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PACS. 47.50.-d – Non-Newtonian fluid flows.
PACS. 47.20.-k – Flow instabilities.
PACS. 83.60.Rs – Shear rate-dependent structure (shear thinning and shear thickening).

Abstract. – We investigate the effect of surface waves generated by the Faraday instability
on a shear-thickening surfactant solution under vertical vibrations. We show that a prolonged
oscillation of the surface above the instability onset leads to an increase of the fluid viscosity.
This phenomenon is evidenced by comparing the time needed for the instability to develop in
the fluid at rest and once the fluid has been shaken above onset: pre-shaking may delay the
instability by two orders of magnitude. A simple model based on a time-dependent viscosity is
proposed which accounts quantitatively for the experimental observations.

Introduction. – In the last few decades, the coupling between microstructure and flow
in complex fluids has been the subject of intense research effort [1]. In most cases the flow is
a simple shear flow induced by a rheometer. Yet, another way to induce a controlled flow is
by means of hydrodynamic instabilities. In this paper the effect of the well-known Faraday
instability, by which the initially flat surface of a fluid layer submitted to vertical vibrations
gives way to surface waves with characteristic wave number kc above some critical acceleration
ac [2], is tested on a shear-thickening dilute solution of wormlike micelles [3]. Recently, the
Faraday instability in complex fluids has been the subject of various studies [4–11]. In most of
these previous works [4–8], the authors compared the behaviour of a complex fluid to that of
a Newtonian one close to the instability threshold. Differences were explained by invoking the
linear viscoelastic properties of the samples. Far above the instability threshold, a stronger
coupling between the flow induced by the instability and the complex fluid microstructure is
expected. For instance, in clay suspensions, hysteresis and high-amplitude fingerlike structures
were shown to be linked to shear-thinning [9]. In shear-thickening colloidal suspensions,
external perturbations may grow and get stabilized as “persistent holes” across the fluid
surface [10]. In a dilute polymer solution, the flow–microstructure coupling can delay the
transition to disordered states [11]. The present work shows that, far above the instability
threshold, the surface waves become large enough to induce shear-thickening in dilute wormlike
micelles. In the following we first present the complex fluid under study and the experimental
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Fig. 1 – (a) Temporal evolution of the viscosity of a 250 ppm CTAB-NaSal solution for γ̇ = 5 s−1 at
T = 20 ◦C. (b) Viscosity η as a function of the shear rate γ̇. See the text for experimental details.

set-up. Then measurements of the set-up time of the Faraday instability, defined as the time
needed for the surface waves to become large enough to be detected by our experimental set-up,
are presented. We show that the set-up time may increase by two orders of magnitude when the
fluid is pre-shaken above the instability threshold. Finally a model is proposed to account for
such observations, based on a time dependence of the viscosity induced by the surface waves.

System under study and rheological measurements. – Our working fluid is a dilute
solution of wormlike micelles made of CTAB-NaSal in water at a very low concentration
cCTAB = 250 ppm by weight and the molar ratio of salt to surfactant is 1 : 1. This worm-
like micelle solution in the dilute regime is known to display a shear-thickening behaviour
at typical shear rates γ̇ = 1–10 s−1 [3]. Such shear-thickening has also been observed in a
wide range of other wormlike micelle solutions and appears as a common feature of dilute
systems [12–14]. In order to characterise our low-viscosity micellar system, rheological mea-
surements are performed in a double Couette geometry (rotor radii 28 and 34 mm, stator
radii 29.5 and 32 mm) thermostated at T = 20 ◦C using a strain-controlled Rheometrics RF-
SII rheometer. Figure 1(a) shows the dynamic viscosity η as a function of time when a shear
rate of 5 s−1 is imposed at time t = 0. After an induction time of about 200 s, η(t) increases
by a factor of 10 within a characteristic time of about 500 s. This temporal evolution of the
viscosity is comparable to that reported in the same system by Liu and Pine [3]. Next a con-
stitutive curve η vs. γ̇ is obtained by submitting our fluid to various shear rates γ̇ for 1000 s
and by averaging η(t) over the last 100 s. Such a procedure is repeated three times. The vis-
cosity shown in fig. 1(b) is the mean of these three measurements and the error bars are their
standard deviation. It is clearly seen that between γ̇ = 0.5 and 5 s−1, the viscosity increases
with increasing shear rate up to η = 16 mPa s. Such a shear-thickening phenomenon was
attributed to the formation of a shear-induced gel-like structure [15,16], which was confirmed
by light scattering experiments [12]. At greater shear rates, the fluid becomes shear-thinning
as expected for a gel that gets progressively broken down by shear. The curve η(γ̇) of fig. 1(b)
is only qualitatively similar to that of ref. [3]. In our opinion, the large error bars shown by
our data in the shear-thickening regime illustrate the variability in both the final value of the
viscosity and in the induction and growth times of η(t), as well as the sensitivity of viscosity
measurements to filling conditions and contamination in such dilute samples.

Experimental set-up for the Faraday instability. – Our experimental set-up has been
described in ref. [8]. A cylindrical cell of depth 10 mm and diameter 60 mm filled with our
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fluid and thermostated at T = 20 ± 0.1 ◦C is submitted to vertical vibrations of frequency
f by an electromagnetic shaker (Ling Dynamic Systems V406). The fluid layer is lit from
above so that the surface is seen bright only when it makes an angle greater than 1◦ with
the horizontal plane. Close to the instability onset, small-amplitude surface patterns can
be approximated by a superposition of sinusoidal waves of wave number kc and amplitude
ξ. With our set-up, surface waves are detected only when ξ > ξd = tan(π/180)/kc. In our
experiments, kc � 1000 m−1 so that ξd � 20 µm.

In a first step, measurements of the critical acceleration ac and wave number kc (not
shown) were performed. As reported earlier by Raynal et al. [4], the viscoelastic behaviour of
the solution leads to ac values lower than those of a Newtonian fluid with the same zero-shear
viscosity while kc follows the same dispersion relation. Besides, in our system, the response of
the surface is always subharmonic (i.e. at f/2) over the frequency range f = 20–200 Hz and ac

measurements do not reveal any significant hysteresis. Two elements may explain the absence
of any signature of shear-thickening in these measurements. First, the time needed to measure
ac and kc at a given frequency (∼ 3 min) is smaller than the characteristic time for shear-
thickening (∼ 10 min). Second, although the equivalent shear rate, estimated as γ̇ = πfξdkc

close to instability onset [6], falls into the shear-thickening regime (one finds γ̇ � 6 s−1 for
f = 100 Hz), the wave amplitude may still be too small to induce any modification of the
fluid microstructure because the flow involved in the Faraday experiment is both oscillating
and elongational and thus strongly differs from the continuous shear used in rheological ex-
periments. Therefore, in order to induce shear-thickening through the Faraday instability,
the experiments detailed below were performed on longer time scales and at accelerations far
above the instability threshold where the wave amplitude is larger.

Experimental results. – To evidence a signature of shear-thickening, we measure the set-
up time ta of the instability in our fluid once it has been shaken at an acceleration av above
onset for a duration tv. The exact experimental procedure is sketched in fig. 2(a). The fluid
layer is first vibrated at frequency f and av = 2ac for a duration tv. Such a “pre-shaking” is
followed by a short period when the instability is stopped (a = ac/2 for 3 s then a = 0.9ac for
1 s) and the surface wave completely disappears. Finally, the acceleration is set to a = (1+ε)ac

and the set-up time, i.e. the time needed for the surface wave to be detected again by our
experimental set-up, is measured. This method is preferred to a direct measurement of ac

(a)
a

v
=2a

c

  a
c

a
c
/2

t
v

t
a

t=0

3s

1s

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

t
v
 (s)

t a (
s)

(b)

Fig. 2 – (a) Experimental procedure. (b) Set-up time ta vs. the pre-shaking duration tv at av = 2ac

and f = 100Hz. The continuous line is the result of the best fit by eqs. (8) and (9) with τ = 461 s
and δ∞ = 0.149.
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Fig. 3 – Set-up time ta vs. a (top scale) and ε (bottom scale) for the fluid at rest (•) and for the
pre-shaken fluid (�). The continuous line is the best fit by eqs. (6) and (7). The vibration frequency
is (a) f = 60Hz, (b) f = 85Hz, and (c) f = 135Hz. The fit parameters are given in table I.

because the time needed to precisely measure ac may vary from 1 to 5 min and therefore is not
suitable for a time-dependent microstructure. In all cases, two successive measurements of ta
are separated by at least ten minutes, in order to make sure that our fluid is not perturbed
by previous excitation.

In a first experiment, tv is varied from 1 to 1800 s for f = 100 Hz and ε = 0.05. Figure 2(b)
shows that ta strongly increases with increasing tv, up to two orders of magnitude. More
precisely, ta remains roughly constant up to tv � 200 s which corresponds to the induction time
mentioned above in fig. 1(a). ta then saturates to about 600 s which again is consistent with the
characteristic growth time of the shear-induced structure. We interpret this remarkable effect
on the set-up time as a consequence of shear-thickening induced by pre-shaking above onset.

In a second experiment, ta is measured after pre-shaking at fixed av = 2ac and tv = 600 s
for various final accelerations a above ac. The results are shown in fig. 3 and compared to the
set-up time measured in the fluid initially at rest (i.e. without pre-shaking) for three different
frequencies. Let us first discuss the results obtained in the fluid at rest. As expected, one finds
ta ∝ 1/ε, where ε = a/ac−1 is the dimensionless distance to the threshold. Indeed, in general,
as long as the amplitude ξ of the surface wave is small enough, ξ(t) follows the equation [17]

τg
dξ

dt
= εξ, (1)

where ε/τg is the growth rate, so that for a perturbation of initial amplitude ξ0, the set-up
time ta defined by ξ(ta) = ξd is given by

ta = T0
ac

a − ac
, (2)

Table I – Best-fit parameters used in eqs. (6) and (7) to model the ta vs. ε data for f = 60, 85, and
135Hz. The resulting fits are shown in fig. 3.

f (Hz) 60 85 135

a0 (m s−2) 7.3 10.9 19.3
T0 (s) 0.49 0.35 0.28
τ (s) 501 565 502

δ 0.136 0.105 0.076
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where T0 = τg ln(ξd/ξ0) is the set-up time for ε = 1 (i.e. a = 2ac). As shown in fig. 3,
eq. (2) perfectly matches the experimental data in the fluid at rest and allows us to determine
precisely ac hereafter noted a0 for the sake of clarity (to within less than 1%) and T0 (to about
2%). The best fit parameters are given in table I.

Let us now turn to the set-up time in the pre-shaken fluid. As seen in fig. 3, for a given
ε, ta is much larger (sometimes a hundred times larger) for the pre-shaken fluid than for the
fluid at rest. In the following, we argue that this behaviour is linked to an increase of the
fluid viscosity induced by the surface waves when the fluid is shaken at av = 2a0. After the
instability is stopped and the acceleration is set to its final value, the viscosity tends to relax
towards that of the fluid at rest. In this case, the instability threshold and the characteristic
time τg become time dependent. The set-up time thus results from a trade-off between the slow
relaxation of the viscosity and the increase of the critical acceleration and growth rate induced
by shear-thickening. In order to get a more quantitative understanding of this phenomenon,
a simple model is proposed thereafter.

Model. – Our main assumption is that, once the surface waves have disappeared and the
acceleration is set to a at time t = 0, the viscosity decreases exponentially with a characteristic
time τ : for t > 0, η(t) = η0(1 + δ exp[−t/τ ]), where η0 is the viscosity of the fluid at rest
and δ accounts for shear-thickening induced during pre-shaking so that η(t = 0) = η0(1 + δ).
Moreover, it is known that, for a Newtonian fluid, ac ∝ η and τg ∝ η−1 [17]. If we assume
our dilute micellar solution to be a Newtonian fluid whose only time-dependent parameter is
the viscosity, we have

ac(t) = a0
η(t)
η0

= a0(1 + δe−t/τ ), (3)

τg(t) = τg0
η0

η(t)
=

τg0

1 + δe−t/τ
, (4)

where ε/τg0 is the growth rate for the fluid at rest.
For a given acceleration a above a0, two cases are possible: a ≤ ac(0) or a > ac(0). If

a ≤ ac(0), the surface remains flat as long as a < ac(t). Let t1 be the time needed for the
viscosity to relax so that a = ac(t1). Equation (3) yields t1 = τ ln(δ/ε). By changing the time
origin t → t− t1, we are left with solving the case a = ac(0), i.e. ε = δ. For small amplitudes
and time-dependent τg and ε, eq. (1) becomes

τg(t)
dξ

dt
=

(
a

ac(t)
− 1

)
ξ. (5)

Inserting eqs. (3) and (4) and integrating eq. (5) over time, one finds T0/ε = t2 − τ(1 −
exp[−t2/τ ]), where t2 is the set-up time in the case a = ac(0) and T0 = τg0 ln(ξd/ξ0). If one
further assumes that t2/τ � 1, an expansion to second order in t2/τ leads to t2 =

√
2T0τ/ε.

Finally, when a ≤ ac(0), the set-up time ta is the sum of the two terms t1 and t2:

ta = t1 + t2 = τ ln
(

δ

ε

)
+

√
2T0τ

ε
. (6)

The first term corresponds to the decrease of ac(t) down to the imposed acceleration, while
the second term derives from the growth of the surface wave amplitude up to ξd.

Turning now to the case a > ac(0), one has ε(t) = (ε − δe−t/τ )/(δe−t/τ + 1). Integrating
eq. (5) under the assumption ta/τ � 1 leads to

ta =
(

1 − ε

δ

)
τ +

√(
1 − ε

δ

)2

τ2 +
2T0τ

δ
. (7)
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It is easily checked that for ε = δ, eqs. (6) and (7) give the same value for ta and that for
ε 	 δ, the same scaling as for the fluid at rest, namely ta = T0/ε, is recovered from eq. (7).

Although our expression for ta involves four parameters, a0, T0, δ, and τ , there are actually
only two free parameters δ and τ . Indeed, as already mentioned, a0 and T0 are determined
experimentally by fitting ta(ε) for the fluid initially at rest using eq. (2). Then δ and τ are
found by fitting ta(ε) for the pre-shaken fluid with eqs. (6) and (7), where a0 and T0 are fixed
to the values found previously. The results of these fits are shown in fig. 3 and the various
fit parameters are presented in table I. The fits are in good quantitative agreement with the
experimental results. As expected, a0 increases as f increases and τ remains roughly constant
τ � 520 s ±10%. A posteriori, one can check that t2 � τ as soon as ε > 0.002.

Going back to the first experiment reported in fig. 2(b), the same arguments can be used
to understand the increase of ta with tv at a fixed ε. Here we assume that during pre-shaking
at av = 2a0, the viscosity increases with tv as η(tv) = η0(1 + δ∞(1 − exp[tv/τ ])), where
η0(1 + δ∞) is the asymptotic viscosity and τ the characteristic time of shear-thickening. Note
that, although the exponential decay proposed above is probably a reasonable model for the
relaxation of the viscosity towards its value at rest, an exponential growth of η(t) is clearly
inconsistent with the rheological measurements shown in fig. 1(a) which rather involve an
induction time of about 200 s. In the present approach, we chose to keep an exponential form
for η(t) so that the equations remain tractable analytically. Following the path used to find
eqs. (6) and (7), we end up with the following expressions: if δ∞(1 − e−tv/τ ) ≥ ε = 0.05,

ta =

√
2τT0

(
1 +

1
ε

)
+ τ ln

(
δ∞(1 − e−tv/τ )

ε

)
, (8)

and if δ∞(1 − e−tv/τ ) < ε = 0.05,

ta = τ

(
1 − ε

δ∞(1 − e−tv/τ )

)
+

√
τ2

(
1 − ε

δ∞(1 − e−tv/τ )

)2

+
2T0τ

δ∞(1 − e−tv/τ )
. (9)

As shown in fig. 2(b), the fit obtained with a characteristic time τ = 461 s and δ∞ = 0.149
closely matches the experimental data. Such an accuracy of our crude exponential model for
η(t) points to a weak dependence of the set-up time on the details of η(t).

Discussion. – Let us now discuss the present results and model. The various relaxation
times τ found by fitting our simple model to the experimental data are strikingly similar
to the characteristic times revealed in rheological experiments. We conclude that the same
shear-thickening phenomenon is at play under pure shear flow and in the surface wave pat-
tern induced by the Faraday instability. As in previous work under shear [12], we tried to
evidence turbid regions characteristic of a gel-like structure using light scattering. However
such experiments did not reveal any significant increase of the turbidity neither locally nor
globally. This is probably because the effect is too small or too localized compared to the
one at constant shear rate. Indeed, as indicated by our model, the viscosity increase is much
smaller under vibrations (δ ∼ 10%) than under continuous shear (∼ 1000%). We believe
that the main reason for this discrepancy is that, in the Faraday instability, the shear rate
at the surface oscillates in time and the period of the oscillation is much smaller than τ
(1/f = 0.01 � τ ∼ 500 s). Therefore, one should rather compare the shear strains τ γ̇ � 2000
under continuous shear to 2πξkc � 2 in the Faraday experiment, where γ̇ � 5 s−1 is the typical
shear rate for shear-thickening and ξ � 300 µm is the amplitude of the surface waves at ε = 1.
The fact that τ γ̇ 	 2πξkc could explain why the increase of viscosity is much smaller in the
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Faraday experiment but still noticeable through set-up time measurements. Finally, note that
the comparison with pure shear flow (which involoves both rotation and elongation) may not
be that relevant since the flow field induced by the Faraday instability is purely elongational
besides a viscous sublayer [11]. In the absence of any published data on the present micellar
system under elongational flow, the issue of the exact interplay between Faraday waves and
shear-thickening is left as an open question.

Conclusion. – Set-up time measurements of the Faraday instability revealed a shear-
thickening phenomenon induced by surface waves. A simple phenomenological model was
proposed to account for the experimental observations. Even if no gel-like structure was
directly evidenced, these experiments show that, far above the instability threshold, the surface
deformation is large enough to induce a change in the microstructure of this particular complex
fluid. Further experiments will deal with fluids whose shorter relaxation times may couple
more strongly to the Faraday instability. An interesting question would then be whether the
structuration of the flow into patterns with some characteristic wave number can be used to
imprint some macroscopic spatial organization of the fluid microstructure with the same wave
number.
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