
HAL Id: ensl-00527462
https://ens-lyon.hal.science/ensl-00527462v1

Preprint submitted on 19 Oct 2010 (v1), last revised 5 Nov 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On optimal tree traversals for sparse matrix factorization
Mathias Jacquelin, Loris Marchal, Yves Robert, Bora Uçar

To cite this version:
Mathias Jacquelin, Loris Marchal, Yves Robert, Bora Uçar. On optimal tree traversals for sparse
matrix factorization. 2010. �ensl-00527462v1�

https://ens-lyon.hal.science/ensl-00527462v1
https://hal.archives-ouvertes.fr


On optimal tree traversals for sparse matrix factorization

Mathias Jacquelin, Loris Marchal, Yves Robert and Bora Uçar
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Abstract—We study the complexity of traversing tree-shaped
workflows whose tasks require large I/O files. Such workflows
typically arise in the multifrontal method of sparse matrix
factorization. We target a classical two-level memory system,
where the main memory is faster but smaller than the sec-
ondary memory. A task in the workflow can be processed
if all its predecessors have been processed, and if its input
and output files fit in the currently available main memory.
The amount of available memory at a given time depends
upon the ordering in which the tasks are executed. What
is the minimum amount of main memory, over all postorder
schemes, or over all possible traversals, that is needed for an
in-core execution? We establish several complexity results that
answer these questions. We propose a new, polynomial time,
exact algorithm which runs faster than a reference algorithm.
Next, we address the setting where the required memory
renders a pure in-core solution unfeasible. In this setting, we
ask the following question: what is the minimum amount of
I/O that must be performed between the main memory and
the secondary memory? We show that this latter problem is
NP-hard, and propose efficient heuristics. All algorithms and
heuristics are thoroughly evaluated on assembly trees arising
in the context of sparse matrix factorizations.

Keywords-Sparse matrix factorization, Multifrontal method,
Assembly tree, Tree traversal, Postorder tree traversal, I/O
minimization.

I. INTRODUCTION

We consider the following memory-aware traversal prob-

lem for rooted trees. The nodes of the tree correspond to

tasks, and the edges correspond to the dependencies among

the tasks. The dependencies are in the form of input and

output files: each node accepts a large file as input, and

produces a set of large files, each of them to be accepted

by a different child node. We are to execute such a set of

tasks on a two-level memory system. The execution scheme

corresponds to a traversal of the tree where visiting a node

translates into reading the associated input file and producing

output files. How one can traverse the tree so as to optimize

memory usage? For convenience we refer to the two-levels

of storage as the main memory and the secondary memory,

and also as in-core and out-of-core. Many combinations such

as cache and RAM, or RAM and disk, or even disk and

tape, lead to the same association of a faster but smaller

storage device together with a larger but slower device.

The difficulty remains the same for all combinations: find

an execution scheme that makes the best use of the main

memory, and minimizes accesses to the secondary memory.

Throughout the paper, we consider out-trees where a

task can be executed only if its parent has already been

executed. However, we show in Section III that all results

equivalently apply to in-trees, where tasks are processed

from the leaves up to the root. Each task (or node) i in

the tree is characterized by the size fi of its input file (data

needed before the execution and received from its parent),

and by the size ni of its execution file.

During execution, non-leaf nodes generate several output

files, one for each child, which can have different sizes. A

task can be processed only in-core; its execution is feasible

only if all its files (input, output, and execution) fit in

currently available memory. More formally, let M be the

size of the main memory, and S the set of files stored in this

memory when the scheduler decides to execute task i. Note

that S must contain the input file of task i. The processing

of task i is possible if we have:

MemReq(i) = fi+ni+
∑

j∈Children(i)

fj ≤M−
∑

j∈S,j 6=i

fj (1)

where MemReq(i) denotes the memory requirement of

task i (and Children(i) its child nodes in the tree). Once i
has been executed, its input file and execution file can be

discarded, and replaced by other files in main memory; the

output files can either be kept in main memory, in order

to execute some child of the task, or they can temporarily

be stored into secondary memory (and retrieved later when

the scheduler decides to execute the corresponding child

of i). The volume of accesses (reads or writes) to secondary

memory is referred to as the I/O volume.

Clearly, the traversal, i.e., the order chosen to execute

the tasks, plays a key role in determining which amount of

main memory and I/O volume are needed for a successful

execution of the whole tree. More precisely, there are two

main problems which the scheduler must address:

MINMEMORY Determine the minimum amount of main

memory that is required to execute the tree without any



access to secondary memory.

MINIO Given the size M of the main memory, determine

the minimum I/O volume that is required to execute the

tree.

Obviously, a necessary condition for the execution to be

successful is that the size M of main memory exceeds the

largest memory requirement over all tasks:

max
i

MemReq(i) ≤M

However, this condition is not sufficient, and a much larger

main memory size may be needed for the MINMEMORY

problem.

The main motivation for this work comes from numerical

linear algebra. Tree workflows (assembly or elimination

trees) arise during the factorization of sparse matrices, and

the huge size of the files involved makes it absolutely neces-

sary to reduce the memory requirement of the factorization.

The trees arising in this context are in-trees (as said before,

and as we will discuss later, there is no difference between

in-trees and out-trees). We build upon two key results from

the literature [1], [2]. Liu [1] discusses how to find the best

traversal for the MINMEMORY problem when the traversal

is required to correspond to a postorder traversal of the tree.

In the follow-up study [2], an exact algorithm is proposed

to solve the MINMEMORY problem, without the postorder

constraint on the traversal.

In this paper, we propose a new exact algorithm called

MinMem for the MINMEMORY problem. The MinMem

algorithm is based upon a novel approach that systematically

explores the tree with a given amount of memory. This ap-

proach is quite different from the techniques used in [2]. Al-

though the worst-case complexity of the proposed MinMem

algorithm is the same as that of Liu’s, i.e., quadratic in the

number of nodes in the tree, it turns out that it is much more

efficient in practice, as demonstrated by our experiments

with elimination trees arising in sparse matrix factorization

(see Section VI for details). We also compare MinMem and

Liu’s algorithms with the best postorder traversal (common

in sparse matrix factorization packages), in terms of both

quality (memory needed) and execution time. We report that

the best postorder traversals result in only a little additional

memory requirement than the optimal one in practice, which

is good news for the current sparse matrix factorization

libraries. However, we show that there exist trees where

postorder based traversals require arbitrarily larger amounts

of main memory than the optimal one.

As for the MINIO problem, we show that it is NP-hard,

both for postorder based and for arbitrary traversals, even for

simple harpoon graphs, while it is polynomial for arbitrary

trees with unit-size files (in which case MINIO reduces to

the I/O pebble game introduced by Hong and Kung [3]).

This shows that introducing files of different sizes does

add a level of difficulty in memory-aware scheduling of

tree workflows. We provide a set of heuristics to solve

the MINIO problem. Our heuristics use various greedy

criteria to select the next node to be scheduled, and those

files to be temporarily written to secondary memory. All

these heuristics are evaluated using assembly trees arising

in sparse matrix factorization methods.

The paper is organized as follows. We start with an

overview of related work in Section II. Then we describe the

framework in Section III. The next three sections constitute

the heart of the paper. We deal with the MINMEMORY

problem in Section IV, presenting complexity results for

postorder traversals and proposing the exact MinMem algo-

rithm. Then we consider the MINIO problem in Section V,

assessing the NP-hardness of this problem, and designing

heuristics. The experimental evaluation of all MINMEMORY

algorithms and MINIO heuristics is conducted in Section VI.

Finally we provide some concluding remarks and hints for

future work in Section VII.

II. BACKGROUND AND RELATED WORK

A. Elimination tree and the multifrontal method

As mentioned above, determining a memory-efficient tree

traversal is very important in sparse numerical linear algebra.

The elimination tree is a graph theoretical model that repre-

sents the storage requirements, and computational dependen-

cies and requirements, in the Cholesky and LU factorization

of sparse matrices. Here we give a brief description of such

trees; we refer to [4] for the first formalization of elimination

trees, and to [5] for an excellent survey on the subject.

There are at least two interpretations of elimination

trees [5]. Among those, the one describing the dependencies

of numerical values among the columns of the Cholesky

factor serves well for our purposes in this paper. Assume that

A is an n×n sparse, symmetric, positive definite matrix with

a lower triangular Cholesky factor L such that A = LLT .

It is known that for i > j, the numerical values of column

i of L depend on column j of L if and only if ℓij 6= 0.

Consider building a directed graph on n vertices with edges

representing the column dependencies, i.e., we add an edge

from the vertex vj to the vertex vi whenever the column i
of L depends on the column j. The transitive reduction (if

there is a directed path of length at least two from vj to

vi, then the edge (vj , vi) is discarded) of this graph yields

the elimination tree. Given such a model, it is clear that the

column i of L can only be computed after all the columns

corresponding to the children of vi in the elimination tree.

The multifrontal method of sparse matrix factorization [6],

[7] organizes the computations of sparse factorizations as a

sequence of dense matrix operations using the elimination

tree. The method associates a block 2× 2 matrix with each

node of the elimination tree—the block matrix contains a

diagonal element and the nonzeros in the corresponding

row and column of the matrix currently being eliminated.

The (1, 1)-block of a node can be eliminated (it is called



fully summed) only if all the updates to the corresponding

diagonal entry have been computed. The Schur complement

formed by the elimination of the fully summed variable on

the (2, 2)-block of a node cannot be eliminated until later

in the factorization. This Schur complement is called the

contribution block, and it is passed to the father node for

the assembly operation. Therefore the operations that are at

the heart of the multifrontal method are as follows. The first

one is to assembly the contribution blocks from the children

nodes, and the original entries from the matrix (if we are at

a leaf, there is no contribution block); the second one is to

eliminate the fully summed variable; and the third one is to

compute and send the contribution block to the father. This

leads to an in-tree where the computations proceed from the

leaves to the root.

Since the elimination tree is defined with one variable

(row/column) per node, it only allows one elimination per

node and the (1,1) block would be of order one. Therefore,

there would be insufficient computation at a node for effi-

cient implementation. It is thus advantageous to combine or

amalgamate nodes of the elimination tree. The amalgamation

can be restricted so that two nodes of the elimination tree

are amalgamated only if the corresponding columns of the

L factor have the same structure below the diagonal [6].

As even this technique may not give a large enough (1,1)

block, a threshold based amalgamation strategy can be used

in which the columns to be amalgamated are allowed to have

discrepancies in their patterns [8]. The resulting tree is often

called the assembly tree.

B. Pebble game and its variants

On the more theoretical side, this work builds upon the

many papers that have addressed the pebble game and its

variants. The MINMEMORY problem amounts to revisiting

the I/O pebble game with pebbles of arbitrary sizes that must

be loaded into main memory before firing (executing) the

task. The pioneering work of Sethi and Ullman [9] deals

with a variant of the pebble game that translates into the

simplest instance of MINMEMORY, with fi = 1 and ni = 0
for any task i. The concern in [9] was to minimize the

number of registers that must be used while computing an

arithmetic expression. The problem of determining whether

a general DAG can be executed with a given number of

pebbles has been shown NP-hard by Sethi [10] if no vertex

is pebbled more than once (the general problem allowing

recomputation, that is, re-pebbling a vertex which have

been pebbled before, has been proven PSPACE complete by

Gilbert, Lengauer and Tarjan [11]). However, this problem

has a polynomial complexity for tree-shaped graphs [9].

A variant of the game with two levels of storage has been

introduced by Hong and Kung [3] under the name of I/O

pebble game, which was used to derive lower bounds on I/O

operations and study the trade-off between I/O operation and

main memory size for particular graphs. A comprehensive

summary of results for pebble games can be found in the

book by Savage [12].

In [9], the algorithm proposed by Sethi and Ullman for

processing tree-shaped graphs and minimizing the number

of allocated registers also has a minimum number of store

instructions, which makes it optimal both for memory and

for I/O minimization. It is quite interesting to see that the

classical pebble game problem with trees remains polyno-

mial with files of arbitrary sizes instead of pebbles (this

is the MINMEMORY problem,) while the I/O pebble game

becomes NP-hard (see Theorem 2).

On the application side, there are many variants of MIN-

MEMORY, some of which being discussed in Section III-C.

The execution model summarized by Equation (1) applies

to a large variety of scenarios, including divide-and-conquer

algorithms. For high-degree trees, simultaneously loading

all children files into main memory may be a bottleneck

requirement. While some applications could allow for pro-

cessing the children one after the other, like in map-reduce

problems, other scenarios call for generating all children

data concurrently. Along the same line, a relaxation of the

MINIO problem would allow to write fractions of files into

secondary memory, leading to a divisible version of the

problem. Again, while this may make sense in some cases

(e.g., when the main memory is naturally divided into small

pages, and if it is possible to unload some pages containing

fractions of files), it is not always possible (e.g., when the

main memory is a complex file system).

III. MODELS AND PROBLEMS

A. Application model

The tree workflow T is composed of p nodes, or tasks,

numbered from 1 to p. Nodes in the tree have an input file,

an execution file (or program), and several output files (one

per child). More precisely:

• Each node i has an input file of size fi. If i is not the

root, its input file is produced by its parent parent(i);
if i is the root, its input file can be of size zero, or

contain input from the outside world.

• Each node i in the tree has an execution file of size ni.

• Each non-leaf node i in the tree, when executed,

produces a file of size fj for each j ∈ Children(i).
Here Children(i) denotes the set of the children of i. If

i is a leaf-node, then Children(i) = ∅ and i produces a

file of null size: we then consider that the terminal data

produced by leaves are directly written to the secondary

memory or sent to the outside world, independently

from the I/O mechanism.

The memory requirement MemReq(i) of node i is the total

amount of main memory that is needed to execute node i, as

underlined in Equation (1). After i has been processed, its

input file and program can be discarded, while its output files

can either be kept in main memory (to process the children

of i) or be stored in secondary memory temporarily.



Algorithm 1: Checking an in-core traversal.

Input: tree T with p nodes, available memory M ,

ordering σ of the nodes

Output: whether the traversal is feasible

Ready ← {root}
Mavail ←M − froot
for step = 1 to p do

Let i be the task such that σ(i) = step

if i /∈ Ready , or MemReq(i) > Mavail + fi then

return FAILURE

Mavail ← Mavail + fi −
∑

j∈Children(i) fj
Ready ← Ready \ {i} ∪

⋃
j∈Children(i){j}

return SUCCESS

B. In-core traversals and the MINMEMORY problem

For the MINMEMORY problem, we are given a tree T
with p nodes and an initial amount of memory M . A

traversal is an ordering of the p nodes that specifies at which

step whey are executed. A traversal must obey precedence

constraints (a node is always scheduled after its parent)

and must never exceed the available memory. Algorithm 1

checks if a given traversal is feasible: it computes the mem-

ory Mavail that is available at each step, which corresponds

to the original memory M minus the size of the files of ready

nodes (nodes which are not executed yet, but whose parents

have been processed). A formal definition of a traversal is

given below.

Definition 1 (INCORETRAVERSAL). Given a tree T
and a amount M of available memory, the problem

INCORETRAVERSAL(T ,M) consists in finding a feasible

in-core traversal σ described by a permutation of the nodes

of a tree T such that:

∀i 6= root , σ(parent(i)) < σ(i) (2)

∀i,
∑

σ(j)<σ(i)




∑

k∈Children(j)

fk − fj




+ ni +
∑

k∈Children(i)

fk ≤M

(3)

In this definition, Equation (2) accounts for precedence

constraints and Equation (3) deals with memory constraints.

A postorder traversal is a traversal where nodes are visited

according to some top-down postorder ordering of the tree

nodes. Hence, in a postorder traversal, after processing

a vertex i, the whole subtree rooted in i is completely

processed.

Definition 2 (MINMEMORY). Given a tree T , deter-

mine the minimum amount of memory M such that

INCORETRAVERSAL(T ,M) has a solution. MINMEMORY-

POSTORDER is the same problem restricted to postorder

traversals.

C. Model variants

In this section, we discuss three variants of the model.

Bottom-up traversals for in-trees: Let T be an in-tree

with p nodes and M the amount of main memory. As the

tasks have to be executed from the leaves to the root, a task

now has many input files and a single output file. We do

not change the notations and assume that the output file has

size fi (to the parent, instead of from the parent in an out-

tree), and the input files have the size fj for each child j
of i. A valid traversal of such an in-tree should respect the

order of the tasks (from the leaves to the root) and should

satisfy Equation (1) for each task i. Suppose σ(T , p,M)
is a valid traversal of the in-tree T . Then σ̃(T̃ , p,M) is a

valid traversal of the out-tree T̃ where σ̃ denotes the reverse

permutation of σ, defined as σ̃(i) = p − σ(i) + 1 for all i.
This is easy to verify as the reverse permutation guarantees

the order of the tasks for T̃ , and the memory constraint is

satisfied for any task. The relation between a valid traversal

of an in-tree T and the inverted traversal of the out-tree T̃
holds for the other way round too.

Model with replacement: In some variants of the

pebble game, the player is allowed to move a pebble

from one pebbled node to an unpebbled node. Extending

the game to pebbles with non-unit costs, this amounts

to the variant of the model where the memory occupied

by the input file of node i (of size fi) is replaced by

the memory occupied by the output files of node i (of

size
∑

j∈Children(i) fj). The amount of memory needed to

process node i is max(fi,
∑

j∈Children(i) fj) (note that in

the pebble game, there is no cost ni). This variant can be

simulated by our model as follows: given an instance of

the problem with the replacement policy, we add a negative

weight ni = −min(fi,
∑

j∈Children(i) fj) to each node i (an

example is given in Figure 1).

Model with replacement

max(fi,
∑

j∈Children(i) fj) ≤ M

E

1
1 2

1 21 3

G H

A

C DB

E F

⇒

Current model

fi + ni +
∑

j∈Children(i) fj ≤ M

E

1 21 3

1
1 2

-1

G

A

C DB

E F H

-1

0 0 0

0

-2

0

Figure 1. Transformation from the model with replacement.

Liu’s model: In [2], the author introduces a bottom-

up framework modelling sparse matrix LU factorization.



In this framework, the tree T modelling the application is

modified as follows: each original node x of T is expanded

in two nodes x+ and x−. Here x+ represents x during the

processing of a column, x− being x after its processing.

Note that in this model, parameter fx is not used.

The cost nx+ associated to node x+ represents the number

of nonzeros in columns of the matrix L from the subtree of

T rooted in x, that are required during the processing of the

column x in the factorization: in other words the memory

peak associated to node x. Conversely, the cost nx− is the

number of nonzeros in columns of matrix L associated with

the subtree of T rooted in x that are still required after the

processing of x, which is the storage requirement of the

subtree of T rooted in x.

This variant can be simulated in our framework by merg-

ing back each pair of nodes (i+,i−) into node i, with an

input file of size fi = ni− and an extra memory cost during

processing ni = ni+ − ni− −
∑

j−∈Children(i+) nj− . An

example is given in Figure 2.

Liu’s model

c+

3

x−

b− 2

0

f+

2f−

5

g+

2g−

6

b+ 2

d− 3

d+ 5 e+ 2

e−

3 h+ 3

h− 2

1

x+ 1

c−

⇒

Current model

b

e

0

2 3

3 1

2 2

c 0

x -4

2

f 0

g 1 h 1

-4

d 2 1

Figure 2. Reduction for Liu’s model.

D. Out-of-core traversals and the MINIO problem

Out-of-core processing enables solving large problems,

when the size of the data cannot fit into the main memory. In

this case, some temporary data are copied into the secondary

memory, and unloaded from the main memory, so as to leave

room for other computations. Since secondary memory has a

smaller access rate, the usual objective is to limit the volume

of I/O operations.

Defining traversals that perform I/O operations is more

complicated than defining in-core traversals: in addition to

determining the ordering of the nodes (the permutation σ),

at each step we have to identify which files are written into

secondary memory (if necessary). When a task i is scheduled

for execution but its input file was moved to secondary

memory, that file must be read and loaded back into the

main memory before processing task i. Thus, a given file

is written at most once in the main memory. The ordering

of the I/O operations is done via a second function τ , such

that τ(i) is the step when the input file of task i (of size fi)

Algorithm 2: Checking an out-of-core traversal.

Input: tree T with p nodes, available memory M ,

ordering σ of the nodes, ordering τ of the

output transfers to secondary memory

Output: whether the traversal is feasible, and the

amount of I/O

Ready ← {root}
Mavail ←M − froot
IO ← 0
Written ← ∅
for step = 1 to p do

foreach i such that τ(i) = step do

if σ(i) ≥ step then

return FAILURE

Written ←Written ∪ {i}
Mavail ← Mavail + fi
IO ← IO + fi

Let i be the task such that σ(i) = step

if i ∈Written then

Written ←Written \ {i}
Mavail ← Mavail − fi

if i /∈ Ready , or MemReq(i) > Mavail + fi then

return FAILURE

Mavail ← Mavail + fi −
∑

j∈Children(i) fj
Ready ← Ready \ {i} ∪

⋃
j∈Children(i){j}

return (SUCCESS, IO)

should be moved to secondary memory (τ(i) = ∞ means

that this file is never moved to the secondary memory).

Algorithm 2 is used to check whether an out-of-core

traversal is feasible. It makes use of Written , the set of

files that have been moved to secondary memory. Similarly

to the in-core case, Mavail denotes the memory which is

available at a current step, and Ready the set of ready

nodes. The algorithm also computes IO , the total amount

of data transferred from/to main memory. Note that each

data written (once) to the secondary memory is read only

once. At each step, the algorithm checks that the files

written to secondary memory have been produced earlier,

that precedence constraints are satisfied, and that there is

enough memory to process the chosen node. More formally,

a valid out-of-core traversal can be defined as follows.

Definition 3 (OUTOFCORETRAVERSAL). Given a tree T
and a fixed amount of main memory M , the problem

OUTOFCORETRAVERSAL(T ,M) consists in finding an

out-of-core traversal, described by a permutation σ of the

nodes in T (corresponding to the schedule of computations),

and a function τ : {1, . . . , n} → {1, . . . , n} ∪ {∞}



(corresponding to the schedule of I/O operations), such that:

∀i 6= root , σ(parent(i)) < σ(i) (4)

∀i 6= root , σ(parent(i)) < τ(i) (5)

∀i 6= root , if τ(i) <∞ , then τ(i) < σ(i) (6)

∀i,
∑

σ(j)<σ(i)




∑

k∈Children(j)

fk − fj




−
∑

τ(j)<σ(i)
σ(j)>σ(i)

fj + ni +
∑

k∈Children(i)

fk ≤M
(7)

Then the amount of data written in secondary memory is

given by

IO =
∑

τ(i) 6=∞

fi

In Equation (7), the term
∑

τ(j)<σ(i)
σ(j)>σ(i)

fj corresponds to

the files that have been written into secondary memory at

step σ(i). We now define the MINIO problem, which asks

for an out-of-core traversal with the minimum amount of

I/O volume.

Definition 4 (MINIO). Given a tree T , and a fixed amount

of main memory M , determine the minimum I/O volume IO

needed by a solution of OUTOFCORETRAVERSAL(T ,M).

IV. THE MINMEMORY PROBLEM

In this section, we present algorithms for the MINMEM-

ORY problem. We first present the best possible postorder

traversal, and show that its performance can be arbitrarily

bad. Then we propose an alternative to the optimal algorithm

introduced by Liu [2].

A. Postorder traversals

Postorder traversals are very natural for the MINMEMORY

problem, and they are widely used in sparse matrix software

like MUMPS [13], [14]. Liu [1] has characterized the best

postorder traversal, leading to a fast but sub-optimal solution

for MINMEMORY. In a nutshell, the best postorder is

obtained by guaranteeing that in the resulting order, the

children of a node are listed in the increasing order of

the memory requirement of their respective subtrees. The

algorithm is called PostOrder . In another study, Liu [2] has

also provided an optimal algorithm for MINMEMORY whose

worst case execution time is O(p2), where p is the number of

tree nodes. The algorithm that finds the best postorder runs

in O(p log(p)) time, which calls for a tradeoff between speed

and performance. But while postorder traversals are widely

used in practice, their efficiency has never been thoroughly

assessed (to the best of our knowledge). We now show that

the best postorder may require arbitrarily more main memory

than the optimal traversal.

Theorem 1. Given any arbitrarily large integer K, there

exist trees for which the best postorder traversal requires at

least K times the amount of main memory needed by the

optimal traversal for MINMEMORY.
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Figure 3. First levels of the graph for the proof of Theorem 1. Here b is
the number of children of the nodes with more than one child.

Proof: Consider the harpoon graph with b branches in

Figure 3(a). All branches are identical and all tasks have a

zero length execution file. Any postorder traversal requires

an amount of M + ε+(b− 1)M/b main memory, while the

optimal traversal (which alternates between branches) only

requires Mmin = M + ε. Now replace each leaf by a copy

of the harpoon graph, as shown in Figure 3(b). The value

of Mmin is unchanged, while a postorder traversal requires

M + ε+ 2(b− 1)M/b. Iterating the process K times leads

to the desired result.

B. The Explore and MinMem algorithms

Liu [2] proposes an algorithm for MINMEMORY which

is optimal among all possible traversals, not only postorder

ones. It is a recursive bottom-up traversal of the tree which,

at each node of the tree, combines the optimal traversals

built for all subtrees. The combination is based on the notion

of Hill-Valley Segments and requires some sophisticated



multi-way merging algorithm, in order to reach the O(p2)
complexity. In this section, we introduce MinMem , another

exact algorithm which proceeds top-down and maintains

the best reachable cut of the tree at each step. While the

worst-case complexity of MinMem is the same as Liu’s

exact algorithm, it runs faster in practical cases resulting

from multifrontal methods (see Section VI). The MinMem

algorithm is based on an advanced tree exploration routine:

the Explore algorithm.

Algorithm 3: Explore (T, i,M avail, Linit,Tr init)

Input: tree T , root i of the subtree to explore,

available memory M avail, initial set of nodes

Linit, initial traversal Tr init

Output: 〈Mi, Li,Tr i,M
peak
i 〉, where:

Mi: the minimum memory requirement in the subtree

rooted in i, reachable with memory M ,

Li: set of input files related to Mp,

Tr i: the traversal from node i to L
M peak

i : minimum memory to be able to visit a new node

1 if node i is a leaf and ni + fi ≤M avail then

2 return 〈0, ∅, [i],∞〉

3 if ni + fi +
∑

j∈Children(i) fj > M avail then

4 M peak
i ← ni + fi +

∑
j∈Children(i) fj

5 return 〈∞, ∅, [ ],M peak
i 〉

6 if Linit 6= ∅ then

7 Li ← Linit

8 Tr i ← Tr init

9 else

10 Li ← Children(i)
11 Tr i ← [i]

12 Candidates ← Li

13 while Candidates 6= ∅ do

14 foreach j ∈ Candidates do

15 〈Mj , Lj ,Tr j ,M
peak
j 〉 ←

Explore(T, j,M avail −
∑

k∈Li\{j}
fk, ∅, ∅)

/* Process j */

16 if Mj ≤ fj then

17 Li ← Li\{j} ∪ Lj

18 Tr i ← Tr i ⊕ Tr j /* append

traversal Tr j to the end of Tr i

*/

19 Candidates ←{
j ∈ Li such that M avail −

∑
k∈Li\{j}

fk ≥M peak
j

}

20 Mi ←
∑

j∈Li
fj

21 M peak
i ← minj∈Li

(
M peak

j +
∑

k∈Li\{j}
fk

)

22 return
〈
Mi, Li,Tr i,M

peak
i

〉

The Explore algorithm requires a tree T , a node i to start

the exploration, and an amount of available memory Mavail .

The last two parameters (Linit and Tr init ) are optional, and

useful to speed-up the algorithm by avoiding the repeated

exploration of some parts of the tree. With these parameters,

the algorithm computes the minimal memory consumption

that can be reached. If the whole tree can be processed, then

the minimal memory is zero. Otherwise, the algorithm stops

before reaching the bottom of the tree, because some parts

of the tree require more memory than what is available. In

this case, the state with minimal memory corresponds to a

cut in the tree: some subtrees are not yet processed, and the

input files of their root nodes are still stored in memory. The

Explore algorithm outputs the cut with minimal memory

occupation, as well as a possible traversal to reach this

state with the provided memory. In the case where the

whole subtree cannot be executed, it also gives the minimum

amount of memory (called memory peak) which is needed

to explore an additional node in the subtree.

When called on a node i, the algorithm first checks if the

current node can be executed. If not, the algorithm stops and

returns the current requirement as memory peak. Otherwise,

it recursively proceeds in its subtree. The optimal cut is

initialized with its children, and iteratively improved. All

the nodes in the cut are explored: if the cut Lj found in the

subtree of a child j has a smaller memory occupation than

the child itself, the cut is updated by removing child j, and

by adding the corresponding cut Lj . When no more nodes

in the cut can be improved (which is easily tested using

their respective memory peak), then the algorithm outputs

the current cut.

Algorithm 4: MinMem (T )

Input: tree T
Output: minimum memory M needed to process the

whole tree, traversal Tr

1 M peak ← maxi∈T MemReq(i)/* lower bound */

2 M avail ← 0
3 L← ∅
4 Tr ← [ ]
5 while M peak <∞ do

6 M avail ←M peak

7 〈M,L,Tr ,M peak〉 ←
Explore(T, root ,M avail, L,Tr)

8 return 〈M avail,Tr〉

The Explore algorithm can be used to check whether a

given tree can be processed using a given memory. If not,

it provides a refined lower bound on the necessary memory.

The MinMem algorithm makes use of this information to

solve the MINMEMORY problem.

To assess the complexity of the MINMEMORY problem,

we consider the moment when each node is first visited



by Explore, that is, for each node i, the first call on

Explore(T, i). There are p such events, which we denote

as F1, . . . , Fp. We observe that between two such events,

no node is visited more than twice by Explore. Firstly, in

Explore, a subtree is re-visited only if the available memory

is larger than its peak, which induces that a new node will

be visited. Secondly, MinMem asks Explore to re-visit the

whole tree with its peak value, which similarly leads to visit

a new node. Thus, there are at most 2p calls to Explore

between two events Fi and Fi+1. Altogether, the overall

complexity of the algorithm is O(p2).

V. THE MINIO PROBLEM

Contrarily to MINMEMORY, the MINIO problem turns

out to be combinatorial. The difficulty goes beyond finding

the best traversal. Indeed, even when the traversal is given,

it is hard to determine which files should be transferred into

secondary memory at each step.

A. NP-completeness

We prove that the following three variants of the problem

are NP-complete.

Theorem 2. Given a tree T with p nodes, and a fixed

amount of main memory M , consider the following prob-

lems:

(i) given a postorder traversal σ of the tree, determine the

I/O schedule so that the resulting I/O volume is minimized,

(ii) determine the minimum I/O volume needed by any

postorder traversal of the tree,

(iii) determine the minimum I/O volume needed by any

traversal of the tree.

The (decision version of) each problem is NP-complete.
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Figure 4. Graph corresponding to Inst2 in the proof of Theorem 2.

Note that (iii) is the original MINIO problem. Also note

that the NP-completeness of (i) does not a priori imply that

of (ii), because the optimal postorder traversal could have a

particular structure. The same comment applies for (ii) not

implying (iii).

Proof: We use the same reduction for the three prob-

lems, which clearly all belong to NP. Consider an instance

Inst1 of 2-Partition [15], with n integers {a1, a2, . . . , an}.
The instance Inst2, common for all three problems, consists

in the harpoon graph depicted on Figure 4, with 2n+3 nodes.

We let M = 2S, which is the largest memory requirement

of a node (the root node Tin ). We let the I/O bound be

IO = S/2. The construction of Inst2 is clearly polynomial

in the size of Inst1.

Note that all traversals are postorder traversals. Any

traversal must start with the root Tin . After it has been

processed, 2S units of memory are occupied. In order to

process the rest of the tree, one has two main choices:

• either execute one of the n tasks Ti first, with 1 ≤ i ≤
n. This requires loading the output file of Ti of size S
into main memory, hence to transfer some files whose

total sizes are at least S into secondary memory. This

violates the I/O bound.

• either execute task Tbig first. This requires to load its

output file of size S/2 into main memory, hence to

transfer some files whose total sizes are at least S/2
into secondary memory.

For (ii) and (iii), the reduction from 2-Partition goes as fol-

lows. Suppose first that Inst1 has a solution, with
∑

i∈I ai =∑
i/∈I ai = S/2. Then, after unloading files of size ai with

i ∈ I (thus increasing the available memory by S/2), one

is able to process the entire branch of Tbig up to the root.

This means Inst2 has a solution.

Suppose now that Inst2 has a solution. That means that

some files were unloaded in order to process Tbig . The

amount of memory to free is at least S/2. It is also at most

S/2 so as to meet the bound IO. Therefore, exactly S/2
units of memory were unloaded to be able to host Tbig . If I
is the set of the unloaded files, then

∑
i∈I ai = S/2, which

means that Inst1 has a solution and concludes our proof.

Now for (i), take any ordering of the nodes σ which

executes Tbig just after the root task Tin . The proof is the

same, independently of the rest of the ordering.

B. Heuristics

The NP-completeness of problem (i) in Theorem 2 shows

that it is difficult to select which files to unload to secondary

memory, even when the traversal is given. We introduce six

heuristics that greedily choose such files. In the following, j
denotes the next node to be processed. First, if fj has been

previously unloaded, it must be stored back into main mem-

ory. Then an amount of MemReq(j)− fj of main memory

must be available to execute node j. Let M avail be the cur-

rently available memory. If MemReq(j)− fj ≤M avail, then

node j can be processed without I/O. Otherwise, we have to

unload a volume IOReq(j) = M avail − (MemReq(j)− fj).
In that case, we order the set S = {fi1 , fi2 , . . . , fij} of the



files already produced and still residing in main memory,

so that σ(i1) > σ(i2) > · · · > σ(ij). Hence fi1 is the file

which will be used at the latest iteration in the traversal, and

so on. We greedily select the first files from S according to

various criteria which we describe below.

Last Scheduled Node First (LSNF): We select the first

files from S until their total size is at least IOReq(j). The

rationale is to unload the files that will be used the latest in

the traversal, in order to avoid swapping intermediate files.

This heuristic can easily be shown to be optimal for the

divisible version of MINIO, where fractions of file can be

written from and to secondary memory (see Section II-B.)

First Fit: This heuristic writes out the first file in S
whose size is at least IOReq(j). If no such file exists, the

LSNF strategy is used.

Best Fit: This heuristic writes out the file in S whose

size is the closest of IOReq(j): it chooses ik such that

|IOReq(j) − fik | is minimal. This step is repeated until

enough space has been freed.

First Fill: This heuristic writes out the first file in S
whose size is smaller than IOReq(j). This step is repeated

until enough space has been freed. If not enough space can

be freed, the LSNF strategy is then used. The rationale

here is to avoid unduly writing big files out to secondary

memory, thus significantly increasing I/O volume. Instead

this heuristic tries to ‘’fill‘’ out the required I/O volume

with the first eligible files.

Best Fill: This heuristic writes out the file whose size

is the closest to IOReq(j) among those files in S whose

size is smaller than IOReq(j). This step is repeated until

enough space has been freed. If not enough space can be

freed, the LSNF strategy is then used. The rationale here is

to ‘’fill‘’ out the required I/O volume, but this time with the

best eligible files.

Best K Combination: This last heuristic considers the

first K files in S (we use K = 5 in the experiments) and

selects the best combination, i.e., the subset whose size is the

closest to IOReq(j). This step is then repeated until enough

memory has been freed.

VI. EXPERIMENTS

In this section, we experimentally compare the three

algorithms for MINMEMORY, namely PostOrder (which

finds the best postorder traversal of the tree) and the two

optimal variants Liu (exact algorithm of [2]) and MinMem .

We evaluate the deviation of PostOrder form the optimal

solution, and we study the execution cost of each algorithm.

Next we report on the performance of the heuristics for

MINIO.

A. Setup

Each algorithm has been implemented in highly optimized

C++ versions. The PostOrder and Liu algorithms are

written as iterative codes while MinMem is a recursive

code. Their behavior has been validated on a platform based

on an Intel Xeon 5250 processor. Source code for all the

algorithms, heuristics and experiments is publicly available

at http://graal.ens-lyon.fr/∼mjacquel/minmem.html.

Experiments were conducted within the Matlab environ-

ment for commodity reasons, especially ease of access to

various data sets. We use a generic tool called performance

profiles [16] to assess the proposed algorithms and heuristics.

The main idea behind performance profiles is to use a

cumulative distribution function as the performance metric,

instead of taking averages over all test cases. We investigate

the performance of the algorithms and heuristics in terms of

running times and the quality of the solution (the memory

requirement, or the total I/O volume). For a given metric,

a profile plot shows the fraction of cases where a specific

method gives results which are within some value τ of the

best result reached by all algorithms. Therefore the higher

the fraction, the more preferable the method. For example,

for the runtime metric, a τ value shows the fraction of cases

where the running time of the target algorithm is within τ
of the fastest algorithm shown in the same plot. Similarly,

for the memory requirement metric, a τ value shows the

fraction of cases where the memory requirement of the

target algorithm is within τ of the best result found by any

algorithm shown in the same plot.

B. The Data Set

The data set contains assembly trees of a set of sparse

matrices obtained from the University of Florida Sparse

Matrix Collection (http://www.cise.ufl.edu/research/sparse/

matrices/). The matrices satisfy the following assertions:

square, number of rows is between 2 × 104 and 2 × 105,

the number of nonzeros per row is at least 2.5, and the

number of nonzeros is at most 5×106. At the time of testing

there were 291 matrices satisfying these properties. We use

the symmetrized pattern of the matrices, e.g., the pattern of

|A|+ |A|T +I . We first order the matrices using MeTiS [17]

(through MeshPart toolbox [18]) and amd (available in

Matlab), and then build the corresponding elimination trees

using the symbfact routine of Matlab. We also perform

relaxed node amalgamation on these elimination trees to

create assembly trees. We have created a large set of

instances by allowing 1, 2, 4, and 16 (if n > 1.6 × 105)

relaxed amalgamations per node. We always realize perfect

amalgamations, e.g., when a node is the only child of

its parent and the parent has only one less entry in the

associated column in L, the two nodes are amalgamated.

When the current amalgamated node does not contain more

than the allowed amalgamation per node, we amalgamate

the node with its densest child. At the end we compute the

weight of a node as η2+2η(µ−1), where η is the number of

nodes amalgamated, and µ is the number of nonzeros in the

column of L which is associated with the highest node (in

the starting elimination tree). Edge weights are computed as
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Figure 5. Performance profile for comparing the memory requirement
obtained by PostOrder with the optimum values for the assembly trees
for which PostOrder does not find an optimal solution.

Non optimal PostOrder traversals 4.2%

Max. PostOrder to opt. cost ratio 1.18

Avg. PostOrder to opt. cost ratio 1.01

Std. Dev. of PostOrder to opt. cost ratio 0.01

Table I
STATISTICS ON MEMORY COST OF PostOrder FOR ASSEMBLY TREES.

(µ− 1)2. These numbers correspond respectively to ni and

fi as described in Section III.

C. Results for MINMEMORY

The first objective is to evaluate the performance of

PostOrder in terms of the memory requirement of the

resulting traversal with respect to the optimal value. In

95.8% of the cases, PostOrder is optimal. Only the non-

optimal cases are depicted on Figure 5, PostOrder requiring

up to 18% more memory than the optimal solution. Detailed

statistics are given in Table I. As a conclusion, PostOrder

statistically gives very good results for assembly trees,

except in rare cases where it can require up to 20% more

main memory than the optimal traversal.

The second objective is to compare the running times of

the three algorithms. We observe on Figure 6 that MinMem

is the fastest algorithm in 80% of the cases, and clearly

outperforms Liu .

Altogether, these experiments show that in the context of

sparse matrix assembly trees, PostOrder frequently offers

optimal or near-optimal results. When PostOrder is not

optimal, it is reasonably close to the minimum memory

required to process the tree. Nevertheless, whenever mem-

ory becomes a key resource, MinMem can compete with

PostOrder in terms of running time, and it always produces

the optimum memory requirement, therefore constituting an

interesting alternative.
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Figure 6. Performance profiles for comparing the running time of the
three algorithms for the MINMEMORY problem on the assembly trees.
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Figure 7. Performance profiles for comparing the resulting I/O volume of
the heuristics for the MinMem algorithm on the assembly trees.

D. Results for MINIO

This experiment aims at evaluating the six heuristics intro-

duced in Section V-B for the MINIO problem. Tree traver-

sals are obtained using PostOrder , Liu and MinMem for

the MINMEMORY problem. The available memory ranges

from maxi∈T MemReq(i), to the minimal memory required

for the traversal.

On Figure 7, the performance profile of all heuristics

applied on traversals produced by MinMem is depicted. The

best heuristic is clearly First Fit, which is almost tied by Best

K Combination. Then Best Fill and First Fill provide almost

the same I/O volume, and in turn perform better than Last

Scheduled Node First and Best Fit, which are very close.

As a consequence, because of its good behavior and low

complexity, First Fit represents the best alternative among

the six policies. This conclusion remains true when applying
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Figure 8. Performance profiles for comparing the resulting I/O volume of
the three algorithms equipped with the First Fit heuristic on the assembly
trees.

the heuristics to traversals produced by PostOrder or Liu .

The next experiment aims at characterizing the behavior

of the algorithms designed for MINMEMORY in the context

of out-of-core traversals. The policy used for I/O is First

Fit. The performance profile of every traversal is reported

on Figure 8. The best results are provided by PostOrder .

This experiment also shows that MinMem does not produce

good out-of-core tree traversals, and is outperformed by Liu

which provides better traversals for MINIO. This interesting

result is due to the fact that contrarily to MinMem , Liu

produces long chains of dependent tasks by construction.

These chains reduce the pressure on main memory since

files produced by a task will be consumed soon, thereby

reducing the I/O volume. PostOrder also benefits from this

phenomenon.

E. More on PostOrder Performance

This last experiment comes almost as a digression, be-

cause we do not use assembly trees here. The objective is

to further assess the performance of PostOrder in terms

of the resulting memory requirement. While the theory tells

us that PostOrder can be arbitrarily bad (see Theorem 1),

it turns out that its performance on assembly trees is very

good (see Table I). We wanted to assess the performance

of PostOrder on randomly generated trees. We keep the

structure of every actual assembly tree from the data set

discussed above, and assign random integers ranging from

1 to N/500 to the node weights and from 1 to N for the

edge weights (N denoting the number of tree nodes). This

leads to a comprehensive data set containing more than 3200

trees, and allows for a more refined performance evaluation

of PostOrder .

The experiment (see Figure 9) shows that PostOrder

requires more than the minimum memory in 61% of the
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Figure 9. Performance profile for comparing the memory requirement
obtained by PostOrder with the optimum values on the random trees.

Non optimal PostOrder traversals 61%

Max. PostOrder to opt. cost ratio 2.22

Avg. PostOrder to opt. cost ratio 1.12

Std. Dev. of PostOrder to opt. cost ratio 0.13

Table II
STATISTICS ON MEMORY COST OF PostOrder FOR RANDOM TREES.

cases. In some cases, PostOrder may require more than

twice as much memory as the optimal solution. More details

are given in in Table II. All in all, this experiment shows

that when dealing with general trees, it is mandatory to use

an optimal algorithm if main memory is a scarce resource.

VII. CONCLUSION

We have discussed how to traverse the nodes of a tree-

shaped workflow so as to optimize the memory used in a

two-level memory system. We have investigated two main

problems. In the MINMEMORY problem, the aim is to

minimize the memory requirement, while in the MINIO

problem, the aim is to minimize the I/O volume, given a

limited memory. Our motivating application was the mul-

tifrontal method of sparse matrix factorization in which

elimination (or assembly) trees are used to reorganize the

computations. The MINMEMORY problem corresponds to

the problem of minimizing the memory requirement of an in-

core execution of the multifrontal method, while the MINIO

problem corresponds to the problem of minimizing the I/O

requirement in an out-of-core execution.

For the MINMEMORY problem, we have proposed an ex-

act algorithm which runs faster than the reference alternative

of Liu [2]. The current state of the art software for sparse

matrix factorization finds the best postorder as a solution

to the MINMEMORY problem. This is done both for con-

venience and for the in-core memory requirement. We have

investigated how good this choice is, and concluded that in



most practical cases, the minimum memory requirement due

to a postorder is usually close to the optimal one (in a large

set of instances we have seen at most 18% increase with

respect to the memory minimizing traversal). However, we

also showed that on general trees, the best postorder can

result in memory requirements that are arbitrarily large.

We have shown that the MINIO problem is NP-complete,

as well as some of its variations (for example, we have

shown that finding the postorder traversal that minimizes

the I/O volume is NP-complete). We have designed heuris-

tics for the problem and have performed thorough experi-

mental comparisons. Our experiments are based on highly

optimized versions of three tree traversal algorithms, and

precisely assess the quality of each proposed algorithm and

I/O heuristic. We have shown that our MinMem algorithm

outperforms the running time of Liu’s exact algorithm, but

we have also observed that it was less suited for out-of-core

execution.

With respect to the MINIO problem, there remain several

challenging problems. Future research involves finding a

lower bound for the minimum I/O volume when a fixed

amount of main memory is permitted. This would allow to

help assessing the absolute performance of the heuristics,

rather than only comparing their relative performance. Even

better than a bound, establishing a guarantee on the per-

formance of the heuristics (showing that their achieved I/O

volume always remain within a certain factor of the optimal)

would be a very interesting contribution. Such a result seems

out of reach for general traversals, but there is hope to derive

an approximation algorithm for postorder traversals, which

are simpler to analyze than arbitrary traversals.

More generally, we observe that the development of multi-

core platforms with non-uniform memory access introduces

new levels of hierarchy in the whole memory system, from

distributed caches to shared caches, to main memory, and to

disk. Such platforms call for re-designing the whole compu-

tational chain of sparse matrix factorization, by introducing

memory-aware computational kernels at every level. This

paper is only a small step in this important direction.
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