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Abstract

We introduce from an experimental point of view the main @pts of fluctuation theorems for work,
heat and entropy production in out of equilibrium systeme.Wlll discuss the important difference between
the applications of these concepts to stochastic systethtbamsecond class of systems (chaotic systems)
where the fluctuations are induced either by chaotic flowsydiuztuating driving forces. We will mainly
analyze the stochastic systems using the measurementsmed in two experiments : a) a harmonic
oscillator driven out of equilibrium by an external forceatolloidal particle trapped in a time dependent
double well potential. We will rapidly describe some consemges of fluctuation theorems and some useful
applications to the analysis of experimental data. As amgia the case of a molecular motor will be
analyzed in some details. Finally we will discuss the protdeelated to the applications of fluctuation
theorems to chaotic systems.

Contents
1 Introduction 2
2 Work and heat fluctuations in the harmonic oscillator 3
2.1 Theexperimental set-up . . . . . . . . . . e 4
2.2 Theequationof motion . . . . . . . . . . . . e e 4
2.2.1 Equilibrium . . . e e e 5
2.3 Non-equilibrium Steady State (NESS): Sinusoidal fagci . . . . . ... ... ... ..... 5
2.4 Energybalance . . . . . ... e 6
2.5 Heatfluctuations . . . . . . . . . . . e e e 7
3 Fluctuation theorem 8
3.1 Shorthistory of FTs . . . . . . . . . . e e 9
3.2 FTsfor Gaussian variables . . . . . . . . . . . . e e e 9
3.3 FTsforlW, and@, measured in the harmonic oscillator . . . . . ... ... ... ...... 9
3.4 Comparisonwiththeory . . . . . . . . . . . . . . e e 11
3.5 Thetrajectory dependent entropy . . . . . . . . . . e e 11
4 The non-linear case: stochastic resonance 14



5 Applications of Fluctuation Theorems 16

5.1 Measuring the power of amolecularmotor . . . . . . . .. .. ... L. 17

6 The chaotic systems 18
6.1 Experimentaltest . . . . . . . . . . e 19
6.1.1 Granularmedia. . . . . . . . . .. 19

6.1.2 Mechanical Waves . . . . . . . . .. 20

7 Summary and concluding remarks 21

1 Introduction

This article is a review of the main experimental applicagi@f Fluctuation Theorems (FTs) and summarizes
the plenary talk given at STATPHYS24. In order to define thénntantents let us consider several simple
examples. The simplest and most basic out of equilibriurtegyss a thermal conductor whose extremities are
connected to two heat baths at different temperatures,edash&d in figl. The second law of thermodynamics
imposes that in average the heat flows from the hot to the eslervoir (from H to C in fidl). However the
second law does not say anything about fluctuations and fwiple one can observe for a short time a heat
current in the opposite direction. What is the probabilifyobserving these rare events ? As a general rule
when the size of the system decreases the role of fluctudtiorsases. Thus from an experimental point of
view it is reasonable to think that such rare events can bereéd in systems that are small. A good candidate
could be for example the thermal conduction in a nanotubese/featremities are connected to two heat baths
[1], exactly in the spirit of figl. In reality in this kind of experiments the measure of the mgaantities 1]

is already difficult and of course the analysis of fluctuadiaseven more complicated. However there is an
electrical analogy, shown in fip), of the thermal model of fia). Let us consider an electrical conductor
connected to a potential differendé = V, — Vi and kept at temperaturg by a heat bath . If the mean
current/ = V/R (R being the electrical resistance of the conductor) is of tdeoof10~!2 A and the injected
power is aboutl00kgT ~ 1079 J (kg is the Boltzmann constant) then the instantaneous cumsitte the
resistance has fluctuations whose amplitude is comparalileetmean, as shown in fig). The variance of
these fluctuations 612 ~ kpT/(R 79) wherer, is the characteristic time constant of the electrical dircu
In the specific case of Fidlc) the current reverses with respect to the mean value. Tdimpility of having
those negative currents have been studied both theohgticad experimentally in ref2, 3] within the context

of fluctuation theorems, that we will present in $ec.

We discuss a second example where the source of fluctuatimt the coupling with a thermal bath, as in
the case of the electrical conductor, but it is either a ¢bdloiws or a chaotic force produced by the non-linear
interaction of many degrees of freedom of a dissipativeesgstustained by an external driving. We will refer
to them as chaotic systems. Let us consider a turbulent womdrity around an object as sketched inZa),b).
The wind exerts a mean forcg, on the object but the instantaneous force, plotted irRdjg.is a strongly
fluctuating quantity which presents negative valulsile. the object moves against the wind 2g). In such a
case the mean work done by the wind on the object is alhalt 102’k T and obviously thermal fluctuations
do not play any role but so does the chaotic flow, which prosliice fluctuations. Other similar examples can
be found for example in shaken granular me@ig6], discussed in se6.

These examples stress that in the two experiments theiet¢atonductor and the turbulent wind we may
observe the counterintuitive effect that the instantaseesponse of the system is opposite to the mean value,
in other words the system has an instantaneous negativepgntroduction rate. This effect is induced by
the thermal fluctuations in the first case and by the chaotig ifothe second case. The question that we
want analyze in this article is whether the Fluctuationsofam (defined in section 3) is able to predict the
probability of these rare events in both cases, i.e. for thehsistic and the chaotic systems. We will take an
experimentalist approach and we will use experimentalltesuorder to introduce the main concepts.
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Figure 1. a) Schematic representation of a conductor whxisengities are in contact with two heat baths at
temperaturd’y andT¢ with Ty > T. b) Electrical analogy. A conductor of electrical resisia® and kept

at a temperaturé’ is submitted to a potential differendé = V, — V},. c) Instantaneous currehtflowing into
the resistance using = 10 MQ, T' = 300 K andry = 2 ms.
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Figure 2: a)and b) Schematic representation of an objegesaled by an elastic beam and submitted to the
pressure of a turbulent wind a) average behavior b) rareteggmime evolution of the measured instantaneous
force exerted by the turbulent wind on the object. The det#ikhis experiment can be found] [

The largest part of the article concerns stochastic systlssribed by a Langevin dynamics. For chaotic
systems we will mainly discuss the difficulty of comparing texperimental results with the theoretical pre-
dictions. The article is organized as follows. In section  present the experimental results on the energy
fluctuations measured in a harmonic oscillator driven ouegpdilibrium by an external force. In section 3
the experimental results on the harmonic oscillator are ts@ntroduce the property of Fluctuation Theorems
(FTs). In section 4 the non linear case of a Brownian partoldined in a time dependent double well potential
is presented. In section 5 we introduce the applicationk@HT, and as a more specific example we describe
the measure of the torque of a molecular motor. Finally inise® we discuss the chaotic systems and we
conclude in section 7.

2 Work and heat fluctuations in the harmonic oscillator

The choice of discussing the dynamics of the harmonic esaeillis dictated by the fact that it is relevant for
many practical applications such as the measure of thecaastf nanotubes]], the dynamics of the tip of an
AFM [8], the MEMS and the thermal rheometer that we developed akyears ago to study the rheology of
complex fluids 9, 10].
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Figure 3: a) The torsion pendulum. b) The magnetostatidrigrec) Picture of the pendulum. d) Cell where
the pendulum is installed.

2.1 The experimental set-up

This device is a very sensitive torsion pendulum as sketahéd.3a). It is composed by a brass wire (length
10 mm, width0.5 mm, thicknes$0 pm) and a glass mirror with a golden surface,3@. The mirror (length

2 mm, width8 mm, thicknessl mm) is glued in the middle of the brass wire. The elastic tmal stiffness
of the wire isC' = 4.65 - 10~* N.m.rad"!. It is enclosed in a cell, fi§d), which is filled by a fluid. We used
either air or a water-glycerol mixture 60% concentration. The system is a harmonic oscillator witlomest
frequencyf, = \/C/I.s/(27) = wp/(27) and a relaxation time, = 2/.¢/v = 1/a. L. is the total moment
of inertia of the displaced massese( the mirror and the mass of displaced fluidl]. The damping has two
contributions : the viscous dampingof the surrounding fluid and the viscoelasticity of the brage.

The angular displacement of the penduléris measured by a differential interferomet&2[13, 14, 15]
which uses the two laser beams reflected by the mirrad@&)g.The measurement noise is two orders of mag-
nitude smaller than thermal fluctuations of the penduluity) is acquired with a resolution ¢f4 bits at a
sampling rate o8192 Hz, which is about 40 timeg,. We drive the system out-of-equilibrium by forcing it
with an external torqué/ by means of a small electric curresitflowing in a coil glued behind the mirror
(Fig. 3b). The coil is inside a static magnetic field. The displacetm®f the coil and therefore the angular
displacements of the mirror are much smaller than the $zatéde of inhomogeneity of the magnetic field. So
the torque is proportional to the injected current: = A.J ; the slopeA depends on the geometry of the
system. The practical realization of the montage is showfigi 3c), 3d). In equilibrium the variancéf?
of the thermal fluctuations df can be obtained from equipartition, i.66 = \/kp T//C ~ 2 nrad for our
pendulum, wher@ is the temperature of the surrounding fluid.

2.2 The equation of motion

The dynamics of the torsion pendulum can be assimilated abdha harmonic oscillator damped by the
viscoelasticity of the torsion wire and the viscosity of twgrounding fluid, whose equation of motion reads in
the temporal domain

t
Igl+ / Gt —t)O()dt' +Co = M + 1, 1)

whered is the memory kernel angithe thermal noise. In Fourier space (in the frequency rafgeardnterest)
this equation takes the simple form

~

[—Igw?® + C) 6 = M+, ()

where: denotes the Fourier transform afd= C + i[C + wC%] is the complex frequency-dependent elastic
stiffness of the systenty andC/ are the viscoelastic and viscous components of the dameing t
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Figure 4: Equilibrium: The pendulum inside a glycerol-wateixture with M/ = 0. a) Square root of the
power spectral density @f o directly measured spectrum, black dotted line is the spacéstimated from the
measure ofy and using e@ The red dashed and dotted lines show the viscous and vistiocedamponent of
the damping respectively. b) Probability density functadd. The continuous line is a Gaussian fit

2.2.1 Equilibrium

At equilibriumj.e. M = 0, the Fluctuation Dissipation Theorem (FDT) gives a refatietween the amplitude
of the thermal angular fluctuations of the oscillator andrésponse function. The response function of the
systemy = é/M = -2 can be measured by applying a torque with a white spectrumen®h = 0, the am-
plitude of the thermal vibrations of the oscillator is reldto its response function via the fluctuation-dissipation
theorem (FDT). Therefore, the thermal fluctuation powercspédensity (psd) of the torsion pendulum reads
for positive frequencies

~2 4kpT Im ¢ — 4kpT Cf +wCy

0l) = m .
(or w X w  [~Lgw?+CP +[CV +wCl)?

3)

The brackets are ensemble averages. As an example, theuspett) measured in the glycerol-water mixture

is shown in figda). In this case the resonance frequency,is= /C/I.g/(27) = wo/(27) = 217 Hz and

the relaxation timer, = 2I.¢/v = 1/a = 9.5 ms The measured spectrum is compared with that obtained
from eq3 using the measureg. The viscoelastic component at low frequencies corresporal constant

CY{ # 0. Indeed ifw — 0 then from edd (\é]2> x 1/w as seen in figla). Instead ifC] = 0 then for

w — 0 from eq3 the spectrum is constant as a function.oflt is important to stress that in the viscoelastic
case the noise is correlated and the process is not Markovian, whereaservidtous case the process is
Markovian. Thus by changing the quality of the fluid surroimgdthe pendulum one can tune the Markovian
nature of the process. In the following we will consider ofitg experiment in the glycerol-water mixture

where the viscoelastic contribution is visible only at véow frequencies and is therefore negligible. This
allows a more precise comparison with theoretical premhictioften obtained for Markovian processes. The
probability density function (pdf) of, plotted in figdb), is a Gaussian.

2.3 Non-equilibrium Steady State (NESS): Sinusoidal foreig

We now consider a periodic forcing of amplitudé, and frequency, i.e. M(t) = M, sin(wqt) [14]-[17].
This is a very common kind of forcing which has been alreaddist in the case of the first order Langevin
equation 18] and of the two level systenip] and in a different context for the second order Langevire¢iqun
[20]. Furthermore this is a very general case because usingefFaansform, any periodical forcing can be
decomposed in a sum of sinusoidal forcing. We explain hexd#havior of a single mode. Experiments have
been performed at variout/, andw,. We present here the results for a particular amplitude esgléncy:
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M, = 0.78 pN.m andw,/(27) = 64 Hz. This torque is plotted in Figba. The mean of the response to
this torque is sinusoidal, with the same frequency, as caseba in Fighb. The system is clearly in a non-
equilibrium steady state (NESS).
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Figure 5: a) Sinusoidal driving torque applied to the oatilf. b) Response of the oscillator to this periodic
forcing (gray line) ; the dark line represents the mean nese((t)).

The work done by the torqu&/ (¢) on a timer,, = 27 n/wy is

ti+Tn do
W, = W = / M) @)
t dt
As 0 fluctuates alsdV,, is a fluctuating quantity whose probability density funot{gdf) is plotted in fig6a)
for variousn. This plot has interesting features. Specifically, worktilations are Gaussian for all values of
n and W, takes negative values as longasis not too large. The probability of having negative valués o
W, decreases when, is increased. There is a finite probability of having negatiralues of the work, in
other words the system may have an instantaneous negatiopeproduction rate although the average of
the work < W, > is of course positive< . > stands for ensemble average). In this specific example is
< W, >=0.04 n(kg T). We now consider the energy balance for the system.
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Figure 6: Sinusoidal forcing. a) Pdf &F,: 7 = 7 (o), n = 15 (0), n = 25 () andn = 50 (x). b) Pdf of AU,

2.4 Energy balance

As the fluid is rather viscous we will take into account onlg tandard viscosity that ] = 0 andC? = v.
In such a case etjsimplifies

d%¢ dé

+v—+CO0=M+ n,

[cff @ dt (5)
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wherey is the thermal noise, which in this case is delta-correlatatme: < n(t) n(t') >=2 kp T vé(t —t').
When the system is driven out of equilibrium using a deteistin torque, it receives some work and a

fraction of this energy is dissipated into the heat bath.tMlying Eq. (5) by # and integrating betweer and

t; + 7, one obtains a formulation of the first law of thermodynantiesveen the two states at timeandt; + 7

(Eq. 6)). This formulation has been first proposed in 2f][and used in other theoretical and experimental

works [22, 18]. The change in internal energyU.. of the oscillator over a time, starting at a time;, is written

as:

AU, = U(ti + 7’) — U(tl) =W, - Q- (6)
wherelV; is the work done on the system over a time
ti+71
W, = A4(ﬂ)§§(ﬂ)dﬂ (7
t dt

and Q- is the heat dissipated by the system. The internal enerdeistm of the potential energy and the
kinetic energy :

1. [do, 1% 1 )
U(t) = {ileff [a(t)] + §C9(t) } : (8)
The heat transfef) .. is deduced from equatio); it has two contributions :
QT = WT - AUT
ttT 149,13 T de
_ v t = (" dt. 9
[ [Ge] e [T e G ©

The first term corresponds to the viscous dissipation anthigya positive, whereas the second term can be
interpreted as the work of the thermal noise which has a fiticty sign. The second law of thermodynamics
imposes(Q,) to be positive.
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Figure 7: Sinusoidal forcing. a) Pdf &¥.- b) Pdf of Q. for variousn: n = 7 (o), n = 15 (J), n = 25 (¢) and
n = 50 (x). The continuous lines in this figures are not fits but aredital predictions obtained from the
Lnagevin dynamics as discussed in sdt.

2.5 Heat fluctuations

The dissipated hed}., can not be directly measured because we have seen tRata@tains the work of the
noise (the heat bath) that experimentally is impossible éasare, becausgis unknown. However), can
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be obtained indirectly from the measureldi and AU, whose pdf measured during the periodic forcing are
exponential for any-, as shown in fighb. We first do some comments on the average values. The awefrage
AU, is obviously vanishing because the timés a multiple of the period of the forcing. Therefo{#/,,) and
(@) are equal.

We rescale the workV (the heatQ.) by the average worKIW) (the average heai?.)) and define:
Wy = WVI[;—; (¢r = %). In the present article;.-, respectivelyX ., stands for eithetw.. or ¢., respectivelyi?’,
orQ.

We compare now the pdf af. andgq, in Fig. 7. The pdfs of heat fluctuationg, have exponential tails
(Fig. 7b). It is interesting to stress that although the two vadgabl.. and Q. have the same mean values
they have a very different pdf. The pdf af, are gaussian whereas thosegpfare exponential. On a first
approximation the pdf of;, are the convolution of a Gaussian (the pdfi&f) and exponential (the pdf of
AU.). In Figs.7 the continuous lines are analytical predictions obtaimethfthe Langevin dynamics with no
adjustable parameter (see s@d).

3 Fluctuation theorem

In the previous section we have seen that bidth and Q. present negative valuesge. the second law is
verified only on average but the entropy production can hastaintaneously negative values. The probabilities
of getting positive and negative entropy production arentjtatively related in non-equilibrium systems by the
Fluctuation Theorem (FTSs).

There are two classes of FTs. TRationary Sate Fluctuation Theorem (SSFT) considers a non-equilibrium
steady state. Th&ansient Fluctuation Theorem (TFT) describes transient non-equilibrium states wharea-
sures the time since the system left the equilibrium statBluituation Relation (FR) examines the symmetry
around0 of the probability density function (pdf)(z,) of a quantityx., as defined in the previous section. It
compares the probability to have a positive event £ +x) versus the probability to have a negative event
(z, = —x). We quantify the FT using a functiosi (symmetry function) :

kT N p(z; = +x)
sto) = G (5 =5 o

TheTransient Fluctuation Theorem (TFT) states that the symmetry function is linear withfor any values
of the time integration and the proportionality coefficient is equalitdor any value ofr.

S(z;) =xr, VYV, VT (11)
Contrary to TFT, the&ationary Sate Fluctuation Theorem (SSFT) holds only in the limit of infinite timer{.

lim S(z;) = x,. (12)

T—00

In the following we will assume linearity at finite time[2, 29] and use the following general expression :
S(‘T’T) = Ex(T) Tr (13)

where for SSFT, (1) takes into account the finite time corrections &ind, ., >, (7) = 1 whereasZ, (1) =
1, Vr7forTFT.

However these claims are not universal because they depaheé &ind ofz.- which is used. Specifically we
will see in the next sections that the results are not ex#etysame ifX ; is replaced by any one 6V, Q.- and
(T stot,r), defined in secB.3. Furthermore the definitions given in this section are appate for stochastic
systems and in se6twe will discuss the differences between stochastic andtichsygstems.



3.1 Short history of FTs

The first numerical evidence of relations of this kind hasiogigen by Evans et al. in reRB] whereas the TFT
was proved in ref4]. In 1995 Gallavotti and Coher2f] proved SSFT for dynamical systems although in
such a case, takes a different meaning that we will discuss in €cthe proof of SSFT has been extended to
stochastic dynamics in ref2[26, 27, 28, 29]. Furthermore van Zon and Cohen proved that there is an itapor
difference between the FTs for the injected power and thos¢he dissipated poweR]29]. The SSFT has
been proved also for other quantities such as the dissipatitction B0] and the total entropydl, 32]. Other
theoretical papers studied FT and the reader may find a rewiegi.[33, 34]. Experiments searching for FTs
have been performed in dynamical systeq$] 36], but interpretations are very difficult because a quatitita
comparison with theoretical prediction can be doubtfulhé@texperiments have been performed in stochastic
systems described by a first order Langevin equation: a Beswparticle in a moving optical tra@¥] and

an out-of-equilibrium electrical circui] in which existing theoretical prediction®,[29] were verified. Other
experimental tests for FTs have been performed on drivenavad systems]9] and on colloids 18].

3.2 FTs for Gaussian variables

Let us suppose the the variable has a Gaussian distribution of meanX, > and varianceyg(f. It is easy
to show that in order to satisfy FTs, the variable must have the following statistical property:

0% =2kpT <X, > (14)

This is an interesting relation because it imposes thatdlagive fluctuations o - are

ox 2k T

r_ 15

X, <X, > (15)
This means that the probability of having negative everdsces by increasing -, specifically from ed.5

it follows that P(X, < 0) = erfc(y/< X; > /(2 kgT)) whereerfc is the complementary error function. It

is now possible to estimate the length of the time intetygl needed to observe at least one negative event,
which is:

.
erfc < ;f};?r )
where we used the fact that all the valués computed on different intervals of lengthare independent,
which is certainly true ifr is larger than the correlation time.

Let us consider the specific example of sectbd i.e. < W, >= 0.04n(kpT) atwy/(2 ) = 67 Hz,
M, = 0.78 pN.m andr = 27n/wy4. The pdf of iV, are Gaussian in this case (FBpgand, as we will see in the
next section, they satisfy SSFT for large Therefore ed.5 holds for X- = W, and we may estimatg,, in
the asymptotic limitr, << 7. For example at = 200, one obtains from the above mentioned experimental
valuest ~ 3s >> 1, and < W, >= 8kpT. Inserting these experimental values inl&gpne gets roughly
a negative event over an observational titgg ~ 641s, which is already a rather long time for the distance

between two events. For largerand largeri, this time becomes exponentially large. This justifies thot fa
that millions of data are necessary in order to have a reliatdasure of SSFT.

tobs = (16)

3.3 FTsforWW, and (). measured in the harmonic oscillator

The questions we ask are whether for finite time FTs are satihr eitherz, = w, or x, = ¢, and what are
the finite time corrections. In a first time, we test the cdioecto the proportionality between the symmetry
function S(z,) andz.. In the region where the symmetry function is linear with we define the slopE, (1),

i.e. S(z;) = ¥,(7)z,. In a second time we measure finite time corrections to theeval, () = 1 which is
the asymptotic value expected from FTs.
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Figure 8: Sinusoidal forcing. Symmetry functions for SS&ISymmetry functions'(w, ) plotted as a function
of w, for variousn: n = 7 (o), n = 15 (), n = 25 (¢) andn = 50 (x). For alln the dependence &f(w,)
onw; is linear, with slopez,, (7). b) Symmetry functions (¢, ) plotted as a function aof, for variousn. The
dependence df(q,) ong; is linear only forg, < 1. Continuous lines are is theoretical predictions.

15 ; ,
L wy/2m = 256Hz (o)

2(n)
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Figure 9: Finite time corrections for SSFT. a) Sinusoidatifog. >,,(7) as a function of n obtained from
the slopes of the straight lines of R8g) (d). The circles correspond to another measurement perfoanad
different frequency. The finite time corrections dependrendriving frequency. The slope, (7) measured for

qr < 1 (Fig.8b) have exactly the same values%j(7) as a function of.. b) Linear forcing.X,,(7) measured

as a function ofr with the driving torque)M has a linear dependence on time. The finite time corrections
depend on form of the driving.

In this review article we will focus on the SSFT applied to thgperimental results of se@.3and to other
examples. The TFT will be not discussed here and the intetestiders may look at ret]].

From the pdfs ofw, andgq, plotted in Figs/, we compute the symmetry functions defined in1€q.The
symmetry functionS(w,,) are plotted in Fig8a) as a function ofv,,. They are linear inv,,. The slopeX,,(n)
is not equal tal for all n but there is a correction at finite time (Figr). Nevertheless;,,(n) tends tol for
largen. Thus SSFT is satisfied fé#. and for a sinusoidal forcing. The convergence is very slodnae have
to wait a large number of periods of forcing for the slope tol l{after 30 periods, the slope is stifl.9). This
behavior is independent of the amplitude of the forcivig and consequently of the mean value of the work
(W,), which, as explained in s&:2, changes only the time needed to observe a negative eveatsyBtem
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satisfies the SSFT for all forcing frequencieg but finite time corrections depend ary, as can be seen in
Fig. 9a).

We now analyze the pdf of, (Fig.7b)) and we compute the symmetry functiofi§g,,) of ¢, plotted in
Fig. 8b) for different values of.. They are clearly very different from those of, plotted in Fig.8a). For
S(gn) three different regions appear:

() For large fluctuationsy,, S(g,) equals2. Whenr tends to infinity, this region spans frogy = 3 to
infinity.

(1) For small fluctuationsy,, S(¢,) is a linear function ofy,. We then definez,(n) as the slope of the
functionS(gy),i.e S(¢n) = £4(n) ¢,. We have measuredT] thatX,(n) = ¥,,(n) for all the values of, i.e.
finite time corrections are the same for heat and work. Thy(s) tends tol whenr is increased and SSFT
holds in this region Il which spans from, = 0 up toq,, = 1 for larger. This effect has been discussed for the
first time in refs.p9, 2].

(1) A smooth connection between the two behaviors.

These regions define the Fluctuation Relation from the hisaipéted by the oscillator. The limit for large
7 of the symmetry functior$'(¢, ) is rather delicate and it has been discussed inlrgf.|

The conclusions of this experimental analysis is that SS#idshfor work for any value ofv, whereas for
heat it holds only forg. < 1. The finite time correction to FTs, described by ¥ are not universal. They
are the same both far, andg, but they depend on the driving frequency as shown indailg. Furthermore
they depend on the kind of driving force. In F&p) we plotX,, () measured when the harmonic oscillator is
driven out of equilibrium by a linear ramipThe difference with respect Fifa) is quite evident.

3.4 Comparison with theory

This experimental analysis allows a very precise compangith theoretical predictions using the Langevin
equation (edp) and using two experimental observations: a) the progedfeheat bath are not modified by
the driving and b) the fluctuations of th&, are Gaussian (see alsgg], where it is shown that in Langevin
dynamicsl¥, has a Gaussian distribution for any kind of deterministiwidg force if the properties of the
bath are not modified by the driving and the potential is hamig)o The observation in point a) is extremely
important because it is always assumed to be true in all #@¢tical analysis. In refl[7] this point has been
precisely checked. Using these experimental observatioescan compute the pdf gf and the finite time
correctionsX(7) to SSFT (see refl]7]). The continuous lines in Fi@, Fig.8 and Fig.6 are not fit but analytical
predictions, with no adjustable parameters, derived fioenLiangevin dynamics of €gj(see ref.17] for more
details).

3.5 The trajectory dependent entropy

In previous sections we have studied the endidy injected into the system in the timeand the energy
dissipated towards the heat b&ph. These two quantities and the internal energy are relatedebfirst law of
thermodynamics (ef)). Following notations of ref31], we define the entropy variation in the system during a
timer as:

1
Asmr = —Q-. 17
Smr = 7:Q (17)

For thermostated systems, entropy change in medium behlkgdbe dissipated heat. The non-equilibrium
Gibbs entropy is :

<S(t)> = _kB/dfp(f(t)7ta)‘t) lnp(f(t)7ta)‘t) (18)

where)\; denotes the set of control parameters at tinaedp(Z(¢), ¢, \;) is the probability density function
to find the particle at a positiofi(¢) at timet, for the state corresponding £9. This expression allows the

1The stationarity in the case of a ramp is discussed in2@f17]

11



r

|
|
|
| phasetw, |
I
|

|
| I
! 1 1 4
! | | T
=0 =t t=2m/m,

1071

o pdf S

0(t) —8(t) (10 % ad)

Figure 10: a) Schematic diagram illustrating the methodtogute the trajectory dependent entropy, b) Pdf of
6(t) around the mean trajectory 6(¢) >. The continuous line is the equilibrium distribution

definition of a "trajectory-dependent” entropy :
s(t) = —kpInp(Z(t),t, \) (19)

The variationAs - Of the total entropy.. during a timer is the sum of the entropy change in the system
during T and the variation of the "trajectory-dependent” entropg timer, As, = s(t + 1) — s(t) :

AStot,’r = Stot (t + T) - Stot(t) = Asm,r + As; (20)

In this section, we study fluctuations s, , computed using1(7) and (9). We will show thatAs;q -
satisfies a SSFT for alt. In ref. [32], the relevance of boundary terms likes. has been pointed out for
Markovian processes.

We investigate the data of the harmonic oscillator desdribesect2.3.The probability to compute is the
joint probability p(0(t; + Tn),é(ti + 7n), @), Wherey is the starting phase = t,wy. The system is linear, so
0(t;+7,), 6(t;+1,) are independent; thus the joint probability can be facéatinto a product. The expression
of the trajectory dependent entropy is :

(21)

p(0(t; + 1), ) P(O(t; + T, w)))
p(O(ti + 7). ) p(O(t; + Tny @)

ASTn = —]{TB In ( R

For computing correctly the trajectory dependent entraghave to calculate th€6(¢;), ¢) andp(6(t;), )
for each initial phase (see Figl0a). These distributions turn out to be independent ahd they correspond to
the equilibrium fluctuations of andé around the mean trajectory defined(8yt)) and(d(t)). The distribution
of A(t;) is plotted in FiglOb), where the continuous line corresponds to the equilibrilistribution. Once the
p(0(ti, @) andp(é(ti), ) are determined we compute the "trajectory-dependentbpgtrAs fluctuations of
andd are independent @f we can averagas,, overy which improves a lot the statistical accuracy. We stress
that it is not equivalent to calculate first the pdfs over allues of — which would correspond here to the
convolution of the pdf of the fluctuations with the pdf of aipeic signal — and then compute the trajectory
dependent entropy. The results are shown in Elg.

In Fig. 11a), we recall the main results for the dissipated ligat= T'As,, .. Its average valu€l’. Asy, )
is linear in7,, and equal to the injected work. The pdfs’BfAs,, ., are not Gaussian and extreme events
have an exponential distribution. The pdf of the "trajegtdependent” entropy is plotted in fig1b); it is
exponential and independentiaf We superpose to it the pdf of the variation of internal eneligided byT at
equilibrium: the two curves match perfectly within expeeintal errors, so the "trajectory-dependent” entropy
can be considered as the entropy exchanged with the thexhibte system is at equilibrium. The average
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Figure 11: Torsion pendulum. a) pdfs of the normalized gytreariation Asy, -, /(Asm -,) integrated over
n periods of forcing, withn = 7 (o), n = 15 (d), n = 25 (¢) andn = 50 (x). b) pdfs of As,, , the
distribution is independent af and heren = 7. Continuous line is the theoretical prediction for equiliin
entropy exchanged with thermal batts,,, ., .. C) pdfs of the normalized total entro@ysiot -, /(Astot, )
withn = 7 (), n = 15 (), n = 25 (¢) andn = 50 (x). d) Symmetry functions for the normalized entropy
variation in the system (small symbols in light colors andstands fofl" As,, , = Q) and for the normalized
total entropy (large symbols in dark colors alid stands forl' As;.s 5, ) for the same values of.

value ofAs,, is zero, so the average value of the total entropy is equaktaverage of injected power divided
by T. In Fig. 11c), we plot the pdfs of the normalized total entropy for fogpital values of integration time.
We find that the pdfs are Gaussian for any time.

The symmetry functions (et0) of the dissipated he&(7'As,, -, = Q;) and the total entrop¥ (7' Asot, r, )
are plotted in Figlld). As we have already seen in F8gS(Q;) is a non linear function of), = 7" Asy, ;.
The linear behavior, with a slope that tendd for large time, is observed only for faxs,, -, < (Asm ) < 1.

For the normalized total entropy, the symmetry functioresliamear withAs -, for all values ofAs -, and
the slope is equal td for all values ofr,,. Note that it is not exactly the case for the first values,pbecause
these are the times over which the statistical errors arkatgest and the error in the slope is large.

For the harmonic oscillator we have obtained that the "ttajg-dependent” entropy can be considered as
the entropy variation in the system in a timéhat one would have if the system was at equilibrium. Theeefo
the total entropy is the additional entropy due to the preserf the external forcingthisisthe part of entropy
which is created by the non-equilibrium stationary process. The total entropy (or excess entropy) satisfies the
Fluctuation Theorem for all times and for all kinds of statoy external torquéfL, 32]. More details on this
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problem can be found in re89].

4 The non-linear case: stochastic resonance
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Figure 12: a) Drawing of the polystyrene particle trappedvioy laser beams whose axis distance is about the
radius of the bead. b) Potential felt by the bead trapped &yt laser beams. The barrier height between the
two wells is abouRkgT.

The harmonic oscillator cannot be driven to a non lineamnegivithout forcing it to such a high level where
thermal fluctuations become negligible. Thus in order talgtilhe non linear effects we change experiment
and we measure the fluctuations of a Brownian particle tppea non-linear potential produced by two
laser beams, as shown in Fig. It is very well known that a particle of small radiug ~ 2 um is trapped
in the focus of a strongly focused laser beam, which prodackarmonic potential for the particle, whose
Brownian motion is confined inside this potential well. Whew laser beams are focused at a distabice R,
as shown in Fig.2a) the particle has two equilibrium positions, i.e. the fo€ithe two beams. Thermal
fluctuations may force the particle to move from one to theotfhe particle feels an equilibrium potential
Uo(z) = ax* — bx?® — dx, shown in Figl2b), wherea, b andd are determined by the laser intensity and
by the distance of the two focal points. This potential hasnbeomputed from the measured equilibrium
distribution of the particle’(z) « exp(Up(x)). The right left asymmetry of the potential (FIgb) is induced
by small unavoidable asymmetries, induced by the opticssing the two laser beams. In our experiment the
distance between the two spotslig5 m, which produces a trap whose minima arecgt, = +0.45 pm.
The total intensity of the laser B mW on the focal plane which corresponds to an inter-wellibagnergy
oU, = 1.8 kgT, a:ni‘m-n = 1.8 kT, b:n?nm = 3.6 kT andd|z,;| = 0.44 kT (see ref40] for more
experimental details). The rate at which the particle jufin@s: one potentials well to the other is determined
by the Kramer’s rate), = Ti exp(%) wherer, is a characteristic time. In our experiment~ 0.3 Hz at
300 K.

To drive the system out of equilibrium we periodically maatel the intensity of the two beams at low
frequency. Thus the potential felt by the bead is the follmyyprofile:

Uz, t) = Uy(z) + Up(z,t) = Uy + c x sin(27 ft), (22)

with ¢|2mn| = 0.81 kgT'. The amplitude of the time dependent perturbation is syrabusly acquired with
the bead trajectors.

>The parameters given here are average parameters sinceeffieientsa, b and ¢, obtained from fitted steady distributions at
given phases, vary with the phase (a ~ 10%, db/b ~ dc/c ~ 5%).
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Figure 13: a) The perturbed potentialtat % andt = %. b) Example of trajectory of the glass bead and

the corresponding perturbation At= 0.1 Hz. c) Mean Injected energy in the system over a single period
as a function of the driving frequeney. W, > [J and < W, > o coincide as their mean values are equal

within experimental errors. The error bars are computeah fitte standard deviation of the mean over different

runs. Inset: Standard deviations of work distributionsr@single period normalized by the average work as a
function of the frequency (same symbols).

An example of the measured potential for 4i and% is shown on the Figl3a). This figure is obtained
by measuring the probability distribution functidi(x, t) of x for fixed values ofcsin(27 ft), it follows that
U(z,t) = —In(P(x,t)).

Thez position of the particle can be described by a Langevin égjuat

"y(t - _M + 7, (23)
Oz

with v = 1.61 1078 N s mi”! the friction coefficient and) the thermal noise delta correlated in in time. When
¢ # 0 the particle can experience a stochastic resonaftfe \when the forcing frequency is close to the
Kramer’s rate. An example of the sinusoidal force with ther@sponding position are shown on the figure
13b). Since the synchronization is not perfect, sometimegp#rdcle receives energy from the perturbation,
sometimes the bead moves against the perturbation leadiagégative work on the system. Two kinds of
work can be defined in this experimend]

[T 0U(a,t)
Won(t) = /t dztT (24)
Wan(t) =~ [t 220 (25)
(26)

where in this casé; = % is a multiple of the forcing period. The woli’, ,, is the stochastic work (used in
Jarzynsky and Crooks relation&7] 49, 13]) and W ,, is the classical work that will be discussed in this article.
The results oW/, ,, are quite similar but there are subtle differences discliBseef.[40].

We first measure the average work received over one periodifferent frequenciest = % in eq. 25).
Each trajectory is here recorded during 3200 s in differemisecutive runs, which corresponds to 160 up to
6400 forcing periods, for the range of frequencies explorgdorder to increase the statistics we consider
10° differentt,. The figure13c) shows the evolution of the mean work per period for bothnitedins of the
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Figure 14: a) Distribution of classical woil’,; for different numbers of period = 1, 2, 4, 8 and12 (f =
0.25 Hz). Inset: Same data in lin-log. b) Normalized symmetryction as function of the normalized work
forn =1 (+),2(0), 4 (¢), 8 (A), 12 (O).

work. First, the input average work decreases to zero whefrélguency tends to zero. Indeed, the bead hops
randomly several times between the two wells during theopgerSecond, in the limit of high frequencies, the
particle has not the time to jump on the other side of the ttapdiher stays in the same well during the period,
thus the input energy is again decreasing when increasaggiéncy. In the intermediate regime, the particle
can almost synchronize with the periodical force and fo#ldhe evolution of the potential. The maximum of
injected work is found around the frequengyx~ 0.1 Hz, which is comparable with half of the Kramers’ rate
of the fixed potentiatx = 0.3 Hz. This maximum of transferred energy shows that the sgiheesonance
for a Brownian particle is a bona fide resonance, as it wasqusly shown in experiments using resident time
distributions f2, 43] or directly in simulations44, 45]. In the inset of Figl13, we plot the normalized standard
deviation of work distributionsA/ (WW)) as a function of the forcing frequency. The curves presemiiégmum

at the same frequency of 0.1 Hz, in agreement again with g@nemce phenomena.

In order to study FT for stochastic resonance we choose &extternal driving a frequency = 0.25 Hz,
which ensures a good statistic, by allowing the observatfathe system over a sufficient number of periods.
We compute the works and the dissipation using 10° different ¢ on time series which spans about 7500
period of the driving.

We consider the pdfP(1W,;) which is plotted in (Fig.14a). Notice that for smalh the distributions are
double peaked and very complex. They tend to a gaussianrfpe ta(inset of Fig. 14a). On Fig.14b), we
plot the normalized symmetry function &, ,,. We can see that the curves are close to the line of slope one.
For high values of work, the dispersion of the data incredsesto the lack of events. The slope tends toward
1 as expected by the SSFT. It is remarkable that straighs Eme obtained even for close to 1, where the
distribution presents a very complex and unusual shape 1A&). We do not discuss here the casélaf,, as
the behavior is quite similar to that &F; ,, [40]. The very fast convergency to the asymptotic value of tiee th
SSFT is quite striking in this example. The measurementraidly agreement with a realistic model based on
the Fokker Planck equations where the measured valugéxof) has been inserted§]. This example shows
the application of FT in a non-linear case where the digtidioig are strongly non-Gaussian.

5 Applications of Fluctuation Theorems

The Fluctuations Theorems have several important consegaeuch as the Jarzinsky and Crooks equalifes|
48, 49|, which are useful to compute the free energy differencevben two equilibrium states using any kind
of transformation]3, 15, 51, 50]. The Hatano-Sasap] relations and the recently derived Fluctaution Dissipa-
tion Theoremd}2] are related to FTs and are useful to compute the respons®lBSS using the steady state
fluctuations of the NESS. As we have seen the FT allows theauledilon of tiny amount heat, which can be
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useful in many applications in aging systerb8,[54] and biological systems.

The FTs for Langevin systems can be used to measure an unkamvaged power. This idea has been
discussed first in the context of electrical circuBsdnd in ref.pb7] it has been applied for the first time to the
measure of the the torque of a molecular motor. We discussiétieod in some details in the next subsection.
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Figure 15: Molecular motor. a) Schematic diagram af,aATPase molecular motor composed by a rotor
(radius~ 1 nm) which rotates inside stator of raditis5 nm formed by threev 5 subcomplexes. Sequential
chemical reactions between the stator and the rotor protthécenotion. Thex5 subcomplexes are attached to
a suitably coated glass plate. Streptavidin is used totattag either actin filaments3g] or streptavidin-coated
beads$7]. b) In order to follow the rotation of the rotor with a stamdanicroscope a streptavidin-coated bead
of radius~ 0.5 um is glued toy subunit (drawing not to scale). The figures c),d) and e) (tdkam ref.[57]))
illustrate the results of a measure. c) Pdfs for seve@ Af,.. d) Symmetry function extracted from the Pdfs
of c). e) SlopesVX(7) of the symmetry function as a function of The different colors pertain to different
experimental conditions. Notice the convergency to anusieplue of N for larger. Strictly speaking in this
figure the functior®(7) keeps into account also the fact that2itjs not necessarily valid for short times (see
text)

5.1 Measuring the power of a molecular motor

A molecular rotary motor, as any kind of motor, is constitut®/ a stator and a rotor. The movement of the
rotor is provoked by chemical reactions occurring seqa#iptbetween the rotor and stator. A typical example
of bio-motor is the bacterial flagellum. However it has beleoven [58] that a single molecule df;-ATPase
may act as a motor composed by aubunit ( radius~ 1 nm) which rotates inside a barrel of radivss nm
formed by threex 5 subcomplexes (see figha) for a schematic diagram and r&f/[ 58] for more details). In
experiments, theyd subunit is stuck on a suitably activated glass plate as showig.15a). The measure of
the torque of this motor is important in order to know its eficcy as a function of the concentration of the
chemicals contained in the liquid surrounding it. The tgbsize of this molecular motor is several nanometers
and the moving unit is too small to be observed with an optitiatoscope. Therefore to measure the torque of
F,-ATPase motor a streptavidin-coated bead of radiag:m is glued on the subunit, and the motion of this
bead is followed by a standard microscope as sketched irlBlij. The motion of the bead occurs on a torus
andd is the coordinate of the motion along the torus. The timewgiah of # can be described by a Langevin
equation:
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F=N +¢, (27)

where N is the torque of the motol; the viscous dissipation of the fluid surrounding the bead gt
thermal noise. In order to estimadé, it is in principle enough to measure the mean angular viglacid > of
the bead and obviously from &f.one gets:

N=T <0> (28)

However the procedure is not so simple because in order itoast/V one has to know the exact valuelof
which is a function of the viscosity of the fluid, the radilisof the bead path, the radiu® of the bead, the
shape of the bead and the distari¢eof the bead from the surface of the glass plate where the iexpet
is performed (see Fidl5b). The variableZ, is certainly the most difficult to be determined experiméynta
Therefore using e@8 the error onN can be really very large. There is instead another methoplogeal in
ref.[3] for electric circuits and first used for measurements inrmtors in ref.57]. This method is based
on work fluctuations and is much more precise. To apply it, wgpsse thatV is constant. This is a quite
reasonable hypothesis for certain regime$ pfATPase motors. We compute the wdik. performed by the
motor in a timer:

t+71 X
W () = /t N 6(t)dt = N A6, 29)

whereAd, = 6(t + 7) — 0(t) and we have used the fact thiitis constant. In previous section we have seen
that Langevin systems satisfy the SSFT, which we now appli/.toUsing eq29 and the constancy @f SSFT
for the molecular motor reads:

In (%) =X(1)N kA:Z: with ¥(7) = 1 for 7 — oo (30)
This equation is quite interesting because the valué&/afan be determined only by the measure of the

fluctuations ofA#.. Indeed plottingln(P(A6,)/P(—A6.)) as a function ofAd,/(kpT) we notice that the

slope of the straight lines iIS(7) N. Therefore studying the asymptotic value of this slope éogér one can

determinelN. It is interesting to note that in this case the knowledgé' ¢ not needed. This technique has

been recently applied to molecular motor in rgT][and their main results are plotted in Figs c),d),e). The

relevant parametex(r) N, extracted from the pdf ai\d, (Fig. 15 c) and the symmetry function (Fid5 d),

is plotted in Fig.15e) 2. We see a clear convergence to a unique value and one getg preeise estimation

of the torque of the molecular motor independently of the sind shape of the bead glued-tainit of the

F,-ATPase motor. This is a very specific and interesting exarapthe possible applications of FT.

6 The chaotic systems

In previous sections we have studied the probability of tietaintaneous negative entropy production rates
within the context of the FTs for stochastic systems, whieecfluictuations are produced by the coupling with
a thermal bath. In se8.2we have seen that when the energy injected into the systeargisrithanl 00 kT

the probability of these negative events is very small aedithe needed to observe them becomes extremely
long. In other words the role of thermal fluctuations beconmegligible.

However in the introduction we have shown that instantasemgative entropy production rates can be
observed in chaotic systems such as, for example, turlkeiland granular media, where the fluctuations are
produced by the non linear interactions of many degreesefiivm. We have also pointed out that for chaotic
systems the amount of injected energy is order of magnitiadgsr thank T and of course thermal fluctuations

3It has to be stressed that in this specific cB$e) keeps into account the fact that for short time2&ds not a good approximation
for the dynamics of the motor and €28,30 apply only for long time

18



do not play any role in the fluctuating dynamics. The quedtian we want to analyze in this section is whether
we can apply in these systems the FTs defined iBdec.stochastic systems, ed6:13. For a dissipative
chaotic system one could imagine to repléggl’, in eqs10-13, with a characteristic energl. which keeps
into account the relevant energy scales of the system fliimtsa However the definition of this relevant energy
scale can be in general difficult and even impossible, beciunsay depend on the observable and on the kind
of forcing. Thus the approach of introducing Ahnis not very useful to compare the experimental results with
the proof given for dynamical systemy. Indeed in this case the theorem considers a quantity :

or [T o(t) dt

= =& (31)
<or> <o >

Yr

whereo (t) is the instantaneous phase space contractionaatie integral ofo on a timer and< o, > the
mean ofg-. Three hypothesis has been done on the dynamical systerh whist be : a) dissipative, b) time
reversible c) Anosot¢

lln Plyr) _ <o>y,+0(1/7) for T— o0 (32)

T P(_yT)
where< o > is the mean phase space contraction rate, which has the sloneof 1/¢. In this equation
the relevant variable is the phase space contraction raighvilas been identified as the entropy production
rateR5]. The phase space contraction rate is a global variableeagytbtem but an extension of the theorem for
local variables has been done in red§,[56]. One reason for developing local FT is that global fluctuadiare
usually not observable in macroscopic systems, as a coaisegt is important to understand whether a local
measurement is representative of the dynamics3Hups been tested in several numerical simulations (see for
example ref33, 34] for a review), here we want to focus on experiments.

6.1 Experimental test

The test of e@2 in experiments is extremely useful to analyze several itapbrquestions. The first one is
whether ed32 may have a more general validity independently of the eite hypothesis done to prove it.
Indeed the hypothesis b) is never satisfied in real systeththarhypothesis ¢) does not necessarily apply to all
of them. Thus in general we do not even know whetheB2gan be applied in the experimental system under
study. The second question concerns the choice of the @iBerundeed the direct measure of the phase space
contraction rate is not possible and one has to rely upon tesuare of another observable usually the energy
W injected into the system by the external forces in a timen other words one is making the important
hypothesis thay.., defined in e®1in terms ofo (¢) is equivalent tac, = W,/ < W, >. This hypothesis, that

is not necessarily valid, is the second question that onéddiiie to address in experiments. The third question
is related to the estimation of the prefactors > in the right hand side of eg2. This prefactor, which is a
function of the Lyapunov exponents, is very difficult to ssdie in an experimental system. Finally the last
guestion concerns the relevance of a local observable tactesize the dynamics of the system.

There are not many experiments where these questions havednalyzed in some details. In several
experiments4, 36] only the linearity inz, of the symmetry functiom(z,) = (1/7) In (P(x,)/P(—x,)) has
been checked, which, for the reasons discussed in the peepiragraph, is only a partial test. For example
three experiments have tried to give an answer to the questithe prefactor. Two of these experiments are
performed in granular medi&,[6] and the third on mechanical wave turbulence in a metallidg3]. We
will not describe in details the experiments here but we gglhment the main results.

6.1.1 Granular media

The two experiments of ref&] 6] consist of diluted granular media strongly shaken by aatitm; but the
measured quantities are not the same. In5ftje authors measure the fluctuations of the energy flux in a

“For a precise definition see ref35 34]. Roughly speaking this property ensures that the systemgistic and that on the attractor
there are no regions of finite volume that do not contain goint
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subvolume of the system. Instead réf.{he work done by an external force on a ratchet inside thaujaa
media is measured. They both find that although the systemtithermal the stochastic version of SSFT
(eql0) holds, provided thakzT is replaced by a characteristic eneigy.

P(r:) <X;>
P(-z,)  E.

In xr +0(1/7). (33)
with =, = X,/ < X, >, X, is the integral of energy flux in ref] and the workiV. performed by an
external force on a ratchet in reéd][ It must be pointed out that in both experiments of ré&fsg] the energy

E. has been measured independently. In5gfq found thatE. is about 5 times larger than the kinetic energy
K of the shaken granular medium for all the values of the cop@oameters used in the experiment. The
fact that Kz and E,. have the same dependence on the control parameter havenbegmedted considering
that the vibrator injects into the system the amount of gntasgt in the collisions but once excited in a NESS
the granular medium behaves like a thermal bath for the medsabservable. However this interpretation is
not necessarily correct. Indeed for the experiment of5kit[as been shown in a numerical simulatidsg]
that for the quantity measured in this experiment FT doesappty for the large deviations, because the
symmetry functionS(x,) becomes non-linear for large.. This discrepancy between theory and experiment
is obviously coming from the fact that experimentally theydarge deviation are difficult to be measured, thus
the non-linear part of(z,) cannot be observed. However the experiment of 3gfq certainly interesting
because is the first where the question of the prefactor hexs &ealyzed experimentally. In contrast for the
experiment of ref§] is observed thatl, = Kg(1 + «)/2 wherea is the restitution coefficient of the grains.

It is interesting to notice thak'z (1 + «)/2 is the temperature of an intruder inside a diluted granuder ap

it has been found in theoretical mode&0] 61, 62]. These two examples of comparison between numerical
and experimental results show the difficulty of interprgtthe experimental results on FT and the importance
of verifying them in a precise theoretical framework. Whdoes the difference between the experiments of
ref.[5] and ref.p] come from ? The answer can be found on the fact that in the kperenents two different
guantities are measured. Indeed in sewte have seen that, even for stochastic systems, the fluartgabif
W-, Q- andAsi -, behave differently within the context of FT. This can be moweplex for granular media
and it will be useful to give more insight on this point. Fuatinore even in cases where a description in terms
of Ec applies, comparing €83 with eq32 a question that arises naturally is whetkeiV. > /E. is a good
estimation of< ¢ > 7. This is an important question which will be interesting t@kyze in the future.

6.1.2 Mechanical waves

In the experiment on mechanical wav&3|| a metallic plate is set into a chaotic state of wave tunhcteby a
periodic local forcing at5 Hz. (see Figl6a). The chaotic dynamics is produced by the non-linear acten

of the oscillatory modes of the plate. The authors measeréottal force and displacement (see Higa) and
compute the workV. done on a time- by the external force which excites the vibrations of theeld hey
find that the pdfs oft, = W,/ < W, > are strongly non-gaussian (see Figb). From these pdfs they
compute the symmetry functign(z,) which is plotted (see Fidl6c) as a function of:.. We see that in spite
of the fact that the pdf are not Gaussian the funcién,) (Fig. 16c) converges to a unique straight line for
larger as predicted by FT. From &g the slope of this straight line is ¢ >, which the authors can estimate
independently by measuring the relaxation time of the vibnal modes. They find that the values estimated
with the two methods (FT and the relaxation time) are vergeland within experimental errors. This result is
quite interesting and it is probably the only experiment reghe direct test of e§2 has been done. Certainly
the errors of this comparison are very large but this kindesfs are useful to understand in some details the
applications of FTs to chaotic systems.
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Figure 16: Mechanical waves in a metallic plate (from &8]]. a) Schematic diagram of the experiment.
A steel plate is suspended to the frame. Dimensions are inTdm. electromagnetic exciter produce et lo-
cal forcing of the plate vibrations. A laser vibrometer meas the normal velocity at the excitation point.
b)and c) Results on the periodic forcing. (b) Pdfs of thedtgd power on the time durations of for

T = 3.5bms, 6.5, 13.5, 20, 26.5, 33.5, 40, 47.5, 52ms ) (c) Functionsp(z,) = (1/7)In (P(z;)/P(—x;))
obtained from the Pdfs of (b). Inset: compensated value )/x in a semi log plot. In (c) the dashed line
corresponds to a linear law of slopes >= 700H z.

7 Summary and concluding remarks

In this paper we have reviewed several experimental resaltse fluctuations of injected and dissipated power
in out of equilibrium systems. We considered the two casemwihe fluctuations are produced by the coupling
with the heat bath (stochastic systems) and when they aduged by the non linear interactions of many
degrees of freedom (chaotic systems). We have seen thathicéses we observe that the external forces may
produce a negative work because of fluctuations. The prhityatii these negative events has been analyzed in
the framework of fluctuation theorem.

We have mainly discussed the stochastic systems desciybeahigevin equations, both with harmonic and
unharmonic potential. We have seen that injected and digippower present different behaviors. FTs are
valid for any value ofi¥.. whereas can be applied only f@. << @, > in the case of the heat. We have
also seen the the finite time corrections to SSFT depend odriiag and on the properties of the system.
We have introduced the total entropy, which takes into actamly the entropy produced by the external
forces neglecting the the equilibrium fluctuations. For thi&l entropy FTs are valid for all the times. We
discussed the applications of FTs to extract importantiphiyproperties of a stochastic system. Thus one may
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conclude that for Markovian systems driven by a determnfetce the applications of FT does not present any
major problems and can be safely applied. The case of randemglhas been recently discussed and several
problems may arise when the variance of the driving becorgetdhan the fluctuations induced by the thermal
bath. We have not discussed this problem but an analysissoflecific case can be found in re8s .64, 65].

Finally we discussed the applications of FT to chaotic systelhe experimental test is in this case very im-
portant and useful because many questions can be asked systhen under study which does not necessarily
verify all the theoretical hypothesis. One has to say th#técase of non-Gaussian statistics even the linearity
of the symmetry function can be an interesting result. He@rge pointed out that, for a real comparison with
theory, the difficulty is to estimate of the prefactor of22jpy an independent measurement. Only a few exper-
iments have addressed this point in some details, but malygms remain open and it seems to be difficult to
find a general behavior for chaotic systems as for the cagediastic ones.
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