
HAL Id: ensl-00532829
https://ens-lyon.hal.science/ensl-00532829

Preprint submitted on 19 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to square floats accurately and efficiently on the
ST231 integer processor

Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Christophe Monat, Guillaume
Revy

To cite this version:
Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Christophe Monat, Guillaume Revy. How to square
floats accurately and efficiently on the ST231 integer processor. 2010. �ensl-00532829�

https://ens-lyon.hal.science/ensl-00532829
https://hal.archives-ouvertes.fr

How to square floats accurately and efficiently on the ST231 integer processor

Claude-Pierre Jeannerod1, 3 Jingyan Jourdan-Lu2,3 Christophe Monat2 Guillaume Revy4

1INRIA, 2STMicroelectronics, 3Université de Lyon, 4Université de Perpignan

Laboratoire LIP (CNRS, ENS de Lyon, INRIA, UCBL), Université de Lyon — 46, allée d’Italie, 69364 Lyon cedex 07, France

Compilation Expertise Center, STMicroelectronics — 12, rue Jules Horowitz BP217, 38019 Grenoble cedex, France

Laboratoire ELIAUS-DALI, Université de Perpignan Via Domitia — 52 avenue Paul Alduy, 66860 Perpignan cedex 9, France

Abstract

We consider the problem of computing IEEE floating-

point squares by means of integer arithmetic. We show how

the specific properties of squaring can be exploited in or-

der to design and implement algorithms that have much

lower latency than those for general multiplication, while

still guaranteeing correct rounding. Our algorithm descrip-

tions are parameterized by the floating-point format, aim at

high instruction-level parallelism (ILP) exposure, and cover

all rounding modes. We show further that their C imple-

mentation for the binary32 format yields efficient codes for

targets like the ST231 VLIW integer processor from STMi-

croelectronics, with a latency at least 1.75x smaller than

that of general multiplication in the same context.

Keywords: squaring, binary floating-point arithmetic, cor-

rect rounding, IEEE 754, instruction level parallelism, C

software implementation, VLIW integer processor

1. Introduction

The STMicroelectronics ST231 is a 32-bit, 64-register,

4-issue, embedded integer VLIW processor. It is currently

used in consumer electronics devices (set-top-boxes, sound

processors, camera systems...) mainly performing intensive

media and signal processing. As this processor has integer-

only register file and ALUs, all the single precision floating-

point support is available through software emulation, based

on the highly optimized FLIP 1.0 library [9]. This compre-

hensive support is efficient enough to allow application de-

velopers to use out-of-the box floating-point code, instead

of converting it to fixed-point representations.

However, the implementation of floating-point opera-

tions on integer-only processors can lead to sub-optimal use

of the computational resources: for example, all binary op-

erators f(x, y) called with the same argument x = y lead

to redundant unpacking of the floating-point format, and to

useless checks for special cases, and fail to exploit some

properties of f(x, x). Since the compiler can detect all

static cases of such occurrences, this leads to the idea of

specializing operators to gain additional performance.

In this paper we focus on the specialization of the multi-

plication operator f : (x, y) 7→ x × y into a square operator

x 7→ x2. Squares of floating-point values are ubiquitous in

scientific computing and signal processing, since they are

intensively used in any algorithm requiring the computation

of Euclidean norms, powers, sample variances, etc. [6, 11].

We give a thorough study of how to design efficient soft-

ware for IEEE floating-point squaring on targets like the

ST231, that is, by means of integer arithmetic and logic

only, and with high ILP exposure.

Our first contribution is to show how the specific prop-

erties of squaring can be exploited in order to refine the

IEEE specification of multiplication, to deduce definitions

of special input and generic input that are suitable for im-

plementation, and to optimize the generic path and the spe-

cial path for latency. This analysis is done for all rounding

modes and presented in a parameterized fashion, in terms

of the precision and the exponent range of the input/output

floating-point format.

Second, this analysis allows us to produce a complete

portable C code for the binary32 format and each round-

ing mode. On the ST231 processor, the result is a latency

of 12 cycles for rounding ’to nearest even,’ which is 1.75x

faster than the 21 cycle latency of the multiply operator of

FLIP 1.0; for the other rounding modes, the speedups are

even higher and range from 1.9 to 2.3. Also, the average

number of instructions issued every cycle lies between 3.4

and 3.5, thus indicating heavy use of the 4 issues available.

Third, we report on some experiments involving non-

IEEE variants and square-intensive applications. We show

that relaxing the IEEE requirements (finite math only, no

support of subnormals) saves at most 1 cycle in the context

of the ST231. We also show that for applications like the

Euclidean norm, the sample variance, and binary powering

the practical impact of our fast squarer reflects well the best

that can theoretically be achieved.

For squaring in integer / fixed-point arithmetic several

optimized hardware designs have been proposed; see for

example [3, §4.9] as well as [14, 4] and the references

therein. However, for squaring in IEEE floating-point arith-

metic much less seems to be available and to the best of

our knowledge, no optimized design has been presented and

analyzed in the details as we do here, be it in hardware or

in software. Furthermore, the implementation of squaring

for the binary32 format and the ST231 processor outlined

in [12] does not support subnormal numbers, is available

only for rounding ’to nearest even,’ and has a latency of 27

cycles, which is 2.25x more than our 12 cycle latency.

Notation. For a real number r we write ⌊r⌋ for the

largest integer not greater than r, and ⌈r⌉ for the smallest

integer not less than r. If r satisfies further 0 ≤ r < 2 then

its binary expansion
∑

i≥0 ri2
−i with ri ∈ {0, 1} for all i

will be simply written (r0.r1r2 . . .)2. For a floating-point

datum x, we write |x| for the absolute value of x, assum-

ing implicitly that x is not NaN. Finally, we shall often use

the following square bracket notation: for any true-or-false

statement S, let [S] be 1 if S is true, 0 otherwise.

Outline. This paper is organized as follows. After some

reminders on the ST231 processor and IEEE binary floating

point in Section 2, we show in Section 3 how to specialize

to squaring the IEEE specification of multiplication, deduce

suitable definitions of generic and special input, and give a

high-level algorithmic view of the squaring operator. Sec-

tions 4 and 5 then detail our algorithms for handling, respec-

tively, generic and special input by means of integer arith-

metic, and give the corresponding C implementation for the

binary32 format. The performances of this implementation

on the ST231 processor are reported in Section 6, and we

conclude in Section 7. The detailed proofs of Properties 1

to 9 have been postponed to Appendix A for more legibility.

2. Background

2.1. STMicroelectronics’ ST231 processor

The targeted processor is the ST231 from STMicroelec-

tronics. Since it is a scoreboarded VLIW, there is no dy-

namic instruction dispatch contrary to what could achieve

an equivalent 4-way superscalar architecture: reaching the

best performance relies heavily on compiler efficiency.

Instruction scheduling is done after code selection,

that must be aggressive to favor high ILP. Specifically,

the if-conversion optimization that replaces conditional

branches by conditional ‘slct’ instructions helps creating

large straight-line code regions that are subject to efficient

scheduling. The latency of this ’slct’ instruction is 1 cycle.

Up to four independent instructions can be bundled into

a ‘syllable,’ achieving the maximum throughput of four in-

structions per cycle. One constraint is that the immediate

value that can be encoded as part of an instruction is limited

to 9-bit signed: a larger 32-bit constant, named extended

immediate, can be built by consuming an additional instruc-

tion syllable in the bundle. This reduces the actual paral-

lelism available locally, but this compares favorably with

other mechanisms such as loading the constant from mem-

ory, that incurs a performance impact on the data cache side

of the machine.

Only a very small subset of the ST231 instruction set

is needed by our squaring algorithms: logical and bitwise

operators (&&, ||, &, |), relational operators (<=, >=, >),

bitwise shift operators (<<, >>), addition, subtraction, max-

imum, and minimum of (un)signed integers (+, -, max,

maxu, minu), and finally a multiply operator mul giving

the higher half ⌊AB/232⌋ of the exact product of two 32-bit

unsigned integers A and B. Except for mul whose latency

is 3 cycles, the latency of each of these operators is 1 cycle.

2.2. IEEE 754-2008 binary floating point

Binary floating-point data. As specified in the IEEE

754-2008 standard [7], binary floating-point data consist

of quiet or signaling not-a-numbers (qNaN, sNaN), signed

zeros (+0, −0), signed infinities (+∞, −∞), and finite

nonzero binary floating-point numbers having the following

form: given a precision p and an exponent range [emin, emax],

x = (−1)
s · m · 2e, (1a)

where s is either 0 or 1, and where

m = (m0.m1 . . . mp−1)2 and emin ≤ e ≤ emax. (1b)

Any such number must in fact be either normal (m0 = 1) or

subnormal (m0 = 0 and e = emin). Thus, writing α for the

smallest positive subnormal number and Ω for the largest

normal number, we have

α = 2emin−p+1 and Ω = (2 − 21−p) · 2emax .

Assumptions on emax, emin, and p. We shall assume that

emax = 2w−1 − 1 for some positive integer w, (2a)

emin = 1 − emax, 2 ≤ p < emax, (2b)

and we shall write

k = w + p.

All the binaryk formats of the IEEE 754-2008 standard sat-

isfy these assumptions; see [7, Table 3.5] and, for a proof

that 2 ≤ p < emax, see Appendix A. This allows us to carry

out all the analysis in a parameterized way and specialize

later to a given format, for example the binary32 format:

w = 8, emin = −126, emax = 127, p = 24.

Standard encoding into k-bit integers. For the binaryk
format the standard encoding of x in (1) is via a k-bit un-

signed integer X whose bit string satisfies

X = [s|Ew−1 · · ·E0|m1 · · ·mp−1], E =

w−1∑

i=0

Ei2
i, (3)

with E = e − emin + m0. Zeros, infinities, and NaNs

are encoded via special values of X . In particular, writing

|X| = X mod 2k−1, we have

x =





+0 iff X = 0,

+∞ iff X = 2k−1 − 2p−1,

sNaN iff 2k−1 − 2p−1 < |X| < 2k−1 − 2p−2,

qNaN iff |X| ≥ 2k−1 − 2p−2.

(4)

Correct rounding. Besides floating-point data and their

encoding into integers, the standard [7, §4.3] defines round-

ing modes ◦ to map any real number y to a unique floating-

point datum x = ◦(y). In radix 2 four rounding modes are

required: to nearest even (RN), down (RD), up (RU), and to

zero (RZ). In the case of the square operator we shall restrict

to RN, RD, and RU, since RZ(y) = RD(y) when y ≥ 0.

Exceptions and flags. Finally, the standard defines five

exceptional situations (invalid operation, division by zero,

overflow, underflow, inexact) and requires that they shall be

signaled by raising some status flags. For square, all excep-

tions but ’division by zero’ can occur, just like for multiply.

However, since the status flags are currently not set in the

multiply operator of the FLIP library [9] to which we com-

pare, we have not implemented them for square either.

3. Specification and high-level algorithm

Squaring being a special case of general multiplication

x × y, it is fully specified by the IEEE 754-2008 standard:

given a rounding mode ◦ and assuming x = y, the result r
prescribed by [7] for x × y is as follows:

r =





|x| if x ∈ {±0,±∞},

qNaN if x is NaN,

◦(x2) otherwise.

(5)

This specification shows that r is essentially known in ad-

vance when x is zero, infinity, or NaN. However, in the par-

ticular case of squaring, if |x| is nonzero but “small enough”

then the rounded value ◦(x2) will always be equal to a tiny

constant. Similarly, if |x| is finite but “large enough” then

◦(x2) will always be equal to a huge constant. The rest of

this section studies such properties of ◦(x2) in order to re-

fine the specification (5) and deduce a high-level algorithm.

Let min◦ and max◦ denote, respectively, the minimum

value and maximum value of ◦(x2) for |x| in [α,Ω]. Using

the monotonicity, for x ≥ 0, of the map x 7→ x2 together

with the definitions of rounding and overflow in [7], one

may check that these values are as follows:

◦ RN RD RU

min◦ +0 +0 α

max◦ +∞ Ω +∞
(6)

For which values of x are such extremal values attained? To

answer this, let us define the following two quantities

α′ = 2⌊(emin−p)/2⌋ and Ω′ = 2(emax+1)/2. (7)

We give below three properties regarding these quantities.

Property 1. The values α′ and Ω′ defined in (7) are normal

floating-point numbers such that α′ < Ω′.

Property 2. For ◦ ∈ {RN, RD, RU} and x a finite nonzero

floating-point number, one has ◦(x2) = max◦ iff |x| ≥ Ω′.

The interval [Ω′,Ω] thus defines the widest input range

on which max◦ is achieved. Interestingly, this range is the

same for all our rounding modes, which makes things sim-

pler from the implementer point of view. Note also that Ω′

is an integer power of two because of (2a). For min◦ the sit-

uation is slightly more complex, as this minimum value is

achieved on an input range [α, α′
◦] whose upper bound now

depends on ◦. However, the property below shows that one

can suppress this dependency by restricting to input ranges

whose upper bound has the form 2i for some integer i.

Property 3. The value α′ in (7) is the largest integer power

of two such that, for every finite nonzero floating-point num-

ber x in [α, α′), ◦(x2) = min◦ for ◦ ∈ {RN, RD, RU}.

The main outcome of Properties 2 and 3 is the following

specification of floating-point squaring, which refines (5):

r =





+0 if x = ±0,

min◦ if α ≤ |x| < α′,

◦(x2) if α′ ≤ |x| < Ω′,

max◦ if Ω′ ≤ |x| ≤ Ω,

+∞ if x = ±∞,

qNaN if x is NaN.

(8)

This brings a natural distinction between two kinds of input:

Definition 1. Input x is called generic if α′ ≤ |x| < Ω′,

and special otherwise.

By Property 1 every subnormal input is special, so that

generic input consist of normal numbers only. The corre-

sponding output ◦(x2) must be finite because of the “only

if” part in Property 2, but it can be (sub)normal or zero.

Let us now define

Cspec = [x is special]. (9)

This condition allows us to translate (8) into the following

high-level algorithmic description, which shows that squar-

ing essentially reduces to three independent tasks Ti:

evaluate the condition Cspec in (9) [T1]

if (Cspec) then

handle special input as in (8) [T2]

else

compute ◦(x2) [T3]

Thanks to if-conversion, the generated assembly for the

above algorithm will consist of a straight-line piece of code

computing the result Ri of each task Ti and ending with a

’slct’ instruction that selects R2 if R1 is true, R3 otherwise.

For the design and implementation of each task we shall

proceed in two steps as in [1]: assuming unbounded paral-

lelism we optimize the a priori most expensive task first,

namely task T3 (see Section 4), and then only T1 and T2,

by trying to reuse as much as possible what was computed

for T3 (see Section 5). The latency of ’slct’ being of 1 cycle,

the lowest latency we can expect for squaring thus is 1 cycle

more than that of T3.

4. Computing correctly-rounded squares

In this section we consider the computation of ◦(x2) for

x generic, that is, x as in (1) and such that

α′ ≤ |x| < Ω′. (10)

By Property 1 such an x is normal, and thus 1 ≤ m < 2.

4.1. Parameterized formula for ◦(x2)

Normalized representation of the exact square. A first

step towards the computation of ◦(x2) consists in normal-

izing the representation m2 · 22e of x2 implied by (1a). Let

c =
[
m ≥

√
2
]
. (11)

Defining m′ = m2 · 2−c and e′ = c + 2e then yields the

unique pair (m′, e′) ∈ R × Z such that 1 ≤ m′ < 2 and

x2 = m′ · 2e′

. (12)

This is the so-called normalized representation of the exact

square. Tight bounds for e′ are given by the next result.

Property 4. The normalized exponent e′ of x2 satisfies

2⌊(emin − p)/2⌋ ≤ e′ ≤ emax.

These bounds for e′ are the best possible ones:

• The lower bound is attained when |x| = α′. It is equal

to emin−p−ǫ with ǫ =
[
p is odd

]
. One has ǫ = 0 for the

standard binary32 format, and ǫ = 1 for the standard

binary16, binary64, and binary128 formats [7, §3.6].

• The upper bound emax is attained for example when

x = (1.1)2 ·2(emax−1)/2, which satisfies (10) and whose

square is (1.001)2 · 2emax .

Also, the tight lower bound on e′ is less than emin for p ≥ 2,

so that both situations e′ ≥ emin and e′ < emin do occur.

Correctly-rounded value of the exact square. When

e′ ≥ emin the normalized representation (12) already allows

to express the correctly-rounded value ◦(x2). In this case

x2 lies in the range [2emin , 2emax+1) and, since m′ ∈ [1, 2),

◦(x2) = ◦(m′) · 2e′

= ◦(m2 · 2−c) · 2c+2e. (13a)

When e′ < emin the exact square ranges in (0, 2emin). In

this case, we first set the exponent to emin and only then

round the resulting scaled significand in fixed point:

◦(x2) = ◦̃(m′ · 2−(emin−e′)) · 2emin

= ◦̃(m2 · 2−(emin−2e)) · 2emin , (13b)

where ◦̃ denotes the function that rounds the reals from

[0, 2) in the same direction as ◦ but on the regular grid

{i · 21−p : i = 0, 1, . . . , 2p}.

In order to handle the cases (13a) and (13b) simultane-

ously, let us define

µ = max(c, emin − 2e). (14)

Since ◦̃ coincides with ◦ on [1, 2), the correctly-rounded

value of the exact square is given in both cases by

◦(x2) = ◦̃(ℓ) · 2d, (15a)

where

ℓ = m2 · 2−µ and d = µ + 2e. (15b)

By construction one has 0 < ℓ < 2 and emin ≤ d ≤ emax. The

property below further gives bounds for the range of µ.

Property 5. One has c ≤ µ ≤ p + ǫ with ǫ =
[
p is odd

]
.

Again, these bounds are tight: x = 1 gives µ = 0, while

x = ±α′ gives c = 0, e′ = emin − p− ǫ, and then µ = p+ ǫ.

An explicit formula for ◦̃(ℓ). The above analysis has re-

duced, for precision p, floating-point rounding of the exact

result x2 to fixed-point rounding of the scaled significand ℓ

in (15). Using classical rounding formulae (see for exam-

ple [3, §8.4.3]), we now give an explicit expression for ◦̃(ℓ).
Writing ℓ = (ℓ0.ℓ1 . . . ℓp−1ℓp . . .)2 and using ∨ for logical

OR, the guard bit and sticky bit of ℓ are, respectively,

g = ℓp and t = ℓp+1 ∨ ℓp+2 ∨ · · · . (16)

Its correctly-rounded value is then given by the formula

◦̃(ℓ) = (ℓ0.ℓ1 . . . ℓp−1)2 + b · 21−p, (17)

where the round bit b satisfies (see [3, pp. 436-437])

b =





g ∧ (ℓp−1 ∨ t) if ◦ = RN,

0 if ◦ = RD,

g ∨ t if ◦ = RU.

(18)

4.2. Implementation for the binaryk format

We detail here how to implement, for x generic and

the binaryk floating-point format, the computation of r =
◦(x2) using k-bit integer arithmetic and logic. We assume

x is given by its standard encoding into an unsigned k-bit

integer X . Since the result r satisfies (15a), it is known (see

for example [13, §2.3.1]) that its standard integer encoding

R is given by R = D · 2p−1 + L̃, where

D = d + emax − 1 (19)

and L̃ = ◦̃(ℓ) · 2p−1. Using (17) we obtain L̃ = L + b with

L =
⌊
ℓ · 2p−1

⌋
(20)

and b the sticky bit defined in (18), so that eventually

R = D · 2p−1 + L + b. (21)

Consequently, computing R amounts to deducing D, L,

b from X , which we detail now in a parameterized fashion,

that is, for the binaryk format. We illustrate our analysis

for the binary32 format, and the corresponding C code (for

rounding ’to nearest even’) appears in Listing 1. In order

to give an idea of the ILP exposed by our approach, this C

code has been set out in such a way that line i displays only

the expressions that can be evaluated in i cycles with the

ST231 latencies and assuming unbounded parallelism.

Computing L. From (15b) and (20) it follows that

L =
⌊
m2/21−p+µ

⌋
(22)

and, therefore, we first need to deduce from X an integer

encoding of m, say M , as well as the integer µ.

To produce M , recall that m = (1.m1 . . . mp−1)2 as x is

normal. Since p ≤ k a possible choice is to set up m · 2k−1,

which can be obtained from (3) by shifting and masking:

M = m · 2k−1 = (X ≪ w) | 2k−1.

For the binary32 format, where w = 8 and k = 32,

this corresponds to line 2 in Listing 1; on ST231, this

takes 2 cycles and, due to the extended immediate value

231 = (80000000)16, 3 instruction syllables.

To get µ, recall first that x normal implies e = E − emax.

Then, recalling that emin = 1 − emax and applying (14),

µ = max(c, F), F = emax + 1 − 2E. (23)

To get the boolean value c, it suffices to remark that (11)

and M = m · 2k−1 imply

c = [M > M0], with M0 =
⌊√

2 · 2k−1
⌋

.

To get the (possibly negative) integer F , first we extract 2E
from X in (3) by using the identity

2E =
(
X ≫ (p − 2)

)
& (2w+1 − 2), (24)

and then we subtract 2E from the constant emax + 1. For the

binary32 format the computation of c and F appears at line

3 of Listing 1, where (b504f333)16 is M0 for k = 32; on

ST231 each of c and F takes 3 cycles, so that µ is eventually

obtained in 4 cycles.

Let us now see how to deduce L from M and µ. The

property below shows that the k most significant bits of the

2k-bit integer M2 are enough for that purpose.

Property 6. L = ⌊H/2µ+w−1⌋ with H = ⌊M2/2k⌋.

Given M the mul instruction computes the higher half H
of M2, which then, by Property 6, simply has to be shifted

right by µ + w − 1 in order to yield L. For the binary32

format, this appears at lines 5 and 6 of Listing 1. Since here

p = 24 is even, we deduce from Property 5 that µ + 7 is

at most 31, which thus agrees with the C99 specification of

the bitwise shift operator [8, p. 84]. With the ST231 latency

constraints, both H and µ + 7 are computed from X in 5

cycles, so that L is obtained in 6 cycles.

Computing b. We focus here on the most interesting

case, rounding to nearest even, for which b = g∧ (ℓp−1∨ t)
with g and t as in (16).

Note first that g is the least significant bit of the integer

G = ⌊ℓ · 2p⌋ =
∑

0≤i≤p ℓi2
p−i and, using a proof similar

to that of Property 6, we arrive at

g = G mod 2, G = ⌊H/2µ+w−2⌋.
For the binary32 format, the corresponding C code appears

at lines 6 and 9 of Listing 1. On ST231, G will have the

same latency as L (6 cycles), and we thus get g in 7 cycles.

Since ℓp−1 is the least significant bit of L we have

ℓp−1 = L mod 2,

so that we are left with computing the sticky bit t. The next

result shows how to recover this bit simply by checking that

some lower parts of H and X are nonzero, that is, without

computing the lower half of the exact square M2.

Listing 1. Computing ◦(x2) for the binary32 format, ◦ = RN, and x generic.
1 T2 = X & 0xff;

2 M = (X << 8) | 0x80000000; E2 = (X >> 22) & 0x1fe;
3 F = 128 - E2; c = M > 0xb504f333;
4 mu = max(c, F);
5 H = mul(M, M);
6 L = H >> (mu + 7); G = H >> (mu + 6); T1 = H << (26 - mu);
7
8
9 b = (G & 1) && ((L & 1) | (T1 | T2));

10 return (((mu - F) << 23) + L) + b;

Property 7. One has t = [T1 6= 0] ∨ [T2 6= 0] with T1 and

T2 the two k-bit integers given by

T1 = H ≪ (p + 2 − µ) and T2 = X mod 2p−⌊k/2⌋.

For the binary32 format, Property 7 gives T2 = X mod 28,

which can be implemented by masking X as shown at line

1 of Listing 1. The computation of T1 is a mere left shift

of H by 26 − µ, the latter value ranging in [0, 31] thanks

to Property 5. Then notice that the bit ℓp−1 ∨ t is zero if

and only if the integer U obtained by bitwise-ORing the

integers L & 1 and T1 and T2 is zero. The logical AND

of g = G & 1 ∈ {0, 1} and U is thus enough to yield b,

which allows us to avoid testing explicitly if T1 or T2 is

nonzero. This is shown at line 9 of Listing 1. The paren-

thesization chosen there aims to reduce the overall latency

for b on ST231: both L and T1 can be obtained in 6 cycles,

while T2 costs 1 cycle; therefore, both L & 1 and T1 |T2

follow in 7 cycles, which yields b in 9 cycles.

Computing D. From the definitions of d and D in (15b)

and (19) we deduce that D = µ + 2e + emax − 1. Hence,

recalling that e = E − emax and the definition of F in (23),

D = µ − F.

For the binary32 format, this subtraction appears at line 10

of Listing 1. Recalling that on ST231 we get F and µ in,

respectively, 3 and 4 cycles, we will thus get D in 5 cycles.

Packing the result. From (21) the integer encoding R
of the result satisfies R = D · 2p−1 + L + b and we have

just detailed how to get from X the integers D, L, and b.

Moreover, assuming the latency model of the ST231, their

respective cost has been shown to be of 5, 6, and 9 cycles.

This implies a latency of 6 cycles for D ·2p−1, and using the

parenthesization shown at the last line of Listing 1 we even-

tually get R in 10 cycles. Thus, when ◦ is RN the overall

cost is larger than that of the round bit b by only one cycle.

Some simplifications when ◦ is not RN. When the

rounding mode ◦ is RD the round bit b in (18) is zero. Con-

sequently, the instructions involving G, T1, T2, and b can be

suppressed and the last line of Listing 1 replaced with:

return ((mu - F) << 23) + L;

When ◦ is RU the bit ℓp−1 is not needed and b is the

logical OR of g = G & 1 and T1 |T2. In this case, we thus

replace line 9 of Listing 1 by:

b = (G & 1) | (T1 | T2);

With these new codes the expected latency of R on

ST231 drops from 10 to 7 cycles for ◦ = RD, and from

10 to 9 cycles for ◦ = RU.

5. Detecting and handling special input

We first have to decide whether input x is special or not,

that is, to compute from X the value of Cspec in (9). By

Definition 1 this condition satisfies

Cspec = Csmall ∨ Clarge ∨ Cnan (25)

with Csmall =
[
|x| < α′

]
, Clarge =

[
|x| ≥ Ω′

]
, and Cnan =[

x is NaN
]
. The next two properties show how to obtain

Csmall and Clarge ∨ Cnan by reusing the value 2E computed

for the generic case (see (24) and line 2 of Listing 1).

Property 8. Csmall = [2E ≤ emax − p − 1].

Property 9. Clarge ∨ Cnan = [2E ≥ 3emax + 1].

For the binary32 format, a C fragment implementing Cspec

by means of 2E and the two previous properties is shown

at lines 2 to 4 of Listing 2. On ST231 the cost will be of 4

cycles and, as Cspec is independent of ◦, this fragment holds

not only for ◦ = RN but also for ◦ ∈ {RD, RU}.

Listing 2. Detecting and handling special in-
put for the binary32 format and ◦ = RN.

1absX = X & 0x7fffffff;
2E2 = (X >> 22) & 0x1fe; Cnan = absX > 0x7f800000;
3Csmall = E2 <= 102; Clarge_or_nan = E2 >= 382;

4Cspec = Csmall || Clarge_or_nan;
5if (Cspec) {
6if (Csmall) return 0; // r = +0
7else {
8if (Cnan) return 0x7fc00000; // r = qNaN
9else return 0x7f800000; } // r = +oo
10} else {
11// generic case (Listing 1).
12}

Once special input have been filtered out, it remains to

return, for the given rounding mode ◦, the standard integer

encoding R of the associated result r prescribed by (8):

When ◦ is RN. We deduce from (6) and (8) that for x
special, r must be +0 if |x| < α′, qNaN if x is NaN, and

+∞ otherwise. Implementing this is then straightforward

as it suffices to recall from (4) that, on the one hand 0,

2k−1 − 2p−1, and 2k−1 − 2p−2 are standard encodings of

+0, +∞, and qNaNs, and that, on the other hand,

Cnan =
[
X & (2k−1 − 1) > 2k−1 − 2p−1

]
.

For the binary32 format, the computation of Cnan is shown

at lines 1 and 2 of Listing 2, while lines 6 to 9 display

the computation of R. On ST231, lines 6 to 9 will be if-

converted as shown by the following pseudo-code:

Rlarge_or_nan = slct(Cnan,0x7fc00000,0x7f800000)
R = slct(Csmall,0,Rlarge_or_nan)

With a latency of 1 cycle for the ’slct’ instruction and since

Cnan costs 2 cycles, we thus get R for x special in 4 cycles.

When ◦ is not RN. For ◦ = RD the only difference with

the previous case is when |x| ≥ Ω′ and, by(6) and (8), we

now have r = max(|x|,Ω). The standard integer encoding

of Ω is 2k−1 − 2p−1 − 1, which equals (7f7fffff)16 for

the binary32 format. Consequently, it suffices to replace

line 9 of Listing 2 with:

else return maxu(absX, 0x7f7fffff);

For ◦ = RU, the specification differs from that for ◦ =
RN only in the case where |x| < α′, for which we have

r = min(|x|, α). Since the standard integer encoding of α
is 1, an implementation for the binary32 format follows by

simply replacing line 6 in Listing 2 by

if (Csmall) return minu(absX, 1);

On ST231, R still costs 4 cycles as both max(|x|,Ω) and

min(|x|, α) have a latency of 2 cycles, like Cnan.

6. Experimental results obtained on ST231

The C codes detailed in Sections 4 and 5 yield a full im-

plementation of squaring, for the binary32 format and each

rounding mode. To check correctness we compiled them

with gcc (using a C emulation of the mul, max, maxu, and

minu operators as given for example in [13, Appendix B]),

and compared with the results of multiplication x × x ob-

tained on an Intel R© Xeon R© workstation. For each rounding

mode this exhaustive test took about five minutes.

We also compiled our C codes with the ST200 compiler,

in -O3 for the ST231 processor. The remainder of this sec-

tion details the performances obtained in this context.

6.1. Operator performances

Latency and comparison with general multiplication.

The latency on ST231 of our binary32 square implemen-

tation is shown in the second column of Table 1. Due to

if-conversion, it gives for each rounding mode a number of

clock cycles independent of the input value x. The values

within square brackets indicate the lowest latencies we can

theoretically achieve with the ST231 latency constraints and

assuming unbounded parallelism; these best latencies fol-

low from our analysis in Sections 4 and 5 and have the form

1+L with L the best latency for the generic case. This first

experiment shows that the latencies achieved in practice are

at most 1 cycle form the best possible ones.

For comparison, the third column of Table 1 displays

the latencies of the multiply operator x × y available in the

FLIP 1.0 library and optimized for the ST231 [9]. As shown

in the fourth column, our specialization of this multiply op-

erator into a square operator yields a speedup between 1.75

and 2.3, depending on the rounding mode.

◦ square FLIP 1.0 multiply speedup

RN 12 [11] 21 1.75

RD 9 [8] 21 2.3

RU 11 [10] 21 1.9

RZ 9 [8] 18 2

Table 1. Latency comparison for square and multiply.

Instruction-level parallelism. When designing our al-

gorithms in Sections 4 and 5 we strived to expose as much

ILP as we could. To evaluate ILP in practice we use

instructions-per-cycle (IPC), which is the parallelism really

exposed on the target. As shown in Table 2 it is deduced

from the assembly code by dividing the number of instruc-

tions by the latency. The IPC achieved is close to the highest

ILP reachable within the architectural constraints of the ma-

chine, demonstrating a very efficient usage of its resources.

◦ Latency L Number N of instructions IPC = N/L

RN 12 42 3.5

RD 9 31 3.4

RU 11 37 3.4

Table 2. Latency, code size, and IPC for square.

Comparison with two non-IEEE variants. To study

the impact on latency of relaxing the IEEE 754 specification

used so far, we have implemented for each rounding mode a

finite-math-only variant and a variant without subnormals.

Finite math only. We assume here that input and output

are neither infinity nor NaN, and that overflow does not oc-

cur. Hence x now satisfies |x| < Ω′. On the one hand, this

leaves the generic path unchanged, so that the best possible

latencies are the same as for our IEEE version. On the other

hand, (25) becomes Cspec = Csmall and the C codes of Sec-

tion 5 can be simplified accordingly. As the third column of

Table 3 shows, in practice this simplification has no impact

on latency for RD, while it saves 1 cycle for RN and RU.

No subnormals. Here we assume that x is not subnormal,

which means, writing λ = 2emin for the smallest positive

normal number, that x is either NaN, zero, or such that λ ≤
|x|. We also assume that if the exact result x2 lies in the

subnormal range (0, λ) then r = +0 for RN and RD, and

r = λ for RU. Since x2 < λ is equivalent to |x| < λ′ with

λ′ =
√

λ, the specification of this non-IEEE variant can

thus be deduced from (6) and (8) simply by replacing α and

α′ with, respectively, λ and λ′.

For the special path, this relaxed specification implies

Csmall = [|x| < λ′] and the proof of Property 8 can be

adapted to show that we now have Csmall = [2E ≤ emax −1].
Thus, it suffices to replace 102 by 126 at line 3 of Listing 2

and, for RU, to replace 1 by 223 in the minu operation.

These updates clearly have no impact on the latency.

Concerning the generic path, the case (13b) need not be

considered anymore, so that µ in (14) is now equal to c.

Hence the max operation at line 4 of Listing 1 can be re-

moved and we can replace µ by c at line 6. However, as H
still has a latency of 5 cycles, this simplification does not

shorten the critical path. This means that the best latencies

that we can theoretically achieve with this second non-IEEE

variant are the same as for our IEEE version. Furthermore,

Table 3 shows that this is true in practice as well.

◦ IEEE finite math only no subnormals

RN 12 11 12

RD 9 9 9

RU 11 10 11

Table 3. Latency comparison with two non-IEEE variants.

6.2. Application examples

We now apply our fast operator to some square-intensive

algorithms in order to study its effect on real applications.

After giving a theoretical model of the speedup achievable

on ST231, we show practical speedups and how they match

that model. All experiments have been done on the ST231

cycle-accurate simulator, and while we focus on rounding

’to nearest even’ (RN) similar results hold for RU and RD.

Speedup model for loop nests involving squares.

While Table 1 gives speedups for a single replacement of

multiply by square, we now evaluate the theoretical expec-

tation of speedup for loops. When the square operator ap-

pears in a loop of n iterations, we introduce the definition

theoretical speedup =
(L + ∆ · σ) · n + C

L · n + C

with L, ∆, σ, and C given as follows:

• L is the latency of the loop body where squares are

used, which includes the application-related operations

inside the loop and the cost to maintain the loop.

• ∆ is the latency gap between multiply and square.

• σ is the number of squares in a single iteration.

• C is the cost of the straight-line code outside the loop.

Note that when n tends to infinity, the theoretical speedup

tends to 1 + ∆ · σ/L, which does not depend on C.

On ST231 the values ∆, L, and C have the following

features. First, Table 1 gives ∆ = 21 − 12 = 9 cycles.

Second, L and C can be modelled as

L = a · Br + Idx + Ld + Cin, C = St + Cout.

Here, Br is the cost of a taken branch, which is 3 cycles.

The unrolling transformation done by the compiler has the

effect of dividing the number of branches taken to jump

back to the head of the loop by the unrolling factor; a in

(0, 1] is used to denote this effect. The value of a depends

on the application and on the compiler optimization level;

to estimate the trend of the speedup, we take a = 0.5, mean-

ing that the loop is always unrolled by a factor of 2. Idx is

the cost to test loop index, which is 1 cycle; Ld is the cost

to load input values, which is 3 cycles. Cin (resp. Cout) is

the latency of the application-related code within (resp. out-

side) the loop; for each application, the values of Cin and

Cout can be deduced from the latencies of the 5 basic op-

erators of FLIP 1.0 [13, Table 1] and from the latency of

12 cycles of our square operator. Finally, St is the cost of

stack handling of the function call; it ranges from 10 to 12
cycles depending on the achievable ILP of each application.

The above model has been applied to three application

examples, which we review now.

Example 1: Euclidean norm. Given a vector v of n
floating-point data vi we consider the computation of its

Euclidean norm ‖v‖2 = (
∑n

i=1 v2
i)1/2 by means of three

different algorithms.

Naive algorithm. Here ‖v‖2 is produced by a for loop

whose ith iteration simply squares vi and adds it to the cur-

rent partial sum of squares. Figure 1 shows that the theoret-

ical speedup tends to about 1.185 and that in practice we are

close to this value as soon as n ≥ 20, assuming n is known

at runtime. If n is known at compile time then an even

higher speedup is observed, since the compiler achieves

more efficient loop unrolling optimization. The nine black

bullets in Figure 1 illustrate this fact for n = 2, . . . , 10. The

greatest speedups are for n ≤ 4, since in this case all the

Figure 1. Impact of square on naive Euclidean norm.

parameters are directly passed to the function by registers

instead of by stack and the loop is fully unrolled.

Two-pass algorithm. This algorithm, which is already

mentioned in [2], aims to avoid overflow by first computing

‖v‖∞ = maxi |vi| and then applying the naive algorithm

to the scaled vector [vi/‖v‖∞]i. The input is scanned twice

and n divisions are used. Thus, the speedup we can expect

is lower than for the naive algorithm, as shown in Figure 2.

However, we see that the practical speedup still matches

well the theoretical model as soon as n ≥ 20.

Figure 2. Impact of square on two-pass Euclidean norm.

One-pass algorithm. This algorithm also intends to

avoid overflow but requires only one pass over the data, the

scaling factor being now computed on the fly. It is an adap-

tation of Blue’s algorithm [2] attributed to Hammarling and

implemented in LAPACK [6, p. 507]. Each of the n itera-

tions performs exactly 1 square as well as 2 or 4 additional

operations, depending on the data vi. The total number of

operations thus varies dynamically and turns out to be max-

imum when |v1| < |v2| < · · · < |vn|, and minimum when

|v1| ≥ |v2| ≥ · · · ≥ |vn|. Each of these two extreme cases

yields a behavior similar to the one displayed in Figure 2,

the limiting value when n → ∞ being about 1.077 in the

first case, and about 1.096 in the second case.

Example 2: sample variance. The sample variance of

v1, . . . , vn is 1
n−1

∑n
i=1(vi − v̄)2, where v̄ = 1

n

∑n
i=1 vi.

It is known [6, p. 11] that it can be evaluated accurately

Figure 3. Impact of square on binary powering.

by the naive way, which requires two passes over the data:

get v̄ first and then iteratively square and add the vi − v̄’s.

This method has the same structure as the two-pass algo-

rithm in the previous example (with the maximum replaced

by a sum, and the division replaced by a subtraction). Con-

sequently, the theoretical and practical speedups brought by

our fast squarer are similar to those in Figure 2.

Example 3: binary powering. For a floating-point da-

tum x and for n an integer power of two such that n ≥ 4,

we consider here the evaluation of xn by means of log2 n
successive squares. The results obtained for this applica-

tion are shown in Figure 3. The qualitative analysis done

for the naive algorithm of Example 1 still applies but, since

binary powering does not involve any operation other than

squaring, higher speedups are observed.

7. Conclusion and perspectives

This work has presented optimized C codes for IEEE bi-

nary32 squaring which are, on ST231, significantly faster

than the corresponding implementation of general multipli-

cation, thus demonstrating the practical benefit of operator

specialization in this context.

To achieve this, we strived to exploit the specific features

of the square operator: it is univariate, always nonnegative,

and has predictable overflow ranges; subnormal input can

always be handled by the special path; and, in the generic

path, the lower half of the exact square of the input signif-

icand is not needed, and this even for computing the sticky

bit used to provide correct rounding. We also heavily relied

on some features of our target processor and its compiler,

like VLIW 4-issue parallelism, if-conversion and fast ’slct’

instruction, fast min and max instructions, and the availabil-

ity of extended immediates and of an integer multiplier of

type ’32 × 32 → 32 high.’ However, as our C codes show,

the subset of the ST231 instruction set needed by our fast

squarer is extremely modest and, unlike for multiplication,

the leading-zero count instruction is useless in this context.

Furthermore, all our algorithmic descriptions are param-

eterized by the binaryk format, thus offering increased con-

fidence and flexibility: the correctness analysis is done once

for all, and one can deduce portable C codes for various

formats in a direct way as soon as the corresponding k-bit

integer arithmetic and logic are available. In fact, we al-

ready have such a code for the binary64 format and it relies

on a 64-bit integer layer highly optimized for ST231. This

code is certainly suboptimal, though, as some parts of the

algorithm for binary64 squaring could directly use 32-bit

integers. Therefore, it would be interesting to implement an

optimized 32-bit version of binary64 squaring and to evalu-

ate the latency improvement compared to the 64-bit version

produced with our approach.

Three other extensions would also be worth considering.

First, although our approach assumes radix 2 we should

investigate to which extent it carries over other radices,

and especially radix 10. Second, the overhead (in terms

of latency and code size) of setting status flags remains

to be studied. Third, squaring is not only a specialization

of multiplication but also of integer powering, that is, of

pown(x,n) = xn with n an integer. Since the 2008 revision

of the IEEE 754 standard recommends correct rounding for

this operator [7, Table 9.1], its optimized implementation

for VLIW integer processors will be a natural extension of

the work we have presented here.

References

[1] C. Bertin, C.-P. Jeannerod, J. Jourdan-Lu, H. Knochel,

C. Monat, C. Mouilleron, J.-M. Muller, and G. Revy. Tech-

niques and tools for implementing IEEE 754 floating-point

arithmetic on VLIW integer processors. In Proceedings of

PASCO’10, pages 1–9, New York, NY, USA, 2010. ACM.
[2] J. L. Blue. A portable Fortran program to find the Euclidean

norm of a vector. ACM Trans. Math. Software, 4(1):15–23,

1978.
[3] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan

Kaufmann, 2004.
[4] M. Gök. Integer squarers with overflow detection. Comput-

ers & Electrical Engineering, 34(5):378–391, 2008.
[5] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete

Mathematics: A Foundation for Computer Science. Addi-

son-Wesley, Reading, MA, USA, second edition, 1994.
[6] N. J. Higham. Accuracy and Stability of Numerical Algo-

rithms. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, second edition, 2002.
[7] IEEE Computer Society. IEEE Standard for Floating-Point

Arithmetic. IEEE Standard 754-2008, Aug. 2008.
[8] International Organization for Standardization. Program-

ming Languages – C. ISO/IEC Standard 9899:1999,

Geneva, Switzerland, Dec. 1999.
[9] C.-P. Jeannerod and G. Revy. FLIP 1.0: a fast floating-point

library for integer processors, February 2009. Available at

http://flip.gforge.inria.fr/.

[10] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,

V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Tor-

res. Handbook of Floating-Point Arithmetic. Birkhäuser

Boston, 2010.

[11] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Nu-

merical Recipes in C: The Art of Scientific Computing. Cam-

bridge University Press, Oct. 1992.

[12] S.-K. Raina. FLIP: a Floating-point Library for Integer Pro-

cessors. PhD thesis, ÉNS Lyon, France, 2006.

[13] G. Revy. Implementation of binary floating-point arithmetic

on integer processors: polynomial evaluation-based algo-

rithms and certified code generation. PhD thesis, Université

de Lyon - ÉNS de Lyon, France, Dec. 2009.

[14] E. G. Walters, J. Schlessman, and M. J. Schulte. Combined

unsigned and two’s complement hybrid squarers. In Pro-

ceedings of the thirty-fifth Conference on Signals, Systems,

and Computers (Asilomar 2001), volume 1, pages 861–866,

Asilomar, Pacific Grove, CA , USA, 2001. IEEE.

A. Proofs

Proof that 2 ≤ p < emax for all standard binary formats.

The standard binary formats are defined in [7, Table 3.5].

There we see that, on one hand, this is true when k ≤ 128.

On the other hand, when k > 128 we have

p = k − jk + 13 and emax = 2jk−14 − 1,

with jk = round(4 log2 k), the integer closest to 4 log2 k.

(If k is an integer then 4 log2 k cannot be exactly halfway

two consecutive integers, so that no tie can occur.) By def-

inition of round, 4 log2 k − 1/2 < jk < 4 log2 k + 1/2.

This implies first that, for k > 27, 2 ≤ p ≤ k. Sec-

ond, 2−14.5k4 − 1 < emax. Third, k3 > 215.5 and then

2−14.5k4 > 2k > k + 1, so that k < emax.

Proof of Property 1. Since α′ and Ω′ in (7) are integer

powers of two it suffices to verify that

emin ≤ ⌊(emin − p)/2⌋ < (emax + 1)/2 ≤ emax.

The leftmost inequality is equivalent to emin ≤ (emin − p)/2
because emin is an integer; since emin = 1 − emax, the lat-

ter inequality is itself equivalent to p < emax, which is true

by (2b). From (2b) it also follows in particular that emax ≥ 1,

which implies the rightmost inequality. The remaining in-

equality follows from the fact that (2b) implies that emin is

negative while p and emax are positive.

Proof of Property 2. If |x| ≥ Ω′ then x2 ≥ 2emax+1, so that

◦(x2) = max◦ for each ◦. Conversely, assume that |x| <
Ω′. Since x is a finite floating-point number in precision

p, we deduce that |x| ≤ (2 − 21−p) · 2(emax−1)/2 and then

x2 ≤ C ·2emax , with C = 2(1−2−p)2. Since C < 2−21−p

one has further x2 < Ω. This implies ◦(x2) < max◦ for

each ◦ and the conclusion follows.

Proof of Property 3. If α ≤ x < α′ then 0 < x2 < α/2,

so that RN(x2) = RD(x2) = +0 and RU(x2) = α.

This shows that x ∈ [α, α′) implies ◦(x2) = min◦ for

all ◦. To prove the maximality of α′ it suffices to check

that RN(y2) 6= minRN for some floating-point number y in

[α′, 2α′), say y = 3
2α′. We have y2 = 9

422⌊(emin−p)/2⌋ and,

using the fact that ⌊i/2⌋ ≥ (i − 1)/2 when i ∈ Z, we de-

duce that y2 ≥ 9
8α/2 > α/2. It follows that RN(y2) = α,

which differs from minRN = +0.

Proof of Property 4. Recalling (7) and taking squares

in (10), we obtain 22⌊(emin−p)/2⌋ ≤ m′ · 2e′

< 2emax+1. On

the one hand, m′ < 2 implies 2⌊(emin − p)/2⌋ < e′ + 1 and,

since both sides are integers, the announced lower bound

follows. On the other hand, 1 ≤ m′ implies e′ < emax + 1
and, similarly, we deduce the announced upper bound.

Proof of Property 5. The lower bound is an immediate

consequence of the definition of µ in (14). To establish the

claimed upper bound we consider two cases:

• If µ = c then µ is at most 1 and cannot be larger than

p + ǫ, since p ≥ 2 and ǫ ≥ 0.

• If µ = emin − 2e then, recalling that e′ = c + 2e
and noticing that the lower bound in Property 4 equals

emin − p + ǫ (because emin is even), we obtain µ ≤
p+ ǫ+ c. Since both µ and p+ ǫ are even integers, and

since c is either 0 or 1, it follows that µ ≤ p + ǫ.

Hence µ ≤ p + ǫ in both cases, and the proof follows.

Proof of Property 6. From (22), M = m · 2k−1, and k =
w + p it follows that L = ⌊y/n⌋ with y = M2/2k and

n = 2µ+w−1. Since w ≥ 3 and since, by Property 5, µ ≥ 0,

n is a positive integer. To conclude it suffices to apply the

fact that ⌊y/n⌋ = ⌊⌊y⌋/n⌋ for n > 0 (see [5, p. 72]).

Proof of Property 7. Let q be the number of trailing zeros

of m = (1.m1 . . . mp−1)2. Then m2 can be written

m2 = (s−1s0.s1 . . . s2p−2q−2)2 with s2p−2q−2 = 1.

Thus, H = (s−1s0 . . . sk−2)2 and, using (15b) and (16), we

can also decompose the sticky bit as t = t1 ∨ t2 with

t1 = sp−µ+1∨· · ·∨sk−2 and t2 = sk−1∨· · ·∨s2p−2q−2.

By Property 5 and since w ≥ 3, we have k − 2 − (p − µ +
1) + 1 = µ + w − 2 ∈ {1, . . . , k − 1}. Hence t1 = 1 if and

only if the last µ + w − 2 bits of H are not all zero, that is,

if and only if the integer T1 obtained by shifting H left by

k− (µ+w− 2) = p+2−µ is nonzero. Since s2p−2q−2 =
1 we have t2 = 0 if and only if k − 1 > 2p − 2q − 2,

that is, if and only if the number q of trailing zeros of m
is at least p − ⌊k/2⌋. The latter condition is equivalent to

X mod 2p−⌊k/2⌋ = 0, which concludes the proof.

Proof of Property 8. Let |X| and A′ denote the stan-

dard integer encodings of |x| and α′, respectively. It is

known [10, p. 58] that |x| < α′ if and only if |X| < A′,

that is,

|X| ≤ A′ − 1. (26)

By (3), |X| = (E + ǫ) · 2p−1 with ǫ ∈ [0, 1− 21−p] and, by

Property 1, A′ = E′ · 2p−1 with E′ = ⌊(emin − p)/2⌋+ emax.

Thus, (26) is equivalent to E ≤ E′ − (ǫ + 21−p). Since E,

E′ are integers and ǫ + 21−p ∈ (0, 1], the latter inequality

is equivalent to E ≤ E′ − 1. Now, emin = 1 − emax gives

E′− 1 = ⌊(emax − p− 1)/2⌋ and we conclude using the fact

that i ≤ ⌊j/2⌋ is equivalent, for integers i, j, to 2i ≤ j.

Proof of Property 9. We use the same notation as in the

proof of Property 8 and write O′ for the standard integer

encoding of Ω′. The special integer encoding used for NaNs

gives Clarge ∨ Cnan = [|X| ≥ O′]. By Property 1 we have

O′ = (3emax +1)/2 · 2p−1, so that |X| ≥ O′ is equivalent to

E + ǫ ≥ (3emax + 1)/2. Since ǫ ∈ [0, 1), this is equivalent

to E ≥ (3emax + 1)/2 and the conclusion follows.

