbit equivalence.

The full group has very nice properties. The topology given by the bi-invariant metric d(T, S) = µ{x : T (x) = S(x)} is Polish. In general, it is not locally compact and, in fact, homeomorphic with the separable Hilbert space ℓ 2 [KT10].

Theorem 3.2 ([BG80, Kec10]) The full group is a simple group iff R is ergodic.

And it satisfies this very remarkable, automatic continuity:

Theorem 3.3 (Kittrell-Tsankov [KT10]) If R is ergodic, then every group homomor- phism f : [R] → G
with values in a separable topological group is automatically continuous.

Hyperfiniteness translates into an abstract topological group property:

Theorem 3.4 (Giordano-Pestov [GP07]) Assuming R ergodic, R is hyperfinite iff [R] is extremely amenable.
Recall that a topological group G is extremely amenable if every continuous action of G on a (Hausdorff) compact space has a fixed point. Together with Kittrell-Tsankov's result, this gives that every action of [R hyp ] by homeomorphisms on a compact metrizable space has a fixed point.

Closely related to the full group, the automorphism group Aut(R) := {T ∈ Aut(X, µ) : (x, y) ∈ R ⇒ (T (x), T (y)) ∈ R for a.a. x ∈ X} ⊲ [R] and the outer automorphism group (the quotient) Out(R) = Aut(R)/[R] have attracted much attention for several years; see for instance [GG88a, Gef93, Gef96, Fur05, IPP08, Pop06b, Kec10, Kid08c, PV08d, PV08a, Gab08] and references therein and section 11.

Associated von Neumann algebra

In fact, the original interest for orbit equivalence came from its connection with von Neumann algebras. Murray and von Neumann [START_REF] Murray | On rings of operators[END_REF] considered p.m.p. group actions Γ α (X, µ) as a machine to produce finite von Neumann algebras M α , via their groupmeasure-space construction. And Singer [START_REF] Singer | Automorphisms of finite factors[END_REF] was the first to explicitly notice that M α only depends on the OE class of the action. Feldman-Moore [START_REF] Feldman | Ergodic equivalence relations, cohomology, and von Neumann algebras[END_REF] extended the group-measure-space construction to the context of p.m.p. equivalence relations.

A p.m.p. equivalence relation R on (X, µ), considered as a Borel subspace of X × X is naturally equipped with a (a priori infinite) measure ν. It is defined as follows: for every Borel subset C ⊂ R,

ν(C) = X |π -1 l (x) ∩ C|dµ(x), (2) 
where π l : R → X is the projection onto the first coordinate, π -1 l (x) is the fiber above x ∈ X, and |π -1 l (x) ∩ C| is the (at most countable) cardinal of its intersection with C. A similar definition could be made with the projection π r on the second coordinate instead, but the fact that R is p.m.p. ensures that these two definitions would coincide.

The (generalized) group-measure-space von Neumann algebra L(R) associated with R is generated by two families of operators of the separable Hilbert space L 2 (R, ν): 

{L g : g ∈ [R]} and {L f : f ∈ L ∞ (X, µ)}, where L g ξ(x, y) = ξ(g -1 x, y) and L f ξ(x, y) = f (x)ξ(x, y) for every ξ ∈ L 2 (R, ν). It contains {L f : f ∈ L ∞ (X, µ)} ≃ L ∞ (X,
* -equivalence) Two p.m.p. equiv- alence relations R i on (X i , µ i ) (for i = 1, 2) are von Neumann equivalent or W * - equivalent if L(R 1 ) ≃ L(R 2 ) (notation: R 1 vN ∼ R 2 ).
There exist non-OE equivalence relations producing isomorphic L(R) ([CJ82], [START_REF] Ozawa | On a class of II 1 factors with at most one cartan subalgebra II[END_REF]). Indeed, the additionnal data needed to recover R is the embedding L ∞ (X, µ) ⊂ L(R) of the Cartan subalgebra inside L(R) (up to isomorphisms) [START_REF] Singer | Automorphisms of finite factors[END_REF][START_REF] Feldman | Ergodic equivalence relations, cohomology, and von Neumann algebras[END_REF].

Strong ergodicity

Recall that a standard p.m.p. equivalence relation R is ergodic if every R-invariant4 Borel set A ⊂ X satisfies µ(A)(µ(A) -1) = 0. The notion of strong ergodicity was introduced by Schmidt as an OE-invariant.

Definition 5.1 ([Sch80]) An ergodic p.m.p. countable standard equivalence relation R is strongly ergodic if every almost invariant sequence 5 of Borel subsets A n ⊂ X is trivial, i.e. satisfies lim n→∞ µ(A n )(1 -µ(A n )) = 0.
There are several equivalent definitions of strong ergodicity, see for instance [START_REF] Vaughan | Asymptotically invariant sequences and approximate finiteness[END_REF]. We give yet another one below through approximations.

Proposition 5.2 An ergodic equivalence relation R is strongly ergodic if and only if every increasing approximation R n ր R admits an ergodic restriction R n |U to some non-negligeable Borel set U , for big enough n.

In other words, for big enough n the ergodic decomposition of R n admits an atom. It is easy to see that whenever a p.m.p. action Γ (X, µ) is non-strongly ergodic, its Koopman representation κ 0 almost has invariant vectors. The converse does not hold in general [START_REF] Schmidt | Amenability, Kazhdan's property T , strong ergodicity and invariant means for ergodic group-actions[END_REF], [START_REF] Hjorth | Rigidity theorems for actions of product groups and countable Borel equivalence relations[END_REF]. However, Chifan-Ioana [START_REF] Chifan | Ergodic subequivalence relations induced by a Bernoulli action[END_REF] extending an argument of Abert-Nikolov [START_REF] Abert | Rank gradient, cost of groups and the rank versus Heegaard genus problem[END_REF] proved that this is indeed the case when the commutant of Γ (X, µ) in Aut(X, µ) acts ergodically on (X, µ). Standard Bernoulli shifts are strongly ergodic iff the group is non-amenable. In particular every non-amenable group admits at least one strongly ergodic action.

Kechris-Tsankov [START_REF] Kechris | Amenable actions and almost invariant sets[END_REF] characterized the generalized Bernoulli shifts Γ (X 0 , µ 0 ) V that are strongly ergodic as those for which the action Γ

V is non-amenable (i.e. the representation on ℓ 2 (V) does not admit any sequence of almost invariant vectors).

The consideration of the Koopman representation κ 0 ensures that for (infinite) groups with Kazhdan property (T) every ergodic p.m.p. action is strongly ergodic. And Connes-Weiss (by using Gaussian random variables) showed that this is a criterion for property (T) [START_REF] Connes | Property T and asymptotically invariant sequences[END_REF].

A graphing Φ (see section 6) on X naturally defines a "metric" d Φ on X: the simplicial distance associated with the graph structure in the classes of R Φ and d Φ = ∞ between two points in different classes. This is a typical instance of what Gromov calls a mmspace [Gro00], i.e. a probability measure space (X, µ) together with a Borel function d : X × X → R + ∪ {∞} satisfying the standard metric axioms except that one allows

d(x, x ′ ) = ∞. A mm-space (X, µ, d) is concentrated if ∀δ > 0, there is ∞ > r δ > 0 such that µ(A), µ(B) ≥ δ ⇒ d(A, B) ≤ r δ . For instance, if Φ = ϕ 1 : X → X is
given by a single p.m.p. ergodic isomorphism, (X, µ, d Φ ) is never concentrated. Gromov observed for finitely generated groups that every p.m.p. ergodic action of Γ has (respectively, never has) the concentration property if Γ has Kazhdan's property (T) (respectively, if Γ is amenable). Pichot made the connection with strong ergodicity:

Theorem 5.3 ([Pic07a]) Let Φ = (ϕ i ) i=1,••• ,p
be a graphing made of finitely many partial isomorphisms. The space (X, µ, d Φ ) is concentrated iff R Φ is strongly ergodic.

See also [START_REF] Pichot | Sur la théorie spectrale des relations d'équivalence mesurées[END_REF] for a characterization of strong ergodicity (as well as of property (T) or amenability) in terms of the spectrum of diffusion operators associated with random walks on the equivalence relation R.

For the standard SL(2, Z) action on the 2-torus R 2 /Z 2 , every non-amenable subgroup Λ < SL(2, Z) acts ergodically, and even strongly ergodically. Similarly for the generalized Bernoulli shift Γ (X 0 , µ 0 ) V , where the stabilizers of the action Γ V are amenable. Inspired by [START_REF] Chifan | Ergodic subequivalence relations induced by a Bernoulli action[END_REF], define more generally: Definition 5.4 (Solid ergodicity) A p.m.p. standard equivalence relation R is called solidly ergodic if for every (standard) subrelation S there exists a measurable partition {X i } i≥0 of X in S-invariant subsets such that: (a) the restriction S|X 0 is hyperfinite (b) the restrictions S|X i are strongly ergodic for every i > 0.

In particular, an ergodic subrelation of a solidly ergodic relation is either hyperfinite or strongly ergodic. By Zimmer [Zim84, Prop. 9.3.2], every ergodic p.m.p. standard equivalence relation R contains an ergodic hyperfinite subrelation S which, being non strongly ergodic, contains an aperiodic subrelation with diffuse ergodic decomposition. Thus the X 0 part cannot be avoided, even for aperiodic subrelations.

One gets an equivalent definition if one replaces "strongly ergodic" by "ergodic" (see [CI10, Prop. 6] for more equivalent definitions). It may seem quite unlikely that such relations really exist. However, Chifan-Ioana [START_REF] Chifan | Ergodic subequivalence relations induced by a Bernoulli action[END_REF] observed that the notion of solidity and its relative versions introduced by Ozawa [START_REF] Ozawa | Solid von Neumann algebras[END_REF] (by playing between C * -and von Neumann algebras) imply solid ergodicity (hence the name). Moreover, they established a general solidity result for Bernoulli shifts.

Theorem 5.5 The following actions are solidly ergodic:

-The standard action SL(2, Z) R 2 /Z 2 [Oza09]. -The generalized Bernoulli action Γ (X 0 , µ 0 ) V , when the Γ-action Γ V has amenable stabilizers [CI10].
When the group Γ is exact6 , the above statement for the standard Bernoulli shifts also follows from [START_REF] Ozawa | A Kurosh-type theorem for type II 1 factors[END_REF]Th. 4.7].

A positive answer to the following percolation-theoretic question would give another proof of solid ergodicity for the standard Bernoulli shifts: Question 5.6 Let Γ be a countable group with a finite generating set S. Let π : (X 0 , µ 0 ) Γ → [0, 1] be any measure preserving map (i.e. π * (⊗ Γ µ 0 ) = Leb) and Φ π be the "fiber-graphing" made of the restriction ϕ s of s ∈ S to the set {ω ∈ (X 0 , µ 0 ) Γ : π(s.ω) = π(ω)}. Is the equivalence relation generated by Φ π finite?

Graphings

The cost of a p.m.p. equivalence relation R has been introduced by Levitt [Lev95]. It has been studied intensively in [START_REF] Gaboriau | Mercuriale de groupes et de relations[END_REF][START_REF] Gaboriau | Coût des relations d'équivalence et des groupes[END_REF]. See also [START_REF] Kechris | Topics in orbit equivalence[END_REF][START_REF] Kechris | Global aspects of ergodic group actions[END_REF][START_REF] Furman | A survey of measured group theory[END_REF] and the popularization paper [START_REF] Gaboriau | What is cost[END_REF]. When an equivalence relation is generated by a group action, the relations between the generators of the group introduce redundancy in the generation, and one can decrease this redundancy by using instead partially defined isomorphisms.

A countable family Φ = (ϕ j : A i ∼ → B j ) j∈J of measure preserving isomorphisms between Borel subsets A i , B i ⊂ X is called a graphing. It generates a p.m.p. equivalence relation R Φ : the smallest equivalence relation such that x ∼ ϕ j (x) for j ∈ J and x ∈ A j . Moreover, Φ furnishes a graph structure (hence the name) Φ[x] on the class of each point x ∈ X: two points y and z in its class are connected by an edge whenever z = ϕ ±1 j (y) for some j ∈ J. If R is generated by a free action of Γ and if Φ is made of isomorphisms associated with a generating set S of Γ, then the graphs Φ[x] are isomorphic with the corresponding Cayley graph of Γ. When all the graphs Φ[x] are trees, Φ is called a treeing.

If it admits a generating treeing, R is called treeable. See Adams [START_REF] Adams | Indecomposability of treed equivalence relations[END_REF][START_REF] Adams | Trees and amenable equivalence relations[END_REF] for the first study of treed equivalence relations.

The cost of Φ is the number of generators weighted by the measure of their support:

Cost(Φ) = j∈J µ(A j ) = j∈J µ(B j ).
The cost of R is the infimum over the costs of its generating graphings: Cost(R) = inf{Cost(Φ) : R = R Φ }. It is by definition an OE-invariant. The cost of R is ≥ 1 when the classes are infinite [START_REF] Levitt | On the cost of generating an equivalence relation[END_REF]. Together with Ornstein-Weiss' theorem this gives that every p.m.p. free action of an infinite amenable group has cost = 1. Various commutation properties in a group Γ also entail cost = 1 for all of its free actions. For instance when Γ = G × H is the product of two infinite groups and contains at least one infinite order element or Γ = SL(n, Z), for n ≥ 3. It is not difficult to see that when a finite cost graphing Φ realizes the cost of R Φ then Φ is a treeing. The main results in [START_REF] Gaboriau | Mercuriale de groupes et de relations[END_REF] claim the converse:

Theorem 6.1 () If Φ is a treeing then Cost(R Φ ) = Cost(Φ).
In particular, the free actions of the free group F n have cost n.

In particular, free groups of different ranks cannot have OE free actions. The cost measures the amount of information needed to construct R. It is an analogue of the rank of a countable group Γ, i.e. the minimal number of generators or in a somewhat pedantic formulation, the infimum of the measures δ(S) over the generating systems S, where δ denotes the counting measure on the group. Similarly the cost of R is the infimum of the measures ν(C) over the Borel subsets C ⊂ R which generate R, where ν is the measure on R introduced in section 4, equation (2) (compare Connes' Bourbaki seminar [START_REF] Connes | Nombres de Betti L 2 et facteurs de type II 1 (d'après D. Gaboriau[END_REF]).

In [START_REF] Gaboriau | Coût des relations d'équivalence et des groupes[END_REF] the notion of free product decomposition R = R 1 * R 2 (and more generally free product with amalgamation R = R 1 * R 3 R 2 ) of an equivalence relation over subrelations is introduced (see also [START_REF] Ghys | Topologie des feuilles génériques[END_REF][START_REF] Paulin | Propriétés asymptotiques des relations d'équivalences mesurées discrètes[END_REF]). Of course, when R is generated by a free action of a group, a decomposition of Γ = Γ 1 * Γ 3 Γ 2 induces the analogous

decomposition of R = R Γ 1 * R Γ 3 R Γ 2 .
The cornerstone in cost theory is the following computation:

Theorem 6.2 ([Gab00a]) Cost(R 1 * R 3 R 2 ) = Cost(R 1 ) + Cost(R 2 ) -Cost(R 3 ), when R 3 is hyperfinite (possibly trivial).
These techniques allow for the calculation of the cost of the free actions of several groups: for instance SL(2, Z) (Cost = 1 + 1/12), surface groups π 1 (Σ g ) (Cost = 2g -1)... In all the examples computed so far, the cost does not depend on the particular free action of the group, thus raising the following question (which proved to be related to rank gradient and a low-dimensional topology problem; see [START_REF] Abert | Rank gradient, cost of groups and the rank versus Heegaard genus problem[END_REF]) (see also Question 8.2): Question 6.3 (Fixed Price Problem) Does there exist a group Γ with two p.m.p. free actions of non equal costs?

Observe that both the infimum Cost(Γ) ( [START_REF] Gaboriau | Coût des relations d'équivalence et des groupes[END_REF]) and the supremum Cost * (Γ) ( [AW]) among the costs of all free p.m.p. actions of Γ are realized by some actions. Question 6.4 (Cost for Kazdhan groups) Does there exist a Kazdhan property (T) group with a p.m.p. free action of cost > 1?

In his very rich monograph [START_REF] Kechris | Global aspects of ergodic group actions[END_REF], Kechris studied the continuity properties of the cost function on the space of actions and proved that Cost(R) > 1 for an ergodic R forces its outer automorphism group to be Polish. He also introduced the topological OE-invariant t([R]), defined as the minimum number of generators of a dense subgroup of the full group [R] and related it with the cost [START_REF] Kechris | Global aspects of ergodic group actions[END_REF]. When R is generated by a free ergodic action of F n , Miller obtained the following lower bound: n + 1 ≤ t([R]), and [START_REF] Kittrell | Topological properties of full groups[END_REF] proved that t([R hyp ]) ≤ 3 and that t([R]) ≤ 3(n + 1).

Lyons-Pichot-Vassout [START_REF] Lyons | Uniform non-amenability, cost, and the first l 2 -Betti number[END_REF] introduced the uniform isoperimetric constant h(R) for p.m.p. equivalence relations, a notion similar to that for countable groups h(Γ). They were able to obtain the purely group theoretic sharp comparison 2β (2) 1 (Γ) ≤ h(Γ) (where β (2) 1 (Γ) is the first ℓ 2 -Betti number). Two complementary inequalities from [LPV08, PV09a] lead to "2(Cost(R)-1) = h(R)", thus identifying two OE-invariants of apparently different nature. See [START_REF] Lyons | Probability on Trees and Networks[END_REF] for an application of cost to percolation theory.

Dimensions

Geometric group theory studies countable groups through their actions on "nice spaces". Similarly, for a p.m.p. equivalence relation (it is a groupoid [ADR00]) R on (X, µ), one might consider its actions on fields of spaces X ∋ x → Σ x , or R-field. For instance, a graphing Φ defines a measurable field of graphs x → Φ[x], on which the natural isomorphism Φ[y] ≃ Φ[z] for (y, z) ∈ R Φ induces an action of R Φ . The Bass-Serre theory [START_REF] Bass | Some remarks on group actions on trees[END_REF][START_REF] Serre | Arbres, amalgames[END_REF] relates the actions of a group on trees to its free product with amalgamation decompositions (and HNN-extensions). Alvarez [START_REF] Alvarez | Une théorie de Bass-Serre pour les groupoïdes boréliens[END_REF][START_REF] Alvarez | Un théorème de Kurosh pour les relations d'équivalence boréliennes[END_REF] developped an analogous theory in the framework of equivalence relations. For instance an equivalence relation R acts "properly" on a field of trees iff R is treeable [START_REF] Alvarez | Une théorie de Bass-Serre pour les groupoïdes boréliens[END_REF]. He also obtained a theorem describing the structure of subrelations of a free product [START_REF] Alvarez | Un théorème de Kurosh pour les relations d'équivalence boréliennes[END_REF], analogous to Kurosh's theorem. This led in [START_REF] Alvarez | Free products, orbit equivalence and measure equivalence rigidity[END_REF] to the essential uniqueness of a free product decomposition R = R 1 * • • • * R n when the factors are freely indecomposable (i.e. indecomposable as a non-trivial free product) (compare [START_REF] Ioana | Amalgamated free products of weakly rigid factors and calculation of their symmetry groups[END_REF][START_REF] Chifan | Bass-Serre rigidity results in von Neumann algebras[END_REF]). See also [START_REF] Sako | Measure equivalence rigidity and bi-exactness of groups[END_REF] for similar results for some free products with amalgamation over amenable groups.

Definition 7.1 ([AG10]) A countable group is called measurably freely indecomposable (MFI ) if all its free p.m.p. actions are freely indecomposable.

Examples of MFI groups are provided by non-amenable groups with β (2) 1 = 0.

Question 7.2 ([AG10]) Produce a MFI group with β (2) 1 > 0.
More generally, a simplicial R-field is a measurable field of simplicial complexes with a simplicial action of R (see [START_REF] Gaboriau | Invariants L 2 de relations d'équivalence et de groupes[END_REF]): the space Σ (0) of 0-cells has a Borel structure and a measurable map π onto X with countable fibers. The cells are defined in the fibers; R permutes the fibers; and everything is measurable. The action is discrete (or smooth, or proper) if it admits a measurable fundamental domain in Σ (0) . For example, consider a free p.m.p. action Γ α (X, µ) and a free action of Γ on a (usual, countable) simplicial complex L. This defines a proper simplicial R α -action on X × L induced by the diagonal Γ-action. It is instructive to consider an OE action Λ β (X, µ) and to try to figure out the action of R β = R α on X × L once Γ is forgotten.

The geometric dimension geo-dim(R) of R is defined as the smallest possible dimension of a proper R-field of contractible simplicial complexes [START_REF] Gaboriau | Invariants L 2 de relations d'équivalence et de groupes[END_REF]. It is analogous to (and bounded above by) the classical geometric dimension ([Bro82]) of Γ. The approximate dimension [START_REF] Gaboriau | Invariants L 2 de relations d'équivalence et de groupes[END_REF] (no classical analogue) approx-dim(R) of R is defined as the smallest possible upper limit of geometric dimensions along increasing approximations of R:

approx-dim(R) := min{sup(geo-dim(R n )) n : (R n ) ր R}.
For instance, geo-dim(R) = 0 for finite equivalence relations; approx-dim(R) = 0 iff R is hyperfinite; and geo-dim(R) = 1 iff R is treeable. Thus, quite surprisingly, surface groups admit free actions of geo-dim = 1. Every free action of a Kazhdan property (T) group satisfies approx-dim = geo-dim > 1 [AS90, Moo82, Gab10a]. In the following statement, β (2) n denotes the n-th ℓ 2 -Betti number (see section 8).

Theorem 7.3 ([Gab10a]) These dimensions satisfy: -a-geo-dim(R) -1 ≤ approx-dim(R) ≤ geo-dim(R). -b-If Λ < Γ satisfies β (2) p (Λ) = 0, then geo-dim(R α ) ≥ p for every free p.m.p. action Γ α (X, µ). If moreover geo-dim(R α ) = p, then β (2) p (Γ) = 0.
It follows that every free action action of

F r 1 × • • • × F rp (r j ≥ 2) (resp. Z × F r 1 × • • • × F rp )
has approx-dim = geo-dim = p (resp. geo-dim = p + 1). Moreover, for every p ≥ 3, there is a group Γ p with free actions α p and β p such that approx-dim(R αp ) = geo-dim(R αp ) = p and approx-dim(R βp ) + 1 = geo-dim(R βp ) = p.

In [START_REF] Dooley | The geometric dimension of an equivalence relation and finite extensions of countable groups[END_REF], Dooley-Golodets study the behavior of the dimension geo-dim under finite extensions. The notion of measurable cohomological dimension introduced in [ST07] has some similarity with the geometric dimension.

L 2 -Betti numbers

The ℓ 2 -Betti numbers of cocompact group actions on manifolds were introduced by Atiyah [START_REF] Atiyah | Elliptic operators, discrete groups and von Neumann algebras[END_REF] in terms of the heat kernel. Connes [START_REF] Connes | Sur la théorie non commutative de l'intégration[END_REF] defined them for measured foliations.

Cheeger-Gromov [CG86] introduced ℓ 2 -Betti numbers β (2) n (Γ) ∈ [0, ∞], n ∈ N, for arbitrary countable groups Γ. In [Gab02] the L 2 -Betti numbers β (2) n (R) ∈ [0, ∞]
, n ∈ N are defined for p.m.p. equivalence relations R, by using proper simplicial R-fields (see section 7). In any case, the definitions rely on the notion of generalized von Neumann dimension, expressed as the trace of certain projections. One of the main results in [START_REF] Gaboriau | Sur la (co-)homologie L 2 des actions préservant une mesure[END_REF][START_REF] Gaboriau | Invariants L 2 de relations d'équivalence et de groupes[END_REF] is the invariance of the β (2) n (Γ) under orbit equivalence.

Theorem 8.1 ([Gab02] ) If R Γ is generated by a free p.m.p. action of Γ, then β (2) n (R Γ ) = β (2)
n (Γ) for every n ∈ N.

The inequality Cost(Γ) ≥ β (2) 1 (Γ) -β (2) 0 (Γ) + 1 proved in [START_REF] Gaboriau | Invariants L 2 de relations d'équivalence et de groupes[END_REF] is an equality in all cases where the computations have been achieved, thus leading to the question: Question 8.2 (Cost vs first ℓ 2 -Betti number) Is there an infinite countable group with Cost(Γ) > β (2) 1 (Γ) + 1 ?

The following compression formula was a key point in various places notably when studying "self-similarities" (the "fundamental group", see [START_REF] Popa | On a class of type II 1 factors with Betti numbers invariants[END_REF]) and measure equivalence (see section 9).

Theorem 8.3 ([Gab02]) The L 2 -Betti numbers of R and of its restriction to a Borel subset A ⊂ X meeting all the classes satisfy:

β (2) n (R) = µ(A)β (2) n (R|A).
It follows that lattices in a common locally compact second countable group have proportional ℓ 2 -Betti numbers.

In [START_REF] Bergeron | Asymptotique des nombres de Betti, invariants l 2 et laminations[END_REF], L 2 -Betti numbers for profinite actions are used to extend Lück's approximation theorem [START_REF] Lück | Approximating L 2 -invariants by their finite-dimensional analogues[END_REF] to non-normal subgroups. We refer to the book [START_REF] Lück | L 2 -invariants: theory and applications to geometry and K-theory[END_REF] for information about ℓ 2 -Betti numbers of groups and for an alternative approach to von Neumann dimension. See [START_REF] Sauer | L 2 -Betti numbers of discrete measured groupoids[END_REF][START_REF] Sauer | A spectral sequence to compute L 2 -betti numbers of groups and groupoids[END_REF][START_REF] Thom | L 2 -invariants and rank metric[END_REF] for extension of β (2) n (R) to measured groupoids, and several computations using Lück's approach ( [START_REF] Neshveyev | On the definition of L 2 -Betti numbers of equivalence relations[END_REF] proves that the various definitions coincide).

Very interesting combinatorial analogues of the cost and β (2) 1 have been introduced by Elek [START_REF] Elek | The combinatorial cost[END_REF] in a context of sequences of finite graphs.

Measure equivalence

Two groups Γ 1 and Γ 2 are virtually isomorphic if there exist

F i ⊳ Λ i < Γ i such that Λ 1 /F 1 ≃ Λ 2 /F 2 ,
where F i are finite groups, and Λ i has finite index in Γ i . This condition is equivalent with: Γ, Λ admit commuting actions on a set Ω such that each of the actions Γ Ω and Λ Ω has finite quotient set and finite stabilizers. A finite set admits two natural generalizations, a topological one (compact set) leading to geometric group theory and a measure theoretic one (finite measure set) leading to measured group theory. Definition 9.1 ( [START_REF] Gromov | Asymptotic invariants of infinite groups[END_REF]) Two countable groups Γ 1 and Γ 2 are measure equivalent (ME) (notation: Γ 1 ME ∼ Γ 2 ) if there exist commuting actions of Γ 1 and Γ 2 , that are (each) measure preserving, free, and with a finite measure fundamental domain, on some standard (infinite) measure space (Ω, m).

The ratio [Γ 1 : Γ 2 ] Ω := m(Ω/Γ 2 )/m(Ω/Γ 1 ) of the measures of the fundamental domains is called the index of the coupling Ω. The typical examples, besides virtually isomorphic groups, are lattices in a common (locally compact second countable) group G with its Haar measure, acting by left and right multiplication.

The topological analogue was shown to be equivalent with quasi-isometry (QI) between finitely generated groups [START_REF] Gromov | Asymptotic invariants of infinite groups[END_REF], thus raising measured group theory (i.e. the study of groups up to ME) to parallel geometric group theory. See [START_REF] Furman | Gromov's measure equivalence and rigidity of higher rank lattices[END_REF] for the basis in ME and the surveys [Gab05a, [START_REF] Shalom | Measurable group theory[END_REF][START_REF] Furman | A survey of measured group theory[END_REF] for more recent developments. Measure equivalence and orbit equivalence are intimately connected by considering the relation between the quotient actions Γ 1 Ω/Γ 2 and Γ 2 Ω/Γ 1 . In fact two groups are ME iff they admit SOE free actions. Definition 9.2 (Stable Orbit Equivalence) Two p.m.p. actions of Γ i (X i , µ i ) are stably orbit equivalent (SOE) if there are Borel subsets Y i ⊂ X i , i = 1, 2 which meet almost every orbit of Γ i and a measure-scaling isomorphism f :

Y 1 → Y 2 s.t. f (Γ 1 .x ∩ Y 1 ) = Γ 2 .f (x) ∩ Y 2 a.e. The index or compression constant of this SOE f is [Γ 1 : Γ 2 ] f = µ(Y 2 ) µ(Y 1 )
. The state of the art ranges from quite well understood ME-classes to mysterious and very rich examples. For instance, the finite groups obviously form a single ME-class. The infinite amenable groups form a single ME-class [START_REF] Ornstein | Ergodic theory of amenable group actions. I. The Rohlin lemma[END_REF]. The ME-class of a lattice in a center-free simple Lie group G with real rank ≥ 2 (like SL(n, R), n ≥ 3) consists in those groups that are virtually isomorphic with a lattice in G [START_REF] Furman | Gromov's measure equivalence and rigidity of higher rank lattices[END_REF]. If Γ is a non-exceptional mapping class group, its ME-class consists only in its virtual isomorphism class [START_REF] Kida | The mapping class group from the viewpoint of measure equivalence theory[END_REF]. Kida extended this kind of result to some amalgamated free products (see [START_REF] Kida | Rigidity in measure-theoretic group theory for amalgamated free products[END_REF]).

On the opposite, the ME-class of the (mutually virtually isomorphic) free groups F r (2 ≤ r < ∞) contains the free products * r i=1 A i of infinite amenable groups, surface groups π 1 (Σ g ) (g ≥ 2), certain branched surface groups [START_REF] Gaboriau | Examples of groups that are measure equivalent to the free group[END_REF], elementarily free groups [START_REF] Bridson | Limit groups, positive-genus towers and measure-equivalence[END_REF]... and is far from being understood. Being ME with a free group is equivalent to admitting a free p.m.p. treeable action [START_REF] Hjorth | A lemma for cost attained[END_REF].

There is a considerable list of ME-invariants (see [START_REF] Gaboriau | Examples of groups that are measure equivalent to the free group[END_REF] and the references therein). For instance Kazhdan property (T), Haagerup property, the ergodic dimension (resp. approximate ergodic dimension) defined as the infimum of the geometric (resp. approximate) dimension among all the free p.m.p. actions of Γ, the sign of the Euler characteristic (when defined), the Cowling-Haagerup invariant, belonging to the classes C reg , C. Recently exactness (see [START_REF] Brown | C * -algebras and finite-dimensional approximations[END_REF]) and belonging to the class S of Ozawa [START_REF] Sako | The class S as an ME invariant[END_REF] were proved to be ME-invariants. There are also numerical invariants which are preserved under ME modulo multiplication by the index: Cost(Γ)-1, the ℓ 2 -Betti numbers (β (2) n (Γ)) n∈N [START_REF] Gaboriau | Invariants L 2 de relations d'équivalence et de groupes[END_REF].

ME is stable under some basic constructions:

(a) if Γ i ME ∼ Λ i for i = 1, • • • , n then Γ 1 × • • • × Γ n ME ∼ Λ 1 × • • • × Λ n (b) if Γ i ME ∼ Λ i with index 1, then Γ 1 * • • • * Γ n ME ∼ Λ 1 * • • • * Λ n (
with index 1). Some papers study when the converse holds [MS06, IPP08, CH10, AG10]. One has of course to impose some irreducibility conditions on the building blocks, and these conditions have to be strong enough to resist the measurable treatment. These requirements are achieved (a) (for direct products) if the Γ i , Λ i belong to the class C reg of [START_REF] Monod | Orbit equivalence rigidity and bounded cohomology[END_REF] (for instance if they are non-amenable non-trivial free products): the non-triviality of the bounded cohomology H 2 b (Γ, ℓ 2 (Γ)) is an ME-invariant preventing Γ to decompose (non-trivially) as a direct product; (b) (for free products) if the Γ i , Λ i are MFI (for instance if they have β (2) 1 = 0 and are non-amenable) [START_REF] Alvarez | Free products, orbit equivalence and measure equivalence rigidity[END_REF]: they are not ME with a (non-trivial) free product. We prove for instance:

Theorem 9.3 ([AG10]) If Γ 1 * • • • * Γ n ME ∼ Λ 1 * • • • * Λ p ,
where both the Γ i 's and the Λ j 's belong to distinct ME-classes and are MFI , then n = p and up to a permutation of the indices

Γ i ME ∼ Λ i .
See also [START_REF] Ioana | Amalgamated free products of weakly rigid factors and calculation of their symmetry groups[END_REF][START_REF] Chifan | Bass-Serre rigidity results in von Neumann algebras[END_REF] when the groups have Kazhdan property (T), or are direct products, under extra ergodicity hypothesis. The delicate point of removing ergodicity assumptions in [START_REF] Alvarez | Free products, orbit equivalence and measure equivalence rigidity[END_REF] was achieved by using [START_REF] Alvarez | Un théorème de Kurosh pour les relations d'équivalence boréliennes[END_REF].

Similar "deconstruction" results were obtained by Sako [START_REF] Sako | Measure equivalence rigidity and bi-exactness of groups[END_REF] for building blocks made of direct products of non-amenable exact groups when considering free products with amalgamation over amenable subgroups or by taking wreath product with amenable base.

Refinements of the notion of ME were introduced in [Sha04, [START_REF] Thom | Low degree bounded cohomology and L 2 -invariants for negatively curved groups[END_REF][START_REF] Lück | L2-torsion, the measure-theoretic determinant conjecture, and uniform measure equivalence[END_REF] or by Sauer and Bader-Furman-Sauer.

10 Non-orbit equivalent actions for a given group

In this section, we only consider ergodic free p.m.p. actions Γ α (X, µ) of infinite countable groups and the associated orbit equivalence relations R α . Ornstein-Weiss' theorem [START_REF] Ornstein | Ergodic theory of amenable group actions. I. The Rohlin lemma[END_REF] implies that amenable groups all produce the same relation, namely R hyp . What about non-amenable groups? How many non-OE actions for a given group? Most of the OEinvariants depend on the group rather than on the action, and thus cannot distinguish between various actions of the group. However, for non-Kazhdan property (T) groups, Connes-Weiss [START_REF] Connes | Property T and asymptotically invariant sequences[END_REF] produced two non-OE actions distinguished by strong ergodicity (see section 5). And along the years, various rigidity results entailed some specific families of groups to admit continously7 many non-OE actions (see for instance [START_REF] Bezuglyȋ | Hyperfinite and II 1 actions for nonamenable groups[END_REF][START_REF] Zimmer | Ergodic theory and semisimple groups[END_REF][START_REF] Gefter | Fundamental groups for ergodic actions and actions with unit fundamental groups[END_REF][START_REF] Monod | Orbit equivalence rigidity and bounded cohomology[END_REF][START_REF] Popa | Some computations of 1-cohomology groups and construction of nonorbit-equivalent actions[END_REF][START_REF] Popa | Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups[END_REF]).

We briefly describe below the crucial steps on the route toward the general solution:

Theorem 10.1 ( [START_REF] Ioana | Orbit inequivalent actions for groups containing a copy of F 2[END_REF][START_REF] Epstein | Orbit inequivalent actions of non-amenable groups[END_REF]) Every non-amenable group admits continuously many orbit inequivalent free ergodic p.m.p. actions.

The first step was made by Hjorth [START_REF] Hjorth | A converse to Dye's theorem[END_REF] when, within the circle of ideas from Connes [START_REF] Connes | A factor of type II 1 with countable fundamental group[END_REF] and Popa [START_REF] Popa | Correspondences. INCREST Preprint[END_REF], he obtained the result for Kazhdan property (T) groups.

Roughly speaking, a pair of OE actions α and β defining the same equivalence relation R gives a diagonal action (γ.(x, y) = (γ. α x, γ. β y)) on R and thus a unitary representation on L 2 (R, ν). When considering uncountably many OE actions, a separability argument shows that the characteristic function 1 D of the diagonal is sufficiently almost invariant for some pair of actions. Now, an invariant vector near 1 D , which is given by property (T), delivers a conjugacy between the actions. There exists a continuum of pairwise non-conjugate actions, and by the above the OE-classes in this continuum are countable. The next step was the analogous theorem for the prototypical non-property (T), nonrigid group, namely the free groups and some free products [START_REF] Gaboriau | An uncountable family of nonorbit equivalent actions of F n[END_REF]. It lay again within the same circle of ideas but there, rigidity was obtained through Popa's property (T) relative to the space (see section 11).

Then Ioana [Ioa07] extended it to all groups containing a copy of F 2 . For this, he introduced a weak version of property (T) relative to the space and used a general construction called co-induction 8 .

Eventually, Epstein obtained the theorem in full generality [START_REF] Epstein | Orbit inequivalent actions of non-amenable groups[END_REF]. For this she had to generalize the co-induction construction to the setting provided by Gaboriau 11 Relative property (T)

In his seminal paper [START_REF] Kazhdan | On the connection of the dual space of a group with the structure of its closed subgroups[END_REF] on property (T), Kazhdan implicitly 9 introduced the notion of property (T) relative to a subgroup Λ < Γ. In particular, a group always has property (T) relative to its "unit subgroup" {1} < Γ. When considering a groupoid like R, its space of units (X, µ) (and its "relative representation theory") is much more complicated. The introduction by Popa [START_REF] Popa | On a class of type II 1 factors with Betti numbers invariants[END_REF] of the fruitful notion of property (T) relative to the space (X, µ) (also simply called rigidity) allowed him to solve some long standing problems in von Neumann algebras. In fact, the definition involves a pair of von Neumann algebras B ⊂ M (for instance L ∞ (X, µ) ⊂ L(R)) and parallels the analogous notion for groups, in the spirit of Connes-Jones [START_REF] Connes | Property T for von Neumann algebras[END_REF].

The typical example is provided by the standard action of SL(2, Z) and its nonamenable subgroups Γ (for instance free groups F r , r ≥ 2) on T 2 . Notice Ioana's result that in fact every ergodic non-amenable subrelation of R SL(2,Z) T 2 still has property (T) relative to the space T 2 [Ioa09]. The property (T) relative to the space (X, µ) comes 8 Co-induction is the classical right adjoint of restriction. Its measure theoretic version was brought to my attention by Sauer and used in [START_REF] Gaboriau | Examples of groups that are measure equivalent to the free group[END_REF], but it probably first appeared in preliminary versions of [START_REF] Dooley | Non-Bernoulli systems with completely positive entropy[END_REF].

9 This was made explicit in [START_REF] Margulis | Finitely-additive invariant measures on Euclidean spaces[END_REF].

from the group property (T) of Z 2 ⋊ Γ relative to the subgroup Z 2 , via viewing Z 2 as the Pontryagin dual of T 2 . This property (never satisfied by standard Bernoulli shifts) entails several rigidity phenomena (see for instance [START_REF] Popa | On a class of type II 1 factors with Betti numbers invariants[END_REF][START_REF] Ioana | Amalgamated free products of weakly rigid factors and calculation of their symmetry groups[END_REF][START_REF] Gaboriau | An uncountable family of nonorbit equivalent actions of F n[END_REF]). More examples come from [START_REF] Valette | Group pairs with property (T), from arithmetic lattices[END_REF][START_REF] Fernós | Relative property (T) and linear groups[END_REF] and they all involve some arithmeticity. This led Popa to ask for the class of groups admitting such a free p.m.p. action with property (T) relative to the space. Törnquist [START_REF] Törnquist | Orbit equivalence and actions of F n[END_REF] ensures that the class is stable under taking a free product with any countable group. More generally, [START_REF] Gaboriau | Relative property (T) actions and trivial outer automorphism groups[END_REF] shows that the class contains all the non-trivial free products of groups Γ = Γ 1 * Γ 2 : in fact R Γ 1 and R Γ 2 may be chosen to be conjugate with any prescribed free Γ i -action and the arithmeticity alluded to is hidden in the way they are put in free product. This leads, using ideas from [START_REF] Popa | Actions of F ∞ whose II 1 factors and orbit equivalence relations have prescribed fundamental group[END_REF] to (plenty of) examples of R Γ with trivial outer automorphism group, in particular the first examples for free F 2 -actions [START_REF] Gaboriau | Relative property (T) actions and trivial outer automorphism groups[END_REF]. Ioana [START_REF] Ioana | Orbit inequivalent actions for groups containing a copy of F 2[END_REF] proved that every non-amenable group admits a free p.m.p. action satisfying a weak form of the above property, enough for various purposes, see section 10.

12 Some rigidity results

We have three notions of equivalence between free p.m.p. actions:

(Γ 1 α 1 X 1 Conj ∼ Γ 2 α 2 X 2 ) =⇒ (Γ 1 α 1 X 1 OE ∼ Γ 2 α 2 X 2 ) =⇒ (R α 1 vN ∼ R α 2 ).
Rigidity phenomena consist ideally in situations where (for free actions) some implication can be reversed, or more generally when a big piece of information of a stronger nature can be transferred through a weaker equivalence. Zimmer's pioneering work (see [START_REF] Zimmer | Ergodic theory and semisimple groups[END_REF]) inaugurated a series of impressive results of rigidity for the first arrow ( Conj ∼ OE ∼ ), made possible by the introduction in OE theory and in operator algebras of new techniques borrowed from diverse mathematical domains, like algebraic groups, geometry, geometric group theory, representation theory or operator algebras. These rigidity results for Γ 1 α 1 X 1 take various qualifications according to whether an OE hypothesis entails strong OE rigidity: conjugacy under some additionnal hypothesis about the mysterious action Γ 2 α 2 X 2 , or even -OE superrigidity: conjugacy of the actions with no hypothesis at all on the target action. These notions are virtual when they happen only up to finite groups (see [START_REF] Furman | Orbit equivalence rigidity[END_REF] for precise definitions).

To give some ideas we simply evoke a sample of some typical and strong statements far from exhaustiveness or full generality.

Theorem 12.1 ( [START_REF] Furman | Orbit equivalence rigidity[END_REF]) Any free action that is OE with the standard action SL(n, Z) T n for n ≥ 3, is virtually conjugate with it. This is more generally true for lattices in a connected, center-free, simple, Lie group of higher rank, and for "generic" actions (see [START_REF] Furman | Orbit equivalence rigidity[END_REF]). Monod-Shalom [START_REF] Monod | Orbit equivalence rigidity and bounded cohomology[END_REF] obtained strong OE rigidity results when Γ 1 is a direct product of groups in C reg , under appropriate ergodicity assumptions on both sides. See also Hjorth-Kechris [START_REF] Hjorth | Rigidity theorems for actions of product groups and countable Borel equivalence relations[END_REF] for rigidity results about actions of products, where the focus is more on Borel reducibility. Kida's results [START_REF] Kida | Orbit equivalence rigidity for ergodic actions of the mapping class group[END_REF] consider actions of mapping class groups of orientable surfaces and their direct products. He also obtains very strong rigidity results for certain amalgamated free products [START_REF] Kida | Rigidity in measure-theoretic group theory for amalgamated free products[END_REF]. A series of ground breaking results in von Neumann algebras obtained by Popa [Pop06a,[START_REF] Popa | Strong rigidity of II 1 factors arising from malleable actions of w-rigid groups[END_REF][START_REF] Popa | Strong rigidity of II 1 factors arising from malleable actions of w-rigid groups[END_REF][START_REF] Popa | Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups[END_REF][START_REF] Popa | On the superrigidity of malleable actions with spectral gap[END_REF] and his collaborators [PS07, IPP08, PV08d, PV08b, PV08a, Ioa08, PV08c, PV09b] (see [START_REF] Vaes | Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa)[END_REF] for a review) dramatically modified the landscape. On the OE side, these culminated in Popa's cocycle superrigidity theorems, that imply several impressive OE superrigidity corollaries, for instance: Theorem 12.2 ( [START_REF] Popa | Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups[END_REF][START_REF] Popa | On the superrigidity of malleable actions with spectral gap[END_REF]) Assume that Γ is either an infinite ICC Kazhdan property (T) group or is the product of two infinite groups H × H ′ and has no finite normal subgroup. Then any free action that is orbit equivalent with the Bernoulli shift Γ (X 0 , µ 0 ) Γ is conjugate with it.

See Furman's ergodic theoretical treatment and generalizations [START_REF] Furman | On Popa's cocycle superrigidity theorem[END_REF] for the Kazhdan property (T) case. In the opposite direction, Bowen obtained some surprising non-rigidity results [START_REF] Bowen | Orbit equivalence, coinduced actions and free products[END_REF][START_REF] Bowen | Stable orbit equivalence of Bernoulli shifts over free groups[END_REF] showing for instance that all the Bernoulli shifts of the free groups F r , 2 ≤ r < ∞ are mutually SOE (see Def. 9.2).

As it follows from [START_REF] Singer | Automorphisms of finite factors[END_REF][START_REF] Feldman | Ergodic equivalence relations, cohomology, and von Neumann algebras[END_REF], being able to reverse the second arrow ( OE ∼ vN ∼ ) essentially amounts to being able to uniquely identify the Cartan subalgebra inside L(R), i.e. given two Cartan subalgebras A 1 , A 2 in L(R 1 ) ≃ L(R 2 ), being able to relate them through the isomorphism. Such results are qualified vNE rigidity or W * -rigidity. The starting point is Popa's breakthrough [START_REF] Popa | On a class of type II 1 factors with Betti numbers invariants[END_REF] where a uniqueness result is obtained under some hypothesis on both A 1 and A 2 (and this was enough to solve long standing problems in von Neumann algebras). See also [START_REF] Ioana | Amalgamated free products of weakly rigid factors and calculation of their symmetry groups[END_REF][START_REF] Chifan | Bass-Serre rigidity results in von Neumann algebras[END_REF] for this kind of strong statements under various quite general conditions. We refer to the surveys [START_REF] Popa | Deformation and rigidity for group actions and von Neumann algebras[END_REF][START_REF] Vaes | Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa)[END_REF][START_REF] Vaes | Rigidity for von neumann algebras and their invariants[END_REF] for the recent developments in vNE or W * -rigidity. However, after a series of progresses (see for instance [START_REF] Ozawa | On a class of II 1 factors with at most one cartan subalgebra[END_REF][START_REF] Ozawa | On a class of II 1 factors with at most one cartan subalgebra II[END_REF][START_REF] Ioana | Cocycle superrigidity for profinite action of property (T) groups[END_REF][START_REF] Peterson | L 2 -rigidity in von Neumann algebras[END_REF][START_REF] Popa | Group measure space decomposition of II 1 factors and W*-superrigidity[END_REF][START_REF] Peterson | Examples of group actions which are virtually w*-superrigid[END_REF]), the most recent achievement is: 

Some further OE-invariants

In order to distinguish treeable Borel equivalence relations, Hjorth introduced a technique preventing a p.m.p. equivalence relation from being OE with a profinite one [START_REF] Hjorth | A lemma for cost attained[END_REF]. Then Kechris and Epstein-Tsankov isolated representation-theoretic properties (i.e. in terms of the Koopman representation) leading to strong forms of non-profiniteness; see [START_REF] Kechris | Unitary representations and modular actions[END_REF][START_REF] Epstein | Modular actions and amenable representations[END_REF].

Elek-Lippner introduced the sofic property for equivalence relations. It is satisfied by profinite actions, treeable equivalence relations and Bernoulli shifts of sofic groups

  µ) as a Cartan subalgebra (i.e. a maximal abelian subalgebra whose normalizer generates L(R)). With this definition, L(R) is clearly an OE-invariant. Definition 4.1 (von Neumann equivalence or W

  Theorem 12.3 ([START_REF] Ioana | W*-superrigidity for Bernoulli actions of property (T) groups[END_REF]) If a free action of a group is von Neumann equivalent with the standard Bernoulli shift action of an ICC Kazhdan property (T) group, then the actions are in fact conjugate.

  -Lyons' measurable solution to von Neumann's problem (see below). Moreover, Ioana extended Epstein's result from orbit inequivalent to von Neumann inequivalent actions [Ioa07]. When von Neumann introduced the notion of amenability [vN29], he observed that a countable group containing a copy of F 2 cannot be amenable. The question of knowing whether every non-amenable countable group has to contain a copy of F 2 , known as von Neumann's problem, was answered in the negative by Ol ′ šanskiȋ [Ol ′ 80]. In the measurable framework, offering much more flexibility, the answer is somewhat different: Theorem 10.2 ([GL09]) For any non-amenable countable group Γ, the orbit equivalence relation of the Bernoulli shift action Γ ([0, 1], Leb) Γ contains a subrelation generated by a free ergodic p.m.p. action of F 2 .In the terminology of[START_REF] Monod | An invitation to bounded cohomology[END_REF], there is a randembedding of F 2 in any non-amenable group. The proof uses percolation theory on graphs and [HP99, LS99, PSN00, Gab05b, Hjo06]. The following general question remains open:

	Question 10.3 Does every ergodic non-hyperfinite p.m.p. equivalence relation contain a
	(treeable) subrelation of cost > 1?

for instance X0 = {0, 1} and µ0({0}) = 1p, µ0({1}) = p for some p ∈ (0, 1). The only degenerate situation one wishes to avoid is X0 consisting of one single atom.

The constants are fixed vectors for the representation on L 2 (X, µ). Its orthocomplement L 2 0 (X, µ) = L 2 (X, µ)⊖C1 consists in {ξ ∈ L 2 (X, µ) : X ξ(x)dµ(x) = 0}.

An isomorphism of measure spaces is defined almost everywhere and respects the measures: f * µ1 = µ2.

for each g in the full group [R], µ(A∆gA) = 0.

i.e. for each g in [R], limn→∞ µ(An∆gAn) = 0.

Recall that a discrete group Γ is exact iff it acts amenably on some compact topological space.

This is an upper bound since Card(Aut([0, 1], Leb)) = 2 ℵ 0 .
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