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Abstract—We investigate the scalability of the hypergraph-
based sparse matrix partitioning methods with respect to the
increasing sizes of matrices and number of nonzeros. We propose
a method to rowwise partition the matrices that correspond to
the discretization of two-dimensional domains with the five-point
stencil. The proposed method obtains perfect load balance and
achieves very good total communication volume. We investigate
the behaviour of the hypergraph-based rowwise partitioning
method with respect to the proposed method, in an attempt to
understand how scalable the former method is. In another set of
experiments, we work on general sparse matrices under different
scenarios to understand the scalability of various hypergraph-
based one- and two-dimensional matrix partitioning methods.

I. INTRODUCTION

There are a number of hypergraph-based methods for sparse

matrix partitioning methods. The row-net and column-net

based models [1], [2] are used to obtain one-dimensional (1D)

matrix partitions, along the columns or the rows. The fine-

grain [3] method, the checkerboard model [4], the jagged-

like method [5], and Mondriaan methods [6] are used to

obtain two-dimensional (2D) matrix partitions. The principal

objective of all these methods is to efficiently parallelize sparse

matrix-vector multiply (SpMxV) operations by partitioning the

matrix in such a way that the total volume of communication

operations is reduced while achieving computational load

balance among processors. Given a matrix, unless one of the

specific partitioning method is required, one would like to use

the best partitioning resulting from any of those. The notion

of best is not very well defined. Considering the principal

objective stated above, one can choose the partitioning method

that gives the minimum total volume of communication as the

best one. How can we know which method would that be

without partitioning the given matrix with all of the methods?

In [5], Çatalyürek et al. proposed a recipe that suggests a

method among the alternatives by using simple statistical

measures of the nonzero pattern of a given matrix. We try

to go one step beyond and get a better insight into how

communication volume scales with scaling of the input, either

the matrix size, or the number of parts, or both. To achieve

this goal, we examine the models under differing scenarios

for which one can make an educated guess as to how the best

algorithm would behave.

In order to understand the scalability of the hypergraph

partitioning methods we run them on matrices arising from dis-

cretization of two-dimensional domains with five-point stencil,

again with the objective of reducing the total communication

volume in SpMxV operations. Initially, we have thought

that the Cartesian partitioning of the mesh, which partitions

the nodes of the mesh using vertical and horizontal lines

each spanning the entire domain, would give good results.

This corresponds to rowwise partitioning of the associated

Laplacian matrices. We have observed that the hypergraph

models for 1D partitioning yield smaller total communication

volume than the Cartesian partitioning. Therefore, we tried

to find a partitioning method that obtains better results than

the Cartesian partitioning. We were able to find a mesh

partitioning algorithm that obtains perfect load balance and

smaller total volume of communication than the Cartesian

partitioning and the 1D hypergraph models. This algorithm

is described in Section III. Section IV presents both the

comparison of different hypergraph based partitioning methods

under different scaling scenarios as well as the comparison of

the 1D hypergraph models with the proposed mesh partitioning

method.

II. BACKGROUND

In this section, we provide a brief summary of hypergraphs,

hypergraph partitioning, and five-point stencil meshes. We also

remind the reader the equivalence between the hypergraph

partitioning problem and the partitioning of the finite-element

meshes when the objective sought is the reduction of the total

communication volume.

A. Hypergraphs and hypergraph partitioning

A hypergraph H=(V,N ) consists of a set of vertices V and

a set of nets (hyperedges) N . Every net nj ∈ N connects a

subset of vertices in V; these vertices are called the pins of nj .

The size of a net is equal to the number of its pins. Weights

can be associated with vertices and costs can be associated

with nets. For our purposes in this paper each vertex has unit

weight and each net has unique cost.

Given a hypergraph H = (V,N ), Π = {V1, . . . ,VK} is

called a K-way partition of the vertex set V if each part is



non-empty, parts are pairwise disjoint, and the union of parts

gives V . The partitioning constraint is to maintain a balance

criterion on part weights, i.e.,

|Vk ≤
|V|

K
(1 + ε), for k = 1, 2, . . . ,K . (1)

In (1), ε represents the predetermined, maximum allowable

imbalance ratio.

In a partition Π of H, a net that connects at least one

vertex in a part is said to connect that part. Connectivity set

Λj of a net nj is defined as the set of parts connected by nj .

Connectivity λj = |Λj | of a net nj denotes the number of parts

connected by nj . The partitioning objective is to minimize the

cutsize defined over the cut nets. There are various cutsize

definitions. The relevant cutsize definition for our purposes is:

cutsize(Π) =
∑

nj∈N

λj − 1 . (2)

The hypergraph partitioning problem is known to be NP-

hard [7].

B. Five-point stencil meshes and their partitioning

Consider an M×N mesh corresponding to the discretization

of a 2D domain with five-point stencil. Assume that the top

leftmost node is denoted by (1, 1) and the bottom rightmost

node denoted by (M, N). In this mesh, each node (i, j) has

up to four neighbors: one in the north (i − 1, j), one in the

south (i+ 1, j), one in the east (i, j + 1), and one in the west

(i, j − 1). It is understood that if any of those neighboring

index pair fall outside the range, then the node (i, j) does

not have the corresponding neighbor. These meshes are used

to obtain finite difference approximations to derivatives at the

nodes of the mesh (see, for example, [8, pp.211–212]). In

this context, the approximation at a node (i, j) is improved

using the approximations at the node itself and the neighboring

nodes.

For a node (i, j), let adj(i, j) denote the set of neighboring

nodes. Let madj(i, j) denote the set of nodes adj(i, j) ∪
{(i, j)}. Suppose we have partitioned the nodes of the mesh

among K processors. We use part(i, j) denotes the owner

of the node (i, j). For a node (i, j) define con(i, j) = {p :
(k, ℓ) ∈ madj(i, j) and part(k, ℓ) = p}. Then the node

(i, j) necessitates a communication volume of |con(i, j)| − 1,

where the processor part(i, j) sends messages to all proces-

sors in con(i, j) except itself. Let us associate a hypergraph

H = (V,N ) with the mesh such that each mesh node

(i, j) corresponds to a unique vertex in V , and madj(i, j)
corresponds to a unique net in N . Then partitioning the

nodes of the mesh among the processors in such a way

that each processor gets almost equal number of nodes and

the total communication volume is minimized corresponds

to the partitioning of the hypergraph H, where the balance

criterion (1) is met and the objective (2) is minimized. We

note that one can use graph models to partition the nodes of

the mesh, but the graph edge-cut metric is not an exact measure

of the total communication volume (see [2]).

III. MESHPART: AN ALGORITHM TO PARTITION THE

FIVE-POINT STENCIL MESHES

Although the partitioning of the five-point stencil matrices

are very well studied to test the ordering heuristics for sparse

matrix factorization [9], [10], they are not studied much for

the total volume of communication metric. To the best of

our knowledge, only Bisseling [8, Section 4.8] studies the

partitioning of these meshes. The objective in that work is to

reduce the BSP cost which includes metrics such as maximum

volume of messages sent and received by a processor, and

hence does not addresses our mesh partitioning problem.

We consider partitioning of the nodes of an M ×N , five-

point stencil mesh among K = P × Q processor in such a

way that each processor gets the same number of mesh nodes,

and the total communication volume is reduced. We propose

an algorithm, referred to as MeshPart, for the case M
P = N

Q ,

both ratios are integral, 4 × M×N
P×Q is a square number, and

2×M×N
P×Q ≥ 16. We find the simplest way of implementing the

algorithm as follows: first partition a square mesh of 4×M×N
P×Q

nodes into four partitions (quadrisection), and then extend the

quadrisection to the rest of the mesh by tearing apart and

sliding the partitions.

Even though our MeshPart is not generic to partition all

possible mesh size dimensions and the number of parts, we

believe that it provides very useful insights for achieving good

partitioning of the five-point stencil meshes. Furthermore, as

we will show in the experimental result section (Section IV),

it achieves better results than the existing methods, therefore

it becomes a good base case for evaluating other methods.

As an intuitive alternative to the proposed MeshPart algo-

rithm, consider partitioning the nodes of the mesh using a

Cartesian partitioning, that is partitioning with only vertical

and horizontal lines. In a Cartesian partitioning of an M ×N
mesh into K = P × Q parts, there are P − 1 horizontal

lines, each of length N , and Q − 1 vertical lines, each of

length M , where each part gets (M × N)/K nodes. Let

p(i) = ⌊(i − 1)/P ⌋ + 1 and q(j) = ⌊(j − 1)/Q⌋ + 1 for

i = 1, . . . ,M and j = 1, . . . , N . Then the mesh node (i, j) is

assigned to the part (p(i)−1)×Q+q(j). It is easy to establish

that the total volume of communication resulting from P ×Q-

Cartesian partitioning of M×N mesh is given by the formula

vol+(M,N,P, Q) = 2×(P−1)×N +2×(Q−1)×M . (3)

In particular when M = N , P = Q = 2, i.e., in the

quadrisection of a square mesh of size M × M with the

Cartesian partitioning, the volume is 4×M .

A. Quadrisection of a square mesh

Assume that we are going to partition an M × M mesh

into four. We note that due to our assumptions M ≥ 16. The

proposed quadrisection algorithm uses slanted lines to partition

the mesh, instead of vertical and horizontal ones used in the

Cartesian partitioning. At this point, we invite the reader to

have a look at the quadrisection of the 16×16 mesh shown in



Fig. 1 to see what we intend to achieve with the quadrisection

algorithm described below. We are going to partition the mesh

into four in such a way that the four corners of the mesh

will be assigned to different parts as follows: part(1, 1) = 1,

part(1, M) = 2, part(M, 1) = 3 and part(M,M) = 4. This

restriction reveals one of the properties of the quadrisection

algorithm we propose: the symmetric (with respect to diagonal

and anti-diagonal) mesh nodes of part 1’s will be in part 4, and

those of part 2’s will be in part 3. That is, if part(i, j) = 1,

then part(M +1−j,M +1−i) = 4; similarly, if part(i, j) =
2, then part(M + 1 − j,M + 1 − i) = 3. We note that this

holds for the Cartesian quadrisection as well.

The proposed quadrisection algorithm is shown in Algo-

rithm 1. In this algorithm, we first define the nodes of the

parts 1 and 4 that are going to be neighbors of some nodes

of 2 and 3, then define some nodes of 2 and 3 that are going

to be neighbors of some nodes of each other. In our design,

this defines all the boundaries. Then we start partitioning all

the remaining nodes with a subroutine, bfsColor, we have

written. The subroutine bfsColor, given a starting node and

a part number, assigns the starting node to the given part, and

adds all the neighboring nodes, if not assigned to a part yet,

into a queue. Then, bfsColor picks a node from the queue and

repeats the process until the queue is empty.

We now discuss the parts 1 and 2. In the 3rd line, we assign

the node (M/2−M/8, M/2−M/8) to the part 1. The square

block from (1, 1) to this node will be assigned to the same

part. After this decision, we need to find target many nodes to

be assigned to the same processor. We achieve this in the while

loop of the lines 8–14. During this while loop, the rightmost

nodes in some rows are assigned to the part 1, implying that

the nodes in the same mesh row, up until that rightmost node

are going to be assigned to the same part. The nodes that

are symmetric to those nodes are also marked with the same

intention. The nodes in the last such row are all marked to be

assigned to the part 1 (for loop of lines 15–17). Note that the

nodes marked for the part 1 form a symmetric structure along

the main diagonal of the mesh. If target is odd, we cannot

achieve this. We therefore need the assumption that M ×M
is divisible by 128. The square block mentioned above has

9 ×M ×M/64 nodes. Therefore, target is 7 ×M ×M/64.

We will have half of this amount below the diagonal and other

half above the diagonal. As long as M ≥ 12, we can find the

set of nodes found in the lines 8–17 of Algorithm 1. Since we

assume M to be divisible by 8, the smallest such M is 16.

After those nodes of the parts 1 and 4, we then define M/8
nodes along the main diagonal for each of the parts 2 and 3

in lines 18–19.

Figure 1 displays the quadrisection of the 16×16 mesh ob-

tained by the proposed quadrisection algorithm. In the figure,

nodes in different parts are shown with different symbols (and

colors). The total volume of communication (vol), the number

of nodes (i, j) with con(i, j)−1 = 1 (referred to as boundary-

1), and the number of nodes (i, j) with con(i, j) − 1 = 2
(referred to as boundary-2) are also shown. The algorithm

marks the node (6, 6) to be in part 1, which sets target as 28.

Algorithm 1 Quadrisection of an M ×M mesh

1: M1/8 ←
M
8

; M1/2 ←
M
2

; M3/8 ←M1/2 −M1/8

2: M+1 ←M + 1
3: part(M3/8, M3/8)← 1
4: part(M+1 −M3/8, M+1 −M3/8)← 4
5: target ←M ×M/4−M3/8 ×M3/8

6: i←M3/8

7: j ←M3/8

8: while target> 0 do

9: i← i + 1; j ← j − 1
10: target← target −2× j
11: if target< 0 then

12: j ← j + target/2; target← 0
13: part(i, j)← 1; part(M+1 − i, M+1 − j)← 4
14: part(j, i)← 1; part(M+1 − j,M+1 − i)← 4
15: for k = 1 to j do

16: part(i, k)← 1; part(M+1 − i, M+1 − k)← 4
17: part(k, i)← 1; part(M+1 − k,M+1 − i)← 4
18: for k = M3/8 + 1 to M1/2 do

19: part(k, k)← 2; part(M+1 − k,M+1 − k)← 3
20: bfsColor(1, 1, 1); bfsColor(1, M, 2)

21: bfsColor(M, 1, 3); bfsColor(M, M, 4)
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vol = 58  boundary!1 = 50 boundary!2 = 4
imbal = [0.0%, 0.0%]

Fig. 1. Quadrisection of the 16× 16 mesh



Then the nodes (7, 5), (8, 4), (9, 3), and (10, 2) are marked

as the rightmost nodes to be assigned to the part 1 in the

respective rows of the mesh (the transposes of these nodes are

marked to be the bottom most nodes in the respective columns

to be assigned to 4). The nodes (7, 7) and (8, 8) are assigned

to the part 2; whereas the associated nodes (17−7, 17−7) and

(17−8, 17−8) are assigned to the part 3. Then the remaining

nodes are partitioned using the subroutine bfsColor.

Note that the quadrisection of a square mesh of size M×M
by the proposed method results in a total communication

volume of 7

2
×M +2. Although we could not prove it yet, we

suspect that this might be the best possible. Although there is

an equivalence between the mesh partitioning problem (see

Section II-B) and the NP-complete hypergraph partitioning

problem, the hypergraphs corresponding to the five-point sten-

cil meshes are very special, and hence optimal results might

be found in polynomial time. For example, any two vertices

corresponding to two nodes which are not neighbors in mesh

have at most two nets in common.

B. Extending the quadrisection

We achieve a P ×Q way partitioning of an M ×N mesh

by first applying the quadrisection algorithm to a mesh of

size
√

4×M/P ×N/Q. Then we keep the nodes that belong

to parts 1 and 3 (corresponding to the two parts in the first

column of the mesh) intact and push the others to the right by

an amount of M/P = N/Q. This operation opens up a space

for two parts, each will have M/P ×N/Q nodes, and one of

them (say the upper part) will contain the new nodes at the

mesh boundary i = 1 and the other (say the lower part) will

contain the new nodes at 2 ×M/P . We define the boundary

between these two parts and then assign the new nodes to

parts by again using the subroutine bfsColor. The boundary

between the two newly added parts is defined as follows. Let

n = 2×M/P , and consider the nodes in the line joining the

nodes (n/2+n/8, n/2+n/8+1) and (n+1−n/2−n/8, n+
1− (n/2 + n/8 + 1) + n/2). There are a total of n/4 nodes

(including the two nodes as defined). We mark the first half of

these, i.e., n/8 of them, to be assigned to the upper part, and

the second half to be assigned to the lower part. Then calling

bfsColor on the node (n/2 + n/8 − 1, n/2 + n/8 + 1) with

color “upper”, and on the node (n + 1− n/2− n/8 + 1, n +
1− (n/2 + n/8 + 1) + n/2) with color “lower” results in the

partitioning of the (2×M/P )× (3×N/Q) mesh into 6 parts.

This is seen in Fig. 2(a). We repeat this process until we obtain

2×Q-way partitioning of the mesh of size (2×M/P )×N .

A similar procedure is run to extend the 2 × Q-way

partitioning into 3×Q partitioning; which is then repeatedly

used to obtain P × Q-way partitioning of the given original

mesh. In this rowwise extension process, the Q parts that have

nodes in the mesh boundary i = 1 are kept intact and the rest

are pushed down by an amount of M/P = N/Q, and Q− 1
boundaries among the Q new coming parts are defined. This

is best seen again in the example of Fig. 2. After the 2×4-way

partitioning of the 16×32 mesh (not displayed), we extend the

mesh to 24× 32 by pushing the nodes in the parts containing

nodes at i = 16 downwards by 8. Then the boundaries between

the nodes are defined, yielding 3 × 4-way partitioning of the

24 × 32 mesh as shown in Fig. 2(b). Then the nodes in the

parts containing nodes at i = 1 are kept intact but others are

pushed downwards by again 8 to open up space for the last

four parts. Again, the boundaries between the new coming

parts are defined, yielding the 16 = 4× 4-way partitioning of

the 32×32 mesh as shown in Fig. 2(c). We note that the four

parts in the four corners of the partition shown in Fig. 2(c)

are the ones that we obtained by the quadrisection algorithm

at the very beginning.

C. Analysis

As stated before, the volume of communication resulting

from the quadrisection of the M×M mesh with the proposed

algorithm is given by the formula

vol(M,M, 2, 2) =
7×M

2
+ 2 . (4)

This can be derived by tracing the algorithm. We have found

that the total volume of communication of the P × Q-way

partitioning of the M ×N mesh with the proposed MeshPart

method behaves according to the formula

vol(M, N,P, Q) = (3× P ×Q− (P + Q)− 1)× n (5)

+ (P − 1)× (3×Q− 5)

+ (Q− 1)× (3× P − 5) ,

where n = M/P = N/Q. Notice that with M = N and

P = Q = 2, this checks with (4). We have observed this

outcome experimentally (see Table 3) but have not proved it

at the time of writing.

The number of nodes (i, j) with |con(i, j)|−1 = 2 is given

by the formula

boundary2(P,Q) = 4× (P − 1)× (Q− 1) . (6)

Note that each of these nodes necessitates a total commu-

nication volume of 2. Hence, with the assumption that the

relation (5) holds, the number of boundary nodes (i, j) with

|con(i, j)| − 1 = 1 (that is the number of nodes which

necessitate a communication volume of 1) is given by the

formula

boundary1(M,N,P, Q) = vol(M,N,P, Q) (7)

− 2× boundary2(P,Q) .

IV. EXPERIMENTAL RESULTS

We ran our tests using PaToH Matlab Matrix-Partitioning

Interface [11], [12] on a dual quad-core 2.26 GHz Intel Xeon

desktop with 24 GB of memory using Matlab v7.8 (R2009a).

In our experiments, we have used five different hypergraph

partitioning methods: two 1D matrix partitioning methods,

namely Rowwise (RW) and Columnwise (CW) partition-

ings [1], [2], and three 2D partitioning methods, namely

Fine-grain (FG) [3], Checkerboard (CH) [4] and Jagged-like

(JL) [5].
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Fig. 2. Steps for 16-way partitioning of the 32× 32 mesh
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Fig. 3. A sample 4-way partitioning of the 128×128 mesh with hypergraph
partitioning.

In the first set of scalability experiments, we evaluated our

new MeshPart algorithm comparing its results to Cartesian

partitioning as well as hypergraph partitioning. In order to

perform a fair comparison, we have only used 1D hypergraph

partitioning which produces partitioning of mesh nodes. One

could also partition the mesh matrices with 2D partitioning

methods (this would be equivalent to partitioning the edges

of the mesh). Note that since these matrices are symmetric,

1D RW and CW partitioning methods are equivalent. Table I

displays the partitioning results for meshes of sizes from

64 × 64 to 2048 × 2048 with varying number of parts K.

In this table, we only display partitionings that would yield

at least 100 vertices in each part. As seen in the results, the

Cartesian partitioning produced results that are on the average

21% worse than those of the proposed MeshPart method.

1D hypergraph partitioning produces better results than the

Cartesian partitioning, but it is, too, worse than MeshPart.

Figure 3 displays a sample 4-way partitioning of 128 × 128
mesh using 1D hypergraph partitioning. As seen in the figure,

the partitioning result looks somewhat in between Cartesian

partitioning result and MeshPart result as one would expect.

An interesting trend is that for a given mesh size, generally,

the relative total communication volume of Cartesian and 1D

hypergraph partitionings first increases with the number of

parts, then decreases. The fact that this last trend holds for

the Cartesian partitioning can be verified by looking at the

total communication volume formulas. That, the same trend

holds for the hypergraph partitioning is observed on meshes

of sizes 960 and 1920 as well with K = 4, 16, 25, 36, 64, 100,

144, 576, 900, 1600, 3600 for the smaller one, and in addition

to those eleven Ks with 256 and 2304 for the larger one.

The second set of experiments is designed to evaluate per-

formance of hypergraph models with the increasing problem
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Fig. 4. Comparison of hypergraph based partitioning methods. For all partitioning instances and scaling scenarios, we first normalized the total communication
volume with respect to the total communication of the original matrix, then present average results over all matrices and number of parts.

size (both matrix size and the number of parts). For this second

set of experiments, we picked six matrices (Table II) from Uni-

versity of Florida Matrix Collection [13], then systematically

replicated its rows and/or columns to create larger problem

instances. The advantage of this approach is that under ideal

conditions (such as if the solution is not strictly restricted

by the balance constraints), we could easily formulate total

communication volume for the larger problem instances, hence

we can discuss how the methods scale with the increasing

problem size. In this section, a scaling scenario R×C means

that each row of the matrix is replicated R times and each

column of the matrix is replicated C times.

We tested with K ∈ {2, 4, 8, 16, 32, 64, 128, 256}. For a

specific K value, K-way partitioning of a test matrix con-

stitutes a partitioning instance. The partitioning instances in

which min{M,N} < 100 × K are discarded, as the parts

would become too small to be meaningful. Averages over

all K values for five hypergraph models, together with an

overall average of all methods, is displayed in Figure 4. For

2D methods (i.e., JL, CH, FG) and for average of all methods

(Fig. 4(f)), the normalized total communication volume is

displayed as a stacked bar to illustrate normalized expand

and fold communications. In these charts, bottom of the bar

represents the total volume of expand communications and top

represents volume of fold communications.

In this experiment, when only columns (rows) of the matrix

is replicated, we expect the total communication volume of

RW (CW) partitioning method to increase linearly with the

number of replication due to the linear increase in the number

of data elements that needs to be communicated. Our results

displayed in Figs. 4(a) and 4(b) (including the last four bars

showing scenarios with replication in both rows and columns)

confirm this expectation. Similarly, when only rows (columns)

of the matrix are replicated, we expect the total communication



TABLE I
COMPARISON OF TOTAL COMMUNICATION VOLUME FOUND BY

MESHPART ALGORITHM WITH RESPECT TO THOSE OF CARTESIAN

PARTITIONING AND 1D HYPERGRAPH PARTITIONING. NUMBERS IN

PARENTHESIS ARE NORMALIZED TOTAL COMMUNICATION VOLUME WITH

RESPECT TO THOSE OF MESHPART.

Mesh Size K MeshPart Cartesian Part 1D Hypergraph

64x64 4 226 256 (1.13) 252 (1.11)
64x64 16 666 768 (1.15) 739 (1.11)

128x128 4 450 512 (1.14) 504 (1.12)
128x128 16 1290 1536 (1.19) 1475 (1.14)
128x128 64 3066 3584 (1.17) 3353 (1.09)

256x256 4 898 1024 (1.14) 1015 (1.13)
256x256 16 2538 3072 (1.21) 2979 (1.17)
256x256 64 5866 7168 (1.22) 6736 (1.15)
256x256 256 13050 15360 (1.18) 13893 (1.06)

512x512 4 1794 2048 (1.14) 2051 (1.14)
512x512 16 5034 6144 (1.22) 6272 (1.25)
512x512 64 11466 14336 (1.25) 13648 (1.19)
512x512 256 24810 30720 (1.24) 28135 (1.13)
512x512 1024 53754 63488 (1.18) 56306 (1.05)

1024x1024 4 3586 4096 (1.14) 4194 (1.17)
1024x1024 16 10026 12288 (1.23) 12251 (1.22)
1024x1024 64 22666 28672 (1.26) 28279 (1.25)
1024x1024 256 48330 61440 (1.27) 58598 (1.21)
1024x1024 1024 101866 126976 (1.25) 114223 (1.12)

2048x2048 4 7170 8192 (1.14) 8463 (1.18)
2048x2048 16 20010 24576 (1.23) 24382 (1.22)
2048x2048 64 45066 57344 (1.27) 56890 (1.26)
2048x2048 256 95370 122880 (1.29) 117996 (1.24)
2048x2048 1024 198090 253952 (1.28) 234477 (1.18)

average (1.21) (1.16)

TABLE II
PROPERTIES OF THE TEST MATRICES.

Number of
name rows columns nonzeros

lp dfl001 6,071 12,230 35,632
shermanACb 18,510 18,510 145,149
mult dcop 01 25,187 25,187 193,276
lp cre b 9,648 77,137 260,785
lp nug30 52,260 379,350 1,567,800
Stanford 281,903 281,903 2,312,497

volume of RW (CW) partitioning method to remain about the

same, because one can achieve this volume simply by assign-

ing replica rows (columns) to the same part with the respective

row (column) of the original matrix. However, since we are

using an heuristic method which does not use concepts like

supernodes [10]—vertices that have identical net sets—, the

solutions can be a little different than the expected outcomes.

It is seen that the normalized total volume for RW increases

up to 1.55 times, whereas for CW it increases up to 1.81 times.

We believe that this discrepancy is due to the shapes of the

matrices we used in our experiments. Three out of six matrices

are rectangular matrices with substantially more columns than

rows. In these cases, column replication increases the number

of vertices of the hypergraph in CW partitioning and makes

the number of nets to number of vertices ratio substantially

smaller. This result suggests that, similar to identical net

elimination techniques, hypergraph partitioning tools should

consider implementing identical vertex elimination (supernode

detection).

As explained in [4], [5], JL and CH methods can be applied

by using rowwise partitioning first followed by columnwise

partitioning, and vice versa. In our experiments, without any

particular reason, we only test the former approach. This

inherently effected the results, especially for CH and FG,

because of the properties of our test matrices. For CH where

second partitioning is a multi-constraint columnwise partition-

ing, column replication makes the multi-constraint partitioning

harder, in comparison to row replication. Hence the different

scaling behavior in CH with row versus column replication.

For FG, this means that FG will find solutions “closer” to

CW in wide rectangular matrices, and when we compare the

trends in Fig. 4(e) with Fig. 4(b) we notice that they are similar

but, as expected, FG scales better. One general and expected

observation is that the 2D partitioning methods scale better

than the 1D partitioning methods. That is, their normalized

total communication volume increases less with the increased

number of replication.

The last figure (Fig. 5) displays the performance of par-

titioning methods with the increasing number of parts. We

expect a more steep increase in the normalized communication

volume with the 1D partitioning methods, where the results

displayed in Figs. 5(a) and 5(b) confirm this expectation.

Unfortunately, the shape of our test matrices also shows

its effects in this experiment. Due to the wide rectangular

matrices, partitioning into larger K values does not scale well

in the RW method in comparison to the CW method. When

compared to FG, the normalized total communication volume

of the JL and CH methods increase much slower with the

increasing number of parts, and hence creating an illusion of

JL and CH scaling better than FG in these results. However, we

need to note that absolute value of the total communication

volume for JL and CH methods are noticeably higher than

those of FG—in some instances even 256-way FG partitioning

produces smaller total communication than 4-way those found

by JL and CH. Nevertheless, these results once more confirms

that 2D methods scale better than 1D partitioning methods.

One final note about this result is that FG shows a similar

scaling pattern with our MeshPart method.

V. CONCLUSION

We investigated the scalability of the hypergraph partition-

ing methods under different scenarios for which an educated

guess as to how the best algorithm would behave can be made.

Experimental results showed that the 2D partitioning methods

scale better than the 1D partitioning methods. The increase in

the total communication volume of the 2D methods is smaller

than the increase in that of the 1D methods for the increasing

problem size and/or number of parts. In both the 1D and

2D methods, the increases in the total communication volume

are smaller than the increase in the number of parts. Results

also suggest that hypergraph partitioning tools should consider

implementing identical net and vertex elimination (supernode

detection) to improve the solution quality.

For another scalability study, we investigated the perfor-

mance of the hypergraph partitioning methods on the matrices
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Fig. 5. Comparison of hypergraph based partitioning methods. For all partitioning instances and scaling scenarios we first normalized the total communication
volume with respective the total communication of the corresponding partitioning for K = 4 then here present average results over all matrices and all scenarios.

arising from the discretization of two-dimensional domains

with the five-point stencil. For such matrices, we proposed a

partitioning method, MeshPart, which uses the domain specific

knowledge to partition the nodes of the mesh (and hence the

rows of the matrices). The proposed MeshPart method assigns

equal number of mesh nodes to processors and yields better

total volume of communication than the hypergraph models.

Although we were not able to prove yet, we think that it

might yield the best possible total communication volume

for four way partitioning of the two-dimensional meshes in

question. We used this method to investigate the scalability of

the 1D hypergraph partitioning methods. Results showed that

1D hypergraph partitioning method scales reasonably well but

the results are still far from optimum—this calls for better

partitioning heuristics.

We think that the current work sheds light into the scala-

bility of the hypergraph models. However, there is still much

to do in order to address the question: which method would

yield the best results for a given matrix and the number of

processors, and what would the resulting total communication

volume be?

A few research directions arise regarding the proposed mesh

partitioning method. First, we are investigating the use of the

proposed mesh partitioning routine for developing fill-reducing

ordering methods for sparse matrices, again corresponding to

the finite element meshes. Second, we are trying to answer

the following questions. How can one partition the meshes

that are built using the 7-point and 9-point stencils? How can

one generalize these methods to the meshes arising from the

discretization of 3D domains? Can we generalize the these

methods to address partitioning of irregular meshes? In other

words, can we infer heuristic approaches for the hypergraph

partitioning problem?
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