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Abstract. We devise an algorithm, eL1, with the following specifications: It takes as input an ar-
bitrary basis B = (bi)i ∈ Z

d×d of a Euclidean lattice L; It computes a basis of L which is reduced
for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time O(d5+εβ +
dω+1+εβ1+ε) where β = log max ‖bi‖ (for any ε > 0 and ω is a valid exponent for matrix multiplica-
tion). This is the first LLL-reducing algorithm with a time complexity that is quasi-linear in β and
polynomial in d.
The backbone structure of eL1 is able to mimic the Knuth-Schönhage fast gcd algorithm thanks
to a combination of innovative ingredients. First the bit-size of our lattice bases can be decreased
via truncations whose validity are backed by recent numerical stability results on the QR matrix
factorization. Also we establish a new framework for analyzing unimodular transformation matrices
which reduce shifts of reduced bases, this includes bit-size control and new perturbation tools. We
illustrate the power of this framework by generating a family of reduction algorithms.

1 Introduction

We present the first lattice reduction algorithm which has complexity both quasi-linear in the
bit-length of the entries and polynomial time overall for an input basis B = (bi)i ∈ Z

d×d. This is
the first progress on quasi-linear lattice reduction in nearly 10 years, improving Schönhage [25],
Yap [29], and Eisenbrand [4] whose algorithm is exponential in d. Our result can be seen as a gen-
eralization of the Knuth-Schönhage quasi-linear GCD from integers to matrices. For solving the
matrix case difficulties which relate to multi-dimensionality we combine several new main ingre-
dients. We establish a theoretical framework for analyzing and designing general lattice reduction
algorithms. In particular we discover an underlying structure on any transformation matrix which
reduces shifts of reduced lattices; this new structure reveals some of the inefficiencies of tradi-
tional lattice reduction algorithms. The multi-dimensional difficulty also leads us to establish
new perturbation analysis results for mastering the complexity bounds. The Knuth-Schönhage
scalar approach essentially relies on truncations of the Euclidean remainders, while the matrix
case requires truncating both the “remainder” and “quotient” matrices. We can use our theoret-
ical framework to propose a family of new reduction algorithms, which includes a Lehmer-type
sub-quadratic algorithm in addition to L̃1.

In 1982, Lenstra, Lenstra and Lovász devised an algorithm, L3, that computes reduced bases
of integral Euclidean lattices (i.e., subgroups of a Z

d) in polynomial time [13]. This typically
allows one to solve approximate variants of computationally hard problems such as the Shortest
Vector, Closest Vector, and the Shortest Independent Vectors problems (see [15]). L3 has since
proven useful in dozens of applications in a wide range including cryptanalysis, computer algebra,
communications theory, combinatorial optimization, algorithmic number theory, etc (see [19, 3]
for two recent surveys).

L3 was originally proven to be of bit-complexity O(d5+εβ2+ε) when the input basis B =
(bi)i ∈ Z

d×d satisfies max ‖bi‖ ≤ 2β . For the sake of simplicity, we will only consider full-rank
lattices. Also, the ε’s in the complexity bounds stem from the fast multiplication of integers.
The current best algorithm for integer multiplication is Fürer’s, which allows one to multiply
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two k-bit long integers in time M(k) = O(k(log k)2log∗ k). The analysis of L3 was quickly refined
by Kaltofen [8], who showed a O(d5β2(d + β)ε) complexity bound. Schnorr [21] later proposed
an algorithm of bit-complexity O(d4β(d + β)1+ε), using approximate computations for internal
Gram-Schmidt orthogonalizations. Some works have since focused on improving the complexity
bounds with respect to the dimension d, including [24, 27, 10, 22], but they have not lowered the
cost with respect to β (for fixed d). More recently, Nguyen and Stehlé devised L2 [18], a variant
of L3 with complexity O(d4+εβ(d + β)). The latter bound is quadratic with respect to β (even
with naive integer multiplication), which led to the name L2. The same complexity bound was
also obtained in [17] for a different algorithm, H-LLL, but with a simpler complexity analysis.

As a broad approximation, L3, L2 and H-LLL are generalizations of Euclid’s greatest common
divisor algorithm. The successive bases computed during the execution play the role of Euclid’s
remainders, and the elementary matrix operations performed on the bases play the role of Eu-
clid’s quotients. L3 may be interpreted in such a framework. It is slow because it computes its
“quotients” using all the bits from the “remainders” rather than the most significant bits: The
cost of computing one Euclidean division in an L3 way is O(β1+ε), leading to an overall O(β2+ε)
bound for Euclid’s algorithm. Lehmer [12] proposed an acceleration of Euclid’s algorithm by the
means of truncations. Since the ℓ most significant bits of the remainders provide the first Ω(ℓ)
bits of the sequence of quotients, one may: Truncate the remainders to precision ℓ; Compute the
sequence of quotients for the truncated remainders; Store the first Ω(ℓ) bits of the quotients into
an Ω(ℓ)-bit matrix; Apply the latter to the input remainders, which are shortened by Ω(ℓ) bits;
And iterate. The cost gain stems from the decrease of the bit-lengths of the computed remain-
ders. Choosing ℓ ≈

√
β leads to a complexity bound of O(β3/2+ε). In the early 70’s, Knuth [9]

and Schönhage [23] independently observed that using Lehmer’s idea recursively leads to a gcd
algorithm with complexity bound O(β1+ε). The above approach for the computation of gcds has
been successfully adapted to two-dimensional lattices [29, 25], and the resulting algorithm was
then used in [4] to reduce lattices in arbitrary dimensions in quasi-linear time. Unfortunately, the
cost of the latter is O(β1+ε(log β)d−1) for fixed d.

Our result. We adapt the Lehmer-Knuth-Schönhage gcd framework to the case of LLL-reduction.
L̃1 takes as input a non-singular B ∈ Z

d×d; terminates within O(d5+εβ + dω+1+εβ1+ε) bit oper-
ations, where β = log max ‖bi‖; and returns a basis of the lattice L(B) spanned by B which is
LLL-reduced in the sense of the following definition. (L3 reduces bases for Ξ = (3/4, 1/2, 0).) The
time bound is obtained via an algorithm that can multiply two d × d matrices in O(nω) scalar
operations. (We can set ω ≈ 2.376 [2].)

Definition 1 ([1, Def. 5.3]). Let Ξ = (δ, η, θ) with η ∈ (1/2, 1), θ > 0 and δ ∈ (η2, 1).
Let B ∈ R

d×d be non-singular with QR factorization B = Q · R (i.e., the unique decomposition
of B as a product of an orthogonal matrix and an upper triangular matrix with positive diagonal
entries). The matrix B is Ξ-LLL-reduced if:

• for all i < j, we have |ri,j | ≤ ηri,i + θrj,j (B is said size-reduced);
• for all i, we have δ · r2

i,i ≤ r2
i,i+1 + r2

i+1,i+1 (B is said to satisfy Lovász’ conditions).

Let Ξi = (δi, ηi, θi) be valid LLL-parameters for i ∈ {1, 2}. We say that Ξ1 is stronger than Ξ2

and write Ξ1 > Ξ2 if δ1 > δ2, η1 < η2 and θ1 < θ2.

This modified LLL-reduction is as powerful as the classical one:

Theorem 1 ([1, Th. 5.4]). Let B ∈ R
d×d be (δ, η, θ)-LLL-reduced with R-factor R. Let α =

ηθ+
√

(1+θ2)δ−η2

δ−η2 . Then, for all i, ri,i ≤ α·ri+1,i+1 and ri,i ≤ ‖bi‖ ≤ αi·ri,i. This implies that ‖b1‖ ≤
α

d−1
2 |det B|1/d and αi−dri,i ≤ λi ≤ αiri,i, where λi is the ith minimum of the lattice L(B).
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L̃1 and its analysis rely on two recent lattice reduction techniques, whose contributions can
be easily explained in the gcd framework. The efficiency of the fast gcd algorithms [9, 23] stems
from two sources: Performing operations on truncated remainders is meaningful (which allows to
consider remainders with smaller bit-sizes), and the obtained transformations corresponding to
the quotients sequence have small bit-sizes (which allows to transmit at low cost the information
obtained on the truncated remainders back to the genuine remainders). We achieve an analogue
of the latter by gradually feeding the input to the reduction algorithm, and the former is ensured
thanks to the modified notion of LLL-reduction which is resilient to truncations.

The main difficulty in adapting the fast gcd framework lies in the multi-dimensionality of
lattice reduction. In particular, the basis vectors may have significantly differing magnitudes.
This means that basis truncations must be performed vector-wise. Also, the resulting unimodular
transformation matrices (integral with determinant ±1 so that the spanned lattice is preserved)
may have large magnitudes, but must be stored on few bits. To solve these dilemmas, we truncate
basis matrices as B ≈ B′E where B′ has small bit-size and E is a re-scaling diagonal matrix,
and store unimodular transforms as U = D1U

′D2 where U ′ has small bit-size, and D1 and D2

are re-scaling diagonal matrices. Applying a U to a B (with such representations) can be per-
formed efficiently, but, as opposed to the one-dimensional case, combining the transforms becomes
more involved: to multiply a U1 and a U2 (with such representations) into a unimodular U3, we
apply a so-called cleaning process to U3, involving truncations of coefficients (while preserving
unimodularity).

Gradual feeding of the input. Gradual feeding was introduced by Novocin, and van Hoeij [20,
7], in the context of specific lattice bases that are encountered while factoring rational polyno-
mials (e.g., with the algorithm from [6]). Gradual feeding was restricted to reducing specific
sub-lattices which avoid the above dimensionality difficulties. We generalize these results to the
following. Suppose that we wish to reduce a matrix B with the property that B0 := σ−k

ℓ B is
reduced for some k and σℓ is the diagonal matrix diag(2ℓ, 1, . . . , 1). If one runs L3 on B directly,
the unimodular transformations obtained during the execution are likely to require an inefficient
bit-length. To control the intermediate transformations, the matrix B can be slowly reduced:
Compute the unimodular transform U1 (with any reduction algorithm) such that σℓB0U1 is re-
duced and repeat until we have σk

ℓ B0U1 · · ·Uk = B(U1 · · ·Uk). Each entry of Ui and each entry of
U1 · · ·Ui can be well controlled. In fact we will illustrate that the bit-size of any entry of Ui can
be made O(ℓ + d) (see Theorems 2 and 4). We call this process lift-reducing, and it can be used
to provide a family of new reduction algorithms. We illustrate that the general reduction problem
can be reduced to lift-reduction by performing a Hermite Normal Form (HNF) computation on B
beforehand. Note that there could be other means of seeding the lift-reduction process.

Truncations of basis matrices. In order to work on as few bits of basis matrices as possible,
we apply (column-wise) truncations. A truncation of precision p replaces a matrix B by a trun-

cated matrix B + ∆B such that max ‖∆bi‖
‖bi‖

≤ 2−p holds for all i, and only the first O(p) bits of
every entry of B + ∆B are allowed to be non-zero. A truncation is a efficiency-motivated colum-
wise perturbation. The following lemmata explain why we are interested in such perturbations.

Lemma 1 ([1, Se. 2], refined from [5]). Let p > 0, B ∈ R
d×d non-singular with R-factor R,

and ∆B with max ‖∆bi‖
‖bi‖

≤ 2−p. If cond(R) = ‖|R||R−1|‖2 (using the induced norm) satisfies c0 ·
cond(R) · 2−p < 1 with c0 = 8d3/2, then B + ∆B is non-singular and its R-factor R + ∆R

satisfies max ‖∆ri‖
‖ri‖

≤ c0 · cond(R) · 2−p.
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Lemma 2 ([1, Le. 5.5]). If B ∈ R
d×d is (δ, η, θ)-reduced with R-factor R then cond(R) ≤ ρ+1

ρ−1ρd,
with ρ = (1 + η + θ)α, with α as in Theorem 1.

These results imply that a column-wise truncation of a reduced basis with precision Ω(d)
remains reduced. This explains why the parameter θ was introduced in Definition 1, as such a
property does not hold if LLL-reduction is restricted to θ = 0 (see [26, Se. 3.1]).

Lemma 3 ([1, Co. 5.1]). Let Ξ1 > Ξ2 be valid reduction parameters. There exists a constant c1

such that for any Ξ1-reduced B ∈ R
d×d and any ∆B with max ‖∆bi‖

‖bi‖
≤ 2−c1·d, the matrix B +∆B

is non-singular and Ξ2-reduced.

Pseudo-Lift-L̃1. When we combine gradual feeding and truncation we see a difficulty which
must be addressed. Namely, lift-reducing a truncation of B will not give the same transformation
as lift-reducing B directly; likewise any truncation of U perturbs our reduction even further. Thus
after working with truncations we must apply any transformations to a higher precision lattice
and refine the result. The Lift-L̃1 algorithm in figure 4 is a rigorous implementation of this pseudo
algorithm in figure 1; Lift-L̃1 must refine more often to properly handle a specified reduction. It

Inputs: B reduced, and target lift ℓ
Output: Usmall such that σℓBUsmall is reduced.
1. get U1,small from pseudo-Lift-eL1(truncate(B), ℓ/2)
2. C := σℓ/2BU1,small

3. get Uc from refineReduction(C)
4. get U2,small from pseudo-Lift-eL1(truncate(CUc), ℓ/2)
5. Usmall :=clean(U1,small · Uc · U2,small)
6. Return Usmall.

Fig. 1. pseudo-Lift-eL1.

could be noted that clean is stronger than mere truncation. It can utilize our new understanding
of the structure of any lift-reducing U to provide an appropriate transformation which is well
structured and efficiently stored.

Comments on the cost of L̃1. The term O(d5+εβ) stems from a series of β calls to H-LLL [17]
or L2 [18] on integral matrices whose entries have bit-lengths O(d). These calls are unusual in
that the number of LLL switches performed by each one is on average O(d2) instead of the O(d3)
worst-case bound. We recall that known LLL reduction algorithms perform two types of vector
operations: Either translations or switches. The number of switches performed is a key factor
of the complexity bounds. The H-LLL component of the cost of L̃1 could be lowered by using
faster LLL-reducing algorithms than H-LLL (with respect to d), but for our amortization to
hold, they have to satisfy a standard property (see Section 3.2). The term O(dω+1+εβ1+ε) derives
from both the HNF computation mentioned above and a series of product trees of balanced
matrix multiplications whose overall product has bit-length O(dβ). Furthermore, the precise cost
dependence of L̃1 in β is Poly(d) · M(β) log β. Finally, we remark that the cost can be proven
to be O(d4+ε log |det B| + d5+ε + dω(log |det B|)1+ε) + H(d, β) if H(d, β) denotes the cost of
computing the Hermite normal form.

Road-map. We construct L̃1 in several generalization steps which, in the gcd framework, respec-
tively correspond to Euclid’s algorithm (Section 2), Lehmer’s inclusion of truncations in Euclid’s
algorithm (Section 3) and the Knuth-Schönhage recursive generalization of Lehmer’s algorithm
(Section 4).
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2 Lift-Reduction: A reduction algorithm relying on gradual feeding

In order to enable the adaptation of the gcd framework to lattice reduction, we introduce a
new type of reduction which behaves more predictively and regularly. In this new framework,
called Lift-reduction, we are given a reduced matrix B and a lifting target ℓ ≥ 0, and we aim
at computing a unimodular U such that σℓBU is reduced (with σℓ = diag(2ℓ, 1, . . . , 1)). Lift-
reduction can naturally be performed using any general purpose reduction algorithm, however
we will design fast algorithms specific to Lift-reduction in Sections 3 and 4. Lifting a lattice basis
has a predictable impact on G-S norms and the successive minima.

Lemma 4. Let B be non-singular and ℓ ≥ 0. If R (resp. R′) is the R-factor of B (resp. B′ =
σℓB), then r′i,i ≥ ri,i for all i and

∏
r′i,i = 2ℓ

∏
ri,i. Furthermore, if (λi)i (resp. (λ′

i)i)) are the

successive minima of L = L(B) (resp. L′ = L(B′)), then λi ≤ λ′
i ≤ 2ℓλi for all i.

Proof. The first statement is proven in [7, Le. 4]. For the second one, notice that
∏

r′i,i =

|det B′| = 2ℓ|det B| =
∏

ri,i. We now prove the third statement. Let vi and v′
i represent linearly

independent vectors in L and L′ respectively with ‖vi‖ = λi and ‖v′
i‖ = λ′

i for all i. For any i,
we define S′

i = {σℓvj , j ≤ i} and Si = {σ−1
ℓ v′

j , j ≤ i}. These are linearly independent sets in L′

and L respectively. Then for any i we have λi ≤ max‖·‖(Si) ≤ λ′
i ≤ max‖·‖(S

′
i) ≤ 2ℓλi. ⊓⊔

We can now bound the entries of any matrix which performs Lift-reduction.

Lemma 5. Let Ξ1, Ξ2 be valid parameters and α1 and α2 as in Theorem 1. Let ℓ ≥ 0, B ∈ R
d×d

be Ξ1-reduced and U such that C = σℓBU is Ξ2-reduced. Letting ζ1 = (1+η1 +θ1)α1α2, we have:

∀i, j : |ui,j | ≤ 2d3ζd
1 ·

r′j,j
ri,i

≤ 2ℓ+1d3ζ2d
1 · rj,j

ri,i
,

where R (resp. R′) is the R-factor of B (resp. C). In addition, if V = U−1 and ζ2 = (1 + η2 +
θ2)α2α1:

∀i, j : |vj,i| ≤ 2ℓ+1d3ζd
2 · ri,i

r′j,j
≤ 2ℓ+1d3ζ2d

2 · ri,i

rj,j
.

Proof. Write B = QR and C = Q′R′ with Q and Q′ orthogonal. Then

U = R−1Qtσ−1
ℓ Q′R′ = diag(r−1

i,i )R̄−1
(
Qtσ−1

ℓ Q′
)
R̄′diag(r′j,j),

with R̄ = R · diag(1/ri,i) and R̄′ = R′ · diag(1/r′j,j). From the proof of [1, Le. 5.5], we know

that |R̄−1| ≤ 2((1 + η1 + θ1)α1)
dT , where ti,j = 1 if i ≤ j and ti,j = 0 otherwise. By Theorem 1,

we have |R̄′| ≤ αd
2T . Finally, we have |Q|, |Q′| ≤ C, where ci,j = 1 for all i, j. Using the triangular

inequality, we obtain:

|U | ≤ 2ζddiag(r−1
i,i )TC2Tdiag(r′j,j) ≤ 2d3ζddiag(r−1

i,i )Cdiag(r′j,j).

Now, by Theorem 1 and Lemma 4, we have r′j,j ≤ αd−j
2 λ′

j ≤ 2ℓαd−j
2 λj ≤ 2ℓαj

1α
d−j
2 rj,j , which

completes the proof of the first statement.
For the second statement note that

V = diag(r′
−1
i,i )R̄′−1 (

Q′tσℓQ
)
R̄diag(rj,j)

is similar to the expression for U in the proof of the first statement, except that σℓ can increase
the innermost product by a factor 2ℓ. ⊓⊔
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LLL-reduction as a sequence of lift-reductions. The algorithm of Figure 2 efficiently
reduces the task of LLL-reducing arbitrary integer non-singular matrices to a sequence of Lift-
reductions. The Lift-reduction process is seeded with an HNF computation. We recall that
the HNF of a (full-rank) lattice L ⊆ Z

d is the unique upper triangular basis H of L such
that −hi,i/2 ≤ hi,j < hi,i/2 for any i < j and hi,i > 0 for any i. Using [14, 28], it can be
computed in time O(dω+1+εβ1+ε), if the input matrix B ∈ Z

d×d satisfies max ‖bi‖ ≤ 2β .

Inputs: LLL parameters Ξ; a non-singular B ∈ Z
d×d.

Output: A Ξ-reduced basis of L(B).
1. B := HNF(B).
2. For k from d − 1 down to 1 do
3. Let C be the bottom-right (d − k + 1)-dimensional submatrix of B.
4. ℓk := ⌈log2(bk,k)⌉, C := σ−1

ℓk
C.

5. Lift-reduction: Find U ′ unimodular such that σℓk
CU ′ is Ξ-reduced.

6. Let U be the block-diagonal matrix diag(I, U ′).
7. Compute B := B · U , reducing row i symmetrically modulo bi,i for i < k.
8. Return B.

Fig. 2. Reducing LLL-reduction to Lift-reduction.

Let H be the HNF of L(B). At the end of Step 1, the matrix B = H is upper triangular,
and

∏
bi,i = |det H| ≤ 2dβ . After iteration k of the loop, the bottom-right (d−k+1)-dimensional

submatrix is Ξ-reduced. This implies that any input to Step 5 is valid for Lift-reduction, and
thus provides correctness (proved in lemma 6). From a cost point of view, it is worth noting that
the sum of the lifts ℓk is O(log |det H|) = O(dβ).

Lemma 6. The algorithm of Figure 2 reduces B such that max ‖bi‖ ≤ 2β using dω+1+ε(β1+ε +
d) +

∑d−1
k=1 C(d − k + 1, τk, βk, ℓk) bit operations where C(d − k + 1, τk, βk, ℓk) is the cost of Lift-

reducing a (d − k + 1)-dimensional Ξ-reduced basis with column bit-size βk, target lift ℓk, and
which uses τk switches.

Proof. We let UH be the unimodular transformation such that H = BUH ; U ′
k be the (d − k +

1) × (d − k + 1) unimodular transformation that reduces σℓk
C at Step 5; U ′′

k be the unimodular
transformation that reduces rows 1 ≤ i < k at Step 7. With input B the algorithm returns the
Ξ-reduced basis B · UH · diag(I, U ′

d−1) · U ′′
d−1 . . . · diag(I, U ′

2) · U ′′
2 · U ′

1 hence is correct.
We claim that at the beginning of step 5 the matrix C is Ξ-reduced. If we let R be the R-factor

of C and R′ the R-factor of C ′ the bottom right (d − k) × (d − k) sub-matrix of C. We know
that ri,j = r′i−1,j−1 for j ≥ i > 1 and that C ′ is a Ξ-reduced basis. By the above argument we
know that C ′ is a basis of the lattice generated by the columns of the bottom (d− k)× (d− k) of
the Hermite form of B which has successive minima λ1 ≥ min{hk+1,k+1, hk+1,k+1, . . . , hd,d} ≥ 1.
Thus r2,2α = r′1,1α ≥ 1 ≥ r1,1 = hk,k/2⌈log hk,k⌉ and |r1,j | ≤ r1,1/2 for j > 1 which proves the

claim. It follows that the cost of the d − 1 calls to H-LLL is
∑d−1

k=1 C(d − k + 1, τk, βk, ℓk) bit
operations where βk is the column bit-size of C at step 5.

For analyzing the cost of step 7 we note that we need only compute the product of the final
d − k + 1 columns of B and U ′. Further we can bound |u′

i,j | using Lemma 5. Let the product

of the two be called P then pi,j =
∑d−k+1

e=1 bi,k+e−1 · u′
e,j . We let R be the R-factor of C at the

beginning of step 5.
For rows i ≤ k of the product BU ′ we have log |bi,k+e−1| ≤ log hi,i since entries in row

i are reduced symmetrically by hi,i, and log |u′
e,j | = O(ℓk + d + log rj,j). The latter leads to

log |pi,j | = O(log hi,i + ℓk + d + log rj,j). The product for rows i ≤ k is implemented as follows.
For a row integer vector x and a column integer vector y of dimension d whose entries have sizes
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bounded respectively by tβ and sβ, consider the problem of computing x · y. The entries of x

and y may be decomposed following xj =
∑t

i=0 x
(i)
j 2iβ , with log |x(i)

j | ≤ β, and yj =
∑s

i=0 y
(i)
j 2iβ ,

with log |y(i)
j | ≤ β. The vector product x·y can be obtained by first computing the matrix product




x
(0)
1 . . . . . . x

(0)
d

... . . . . . .
...

x
(t)
1 . . . . . . x

(t)
d


 ·




y
(0)
1 . . . y

(s)
1

... . . .
...

... . . .
...

y
(0)
d . . . y

(s)
d




, (1)

then by summing the resulting integer vectors by columns and by rows. If t, s ≤ d the bit cost
is O(dωM(β)). Using that

∑
log hi,i = log |detB| and

∑
log rj,j ≤ log |det B|, the latter cost

bound can be applied to the product BU ′ for rows i ≤ k leading to a bit cost O(dωM(ℓk + d +
log |det B|/d)).

For rows i > k of the product BU ′ we have |bi,k+e| ≤ αdre+1,e+1 and |u′
e+1,j | ≤ 2ℓk+1d3ζ2d

1 ·
rj,j/re+1,e+1 hence log |pi,j | = O(d + ℓk + log rj,j). For a row integer vector x of dimension d

whose entries have bit sizes tjβ, 1 ≤ j ≤ d, and y as previously, we write xj =
∑tj

i=0 2iβ , with

log |x(i)
j | ≤ β. The product x · y may be obtained by applying (1) to

[
x

(0)
1 . . . x

(t1)
1 . . . . . . x

(0)
d . . . x

(td)
d

]
· [y1 . . . y1 . . . . . . yd . . . yd]

t .

If
∑

ti = d then the cost in d remains asymptotically unchanged. Hence using that
∑

log rj,j ≤
log |det B| the product BU ′ for rows i > k can also be computed with O(dωM(ℓk + d + β))
bit operations. The costs for the d − 1 products BU ′ is

∑
k O(dωM(ℓk + d + log |det B|/d)),

which is also O(dωM(log |detB|) + dω+1M(d)). When we also consider the cost O(dω+1+εβ1+ε)
of converting B to Hermite normal form we complete the proof. ⊓⊔

From the proof of Lemma 6 we may see that the non-reduction costs can be refined as
O(dωM(log |detB|) + dω+1M(d)) +H(d, β). Furthermore we make no assumptions on the algo-
rithm used in step 5, allowing lift-reduction to be a complete black-box. We also note that the
HNF is only used as a triangularization, thus any triangularization of the input B will suffice,
however then the user might need to perform d2 reductions of entries bi,j modulo bi,i. Thus we
could replace H(d, β) by O(d2β1+ǫ) for upper triangular inputs. Using the cost of H-LLL for lift-
reduction directly we can bound the complexity of Figure 2 by Poly(d) · β2. This is comparable
to L2 and H-LLL.

3 Truncating matrix entries within Lift-reduction

We will now focus on improving the lift-reduction step introduced in the previous section. In this
section we show how to truncate the “remainder” matrix and we give an efficient factorization for
the “quotient” matrices encountered in the process. This way the unimodular transformations can
be found and stored at low cost. In the first part of this section, we show that given B reduced
and ℓ ≥ 0, finding U such that σℓBU is reduced can be done by looking at the most significant
bits of B only. In the context of gcd algorithms, this is equivalent to saying that the quotients can
be computed by looking at the most significant bits of the remainders only. In the gcd case, using
only the most significant bits of the remainders allows one to efficiently compute the quotients.
Unfortunately, this is where the gcd analogy stops as a lift-reduction transformation U may still
have entries that are much larger than the number of bits kept of B. In particular, if the diagonal
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coefficients of the R-factor of B are very unbalanced, then Lemma 5 does not prevent some
entries of U from being as large as the magnitudes of the entries of B (not the precision kept).
The second part of this section is devoted to showing how to make the bit-size of U and the
cost of computing it essentially independent of these magnitudes. In this framework we can then
describe and analyze a Lehmer-like lift-reduction algorithm.

3.1 The most significant bits of B suffice for reducing σℓB

We aim at computing a unimodular U such that σℓBU is reduced, when B is reduced, by working
on a truncation of B. We use the bounds of Lemma 5 on the magnitude of U to show that a
column-wise truncation precision of ℓ + O(d) bits suffices for that purpose.

Lemma 7. Let Ξ1, Ξ2, Ξ3 be valid reduction parameters with Ξ3 > Ξ2. There exists a constant c2

such that the following holds for any ℓ ≥ 0. Let B ∈ R
d×d be Ξ1-reduced, U such that σℓBU is Ξ3-

reduced and ∆B with max ‖∆bi‖
‖bi‖

≤ 2−ℓ−c2·d. Then σℓ(B + ∆B)U is Ξ2-reduced.

Proof. By Lemma 5, there exists a constant c such that |ui,j | ≤ 2c·d R′

i,i

Rj,j
, where R (resp. R′)

is the R-factor of B (resp. C = σℓBU). Let C + ∆C = σℓ(B + ∆B)U . The norm of ∆ci =
∑

j uj,iσℓ∆bj satisfies ∆ci ≤
∑

j 2−p+ℓ+c·d R′

i,i

Rj,j
‖bj‖ ≤ dαd2−p+ℓ+c·dR′

i,i, by Theorem 1 and with p

such that max ‖∆bi‖
‖bi‖

≤ 2−p. Furthermore, we have ‖ci‖ ≥ R′
i,i. This gives max ‖∆ci‖

‖ci‖
≤ dαd2−p+ℓ+c·d.

By Lemma 3 (that we apply to C and C+∆C), there exists c′ such that if p ≥ ℓ+c′·d, then C+∆C
is Ξ2-reduced. ⊓⊔

By combining Lemmata 7 and 3, we have that a reducing U can be found by working on a
truncation of B.

Lemma 8. Let Ξ1, Ξ2, Ξ3 be valid reduction parameters with Ξ3 > Ξ2. There exists a constant c3

such that the following holds for any ℓ ≥ 0. Let B ∈ R
d×d be Ξ1-reduced and ∆B be such

that max ‖∆bi‖
‖bi‖

≤ 2−ℓ−c3·d. If σℓ(B + ∆B)U is Ξ3-reduced for some U , then σℓBU is Ξ2-reduced.

Proof. Let Ξ0 < Ξ1 be a valid set of reduction parameters. By Lemma 3, there exists a constant c
such that if max ‖∆bi‖

‖bi‖
≤ 2−c·d, then B + ∆B is non-singular and Ξ0-reduced. We conclude by

using Lemma 7. ⊓⊔

The above result implies that to find a U such that σℓBU is reduced, it suffices to find U
such that σℓ(B

′ ·E)U is reduced (for a stronger Ξ), for well chosen matrices B′ and E such that:
Each entry of B′ ∈ Z

d×d has bit-length ≤ p = ℓ + c · d for some constant c (depending solely on

the reduction parameters); E = diag(2ei−p) with ei ∈ Z such that 2ei−‖bi‖
‖bi‖

≤ 2d. Note that if B

is integral with max ‖bi‖ ≤ 2β , then each entry of E may be stored on log(d+β) bits. We denote
this computation of the pair (B′, E) by MSB(p)(B).

3.2 Finding a unimodular U reducing σℓB at low cost

The algorithm TrLiftLLL we describe hereafter is an adaptation of the StrengthenLLL algorithm
from [16], which aims at strengthening the LLL-reducedness of an already reduced basis, i.e., Ξ2-
reducing a Ξ1-reduced basis with Ξ1 < Ξ2.

One can recover a variant of StrengthenLLL by setting ℓ = 0 below. When setting ℓ = 0
TrLiftLLL will be used in the recursive algorithm for strengthening the reduction parameters.
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Such refinement is needed after the truncation of bases and transformation matrices which we
will need to ensure that the recursive calls get valid inputs.

When setting ℓ = O(d), we obtain the base case of lift-L̃1, the quasi-linear recursive algorithm
to be introduced in the next section. The most expensive step of TrLiftLLL is a call to a LLL-type
algorithm, which must be switch-based, a standard property given below. The switch property is
for instance satisfied by L3 ([13, p. 523]), L2 ([18, Th. 6]) and H-LLL ([17, Th. 4.3]). We choose
H-LLL as this currently provides the best complexity bound.

A standard property (P) satisfied by LLL-reducing algorithms. When called on a ba-
sis matrix B with R-factor R, the above LLL-reducing algorithms perform two types of operations:
They either subtract to a vector bk an integer combination of b1, . . . , bk−1 (translation), or they
exchange bk−1 and bk (switches). Translations leave the ri,i’s unchanged. Switches cannot increase
any of the quantities maxj≤i rj,j (for varying i), nor decrease any of the quantities minj≥i rj,j .
This implies that if we have maxi<k ri,i < mini≥k ri,i for some k at the beginning of the execution,
then the computed matrix U will be such that ui,j = 0 for any (i, j) such that i ≥ k and j < k.

We will prove the following theorem.

Theorem 2. For any valid sets of reduction parameters Ξ1 < Ξ2 and constant c4, there exists a
constant c′4 and an algorithm TrLiftLLL with the following specifications. It takes as inputs ℓ ≥ 0,
B ∈ Z

d×d and E = diag(2ei) such that max |bi,j | ≤ 2c4(ℓ+d), ei ∈ Z and BE is Ξ1-reduced; It runs
in time O(d2+ε(d + ℓ)(d + ℓ + τ) + d2 log max(1 + |ei|)), where τ = O(d2(ℓ + d)) is the number of
switches performed during the single call made to H-LLL; And it returns two matrices U and D
such that:

1. D = diag(2di) with di ∈ Z satisfying max |ei − di| ≤ c′4(ℓ + d),
2. U is unimodular and max |ui,j | ≤ 2ℓ+c′4·d,
3. D−1UD is unimodular and σℓ(BE)(D−1UD) is Ξ2-reduced.

The possible unbalancedness of the columns of BE (due to E), prevents us from applying
H-LLL directly on C = σℓBE. Indeed, even if we were dividing the full matrix by a large common
power of 2, the resulting basis may have a bit-size that is arbitrarily large compared to d and ℓ.
Our goal is to call H-LLL on a matrix whose entries have bit-sizes O(d + ℓ). To circumvent the
possible unbalanced-ness of the columns of C, we find blocks of consecutive vectors whose ri,i’s
have similar magnitudes, where R is the R-factor of C, and we apply a column-scaling to re-
balance C before calling H-LLL.

Finding blocks. The definition of block is motivated by property (P) above. To determine
meaningful blocks, the first step is to find good approximations to the ri,i’s. Computing the R-
factor of a non-singular matrix is most often done by applying Householder’s algorithm (see [5,
Ch. 19]). The following lemma is a rigorous and explicit variant of standard backward stability
results.

Lemma 9 ([1, Se. 6]). Let p ≥ 0 and B ∈ R
d×d be non-singular with R-factor R. Let R̂ be

the R-factor computed by Householder’s algorithm with floating-point precision p. If c52
−p < 1

with c5 = 80d2, then there exists an orthogonal Q̂ such that Q̂R̂ = B + ∆B with max ‖∆bi‖
‖bi‖

≤
c52

−p.

Let B = QR and σℓB = Q′R′ be the QR factorizations of B and σℓB respectively. We have:

cond(R′) =
∥∥|R′||R′−1|

∥∥ =
∥∥|Q′tσℓQR||R−1Qtσ−1

ℓ Q′|
∥∥
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≤
∥∥|Q′t|σℓ|Q||R||R−1||Qt|σ−1

ℓ |Q′|
∥∥

≤ d22ℓcond(R) ≤ d2 ρ + 1

ρ − 1
ρd2ℓ,

where ρ is as in Lemma 2. Therefore, Lemmata 1 and 9 imply that Householder’s algorithm

with precision p = ℓ + O(d) allows us to find R̂′ with max
|br′i,i−r′i,i|

r′i,i
≤ 1

100 . Since R = R′E, we

have max
|bri,i−ri,i|

ri,i
≤ 1

100 , with R̂ = R̂′E. Furthermore, as the run-time of Householder’s algorithm

in precision p is O(d3p1+ε), the computation of the r̂i,i’s costs O(d3(ℓ + d)1+ε).
We define the blocks of vectors of C as follows: The first block starts with ci1 = c1 and stops

with ci2−1 where i2 is the smallest i such that minj≥i r̂j,j > ν ·maxj<i r̂j,j (if i2 = d + 1, then the
process ends); The kth block starts with cik and stops with cik+1−1 where ik+1 is the smallest
index i > ik such that minj≥i r̂j,j > ν · maxj<i r̂j,j . The purpose of the constant ν ≥ 2, to be

set later, is to handle the inaccuracy of R̂ and to ensure that the matrix CD−1UD eventually
obtained will be size-reduced.

Let Ik = [ik, ik+1). Since ν ≥ 2, Property (P) implies that the unimodular U obtained by
calling H-LLL on C will satisfy ui,j = 0 if i ∈ Ik1 and j ∈ Ik2 with k1 < k2, i.e., U is (Ik)-block
upper triangular. Any diagonal block-submatrix of U will be unimodular. Computing the Ik’s
from r̂j,j ’s may be done in time O(d2(d + ℓ + log max(1 + |ei|))).

By construction of the blocks, the amplitude of ri,i’s within a block is bounded.

Lemma 10. We use the same notations as above. We let (ℓi)i be such that the ri,i/ℓi’s are the
diagonal coefficients of the R-factor of B. There exists a constant c6 (depending on Ξ1 and ν
only) such that for any k, we have

maxi∈Ik
ri,i

mini∈Ik
ri,i

≤ 2c6|Ik| · maxi∈Ik
ℓi.

Proof. Let i, j ∈ Ik. We are to upper-bound
rj,j

ri,i
. If j ≤ i, the reducedness of B implies that

rj,j

ℓj
≤

αi−j ri,i

ℓi
, for α as in Theorem 1. The fact that ℓi ≥ 1 (see Lemma 4) provides the result. Assume

now that j > i. If ri,i = maxt≥i rt,t, then the bound holds. Otherwise, by definition of the blocks,

there exists i′ > i in Ik such that ri′,i′ ≤ 2ν · ri,i (the factor 2 takes the inaccuracy of R̂ into
account). By induction, it can be shown that ri′′,i′′ ≥ (2ν)|Ik|ri,i, with i′′ = ik+1 − 1. We conclude
that

rj,j

ri,i
≤ (2ν)|Ik| rj,j

ri′′,i′′
≤ (2να)|Ik|ℓj , by using the first part of the proof (since j ≤ i′′). ⊓⊔

Re-balancing the columns of C. The blocks allow us to define the diagonal matrix D

of Theorem 2. We define the gap between two blocks Ik and Ik+1 to be γk =
minj∈Ik+1

brj,j

maxj∈Ik
brj,j

.

We define D = diag(2di) such that the block structure is preserved, but the gaps get shrunk:
For i ∈ Ik, we set di = e1 +

∑
k′<k⌈log2 γk′/

√
ν⌉. This ensures that B′ = BED−1 is Ξ1-reduced.

Also, the di’s satisfy Property 1 of Theorem 2: Thanks to the reducedness of BE, the size condition
on B, and Lemma 4, each ei is within O(ℓ+d) of log ri,i. Thanks to Lemmata 10 and 4, the same
holds for the di’s.

The matrix C ′ = CD−1 with R-factor R′ = RD−1 admits the same block-structure a C: For
any k, we have minj∈Ik+1

r′j,j ≥ ν ′ · maxj∈Ik
r′j,j , with ν ′ =

√
ν/2. Also, Property 1 of Theorem 2

ensures that any entry of C ′ may be stored on O(ℓ + d) bits (it is a shift of a small integer), i.e.
the matrix C ′ is balanced.

LLL-reducing. We now call H-LLL on input matrix C ′, with LLL-parameters Ξ > Ξ2, and
let C(2) be the output matrix. Thanks to the balancedness and bit-size bound for the entries of C ′,
this costs O(d2+ε(d + ℓ + τ)(d + ℓ)) bit operations (see [17, Th. 4.4]), where τ be the number of
switches performed. Let U be the corresponding unimodular transform (which can be recovered
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from C ′ and C(2) by a matrix inversion). Lemma 5 and the fact that B′ is Ξ1-reduced ensure
that Property 2 of Theorem 2 is satisfied. Also, since C ′ follows the block-structure defined by
the Ik’s, Property (P) may be used to assert that U is (Ik)k-block upper triangular and that its
diagonal blocks are unimodular. The coefficients of D are non-decreasing, and they are constant
within any Ik. This ensures that D−1UD is integral and that its diagonal blocks are exactly those
of U , and thus D−1UD is unimodular.

Let C(3) = σℓ(BE)(D−1UD) = C(2)D. It remains to show that C(3) is Ξ2-reduced. Let R(2)

(resp. R(3)) be the R-factor of C(2) (resp. C(3)). Let Ξ = (δ, η, θ) and Ξ2 = (δ2, η2, θ2). If i and j

belong to the same Ik, then |r(3)
i,j | ≤ ηr

(3)
i,i + θr

(3)
j,j , because this holds for R(2) and

r
(3)
i,j

r
(2)
i,j

=
r
(3)
i,i

r
(2)
i,i

=

r
(3)
j,j

r
(2)
j,j

= 2dik . Since η < η2 and θ < θ2, the size-reduction condition for (i, j) is satisfied. Similarly,

the Lovász conditions are satisfied inside the Ik’s. They are also satisfied for any i = ik − 1,

since c
(2)
ik

is multiplied by 2dik ≥ 2dik−1 . It remains to check the size-reduction conditions for (i, j)

with i ∈ Ik, j ∈ Ik′ and k′ > k. By reducedness of C(2), we have |r(2)
i,j | ≤ ηr

(2)
i,i + θr

(2)
j,j . Since

it was the case for R′, by Property (P), we have that r
(2)
i,i ≤ 1

ν′ r
(2)
j,j (with ν ′ =

√
ν/2), and

thus |r(2)
i,j | ≤ (θ + 1

ν′ )r
(2)
j,j . This gives |r(3)

i,j | ≤ (θ + 1
ν′ )r

(3)
j,j . In order to ensure size-reducedness, it

thus suffices to choose ν such that θ + 1
ν′ ≤ θ2.

3.3 A Lehmer-like lift-LLL algorithm

By combining Lemma 8 and Theorem 2, we obtain a Lehmer-like Lift-LLL algorithm, given in
Figure 3. In the input, we assume the base-case lifting target t divides ℓ. If it is not the case, we
may replace ℓ by t⌊ℓ/t⌋, and add some more lifting at the end.

Inputs: LLL parameters Ξ; a Ξ-reduced matrix B ∈ Z
d×d; a lifting target ℓ; a divisor t of ℓ.

Output: A Ξ-reduced basis of σℓB.
1. Let Ξ0, Ξ1 be valid parameters with Ξ0 < Ξ < Ξ1, c3 as in Le. 8 for “(Ξ1, Ξ2, Ξ3) := (Ξ, Ξ, Ξ1)”,

c1 as in Le. 3 with “(Ξ1, Ξ2) := (Ξ, Ξ0)”, and c′4 as in Th. 2 with “(Ξ1, Ξ2, c4) := (Ξ0, Ξ1, c3 + 2)”.
2. For k from 1 to ℓ/t do
3. (B′, E) := MSB(t+c3d)(B) (see the explanation after Le. 8).
4. (D, U) := TrLiftLLL(B′, E, t).
5. B := σtBD−1UD.
6. Return B.

Fig. 3. The Lehmer-LiftLLL algorithm.

Theorem 3. Lehmer-LiftLLL is correct. Furthermore, if the input matrix B satisfies max ‖bi‖ ≤
2β, then its bit-complexity is O(d3ℓ(d1+εt + t−1+ε(ℓ + β))).

Proof. The correctness is provided by Lemmata 3 and 8 and by Theorem 2. At any moment
throughout the execution, the matrix B is a Ξ-reduced basis of the lattice spanned by an ℓ′-lift
of the input, for some ℓ′ ≤ ℓ. Therefore, by Theorem 1 and Lemma 4, the inequality max ‖bi‖ ≤
αd max ri,i ≤ 2c·(ℓ+β) holds throughout the execution, for some constant c. The cost of Step 3
is O[d2(t+log(ℓ+β))]. The cost of Step 4 is O[d4+εt2 +d2 log(ℓ+β)]. Step 5 is performed by first
computing σtBD−1, whose entries have bit-sizes O(ℓ+β), and then multiplying by U and finally
by D. This costs O(d3(ℓ + β)tε) bit operations. The claimed complexity bound can by obtained
by summing over the ℓ/t loop iterations. ⊓⊔
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Note that if ℓ is sufficiently large with respect to d, then we may choose t = ℓa for a ∈ (0, 1),
to get a complexity bound that is subquadratic with respect to ℓ. By using Lehmer-LiftLLL

at Step 5 of the algorithm of Figure 2, it is possible to obtain a LLL-reducing algorithm of
complexity Poly(d) · β1.5+ε.

4 A quasi-linear time Lift-LLL algorithm

We now aim at constructing a recursive variant of the Lehmer-LiftLLL algorithm of the previous
section. Before being able to do so, we must work on lift-reducing unimodular transformations
which are not produced from specific algorithms. More specifically, we need to show how to work
on them at low cost, even if they are not produced by TrLiftLLL such as in Theorem 2. This
study is done in full generality and afterwards is used to analyze a specified lift-L̃1 algorithm.

4.1 Sanitizing lift-LLL-reducing unimodular transforms

In the previous section we have seen that working on the most significant bits of the input matrix B
suffices to find a matrix U such that σℓBU is reduced. Furthermore, as shown in Theorem 2, the
unimodular U can be found and stored on few bits. However, that U was obtained by a direct
application of a well-understood LLL-reducing algorithm. In this section we show that any U
which reduces σℓB can be transformed into a factored unimodular U ′ which also reduces σℓB,
each entry can be stored with only O(ℓ + d) bits, and products of such factored matrices can be
computed quickly. This analysis can be used as a general framework for studying lift-reductions.

Lemma 11. Let Ξ1, Ξ2 be valid LLL parameters. There exists a contant c7 such that the following
holds for any ℓ ≥ 0. Let B ∈ R

d×d (with R-factor R) be Ξ1-reduced, and U be unimodular such

that σℓBU (with R-factor R′) is Ξ2-reduced. If ∆U ∈ Z
d×d satisfies |∆ui,j | ≤ 2−(ℓ+c7·d) · r′j,j

ri,i
for

all i, j, then U + ∆U is unimodular.

Proof. Since U is unimodular, the matrix V = U−1 exists and has integer entries. We can thus
write U + ∆U = U(I + U−1∆U), and prove the result by showing that U−1∆U is strictly upper
triangular, i.e., that (U−1∆U)i,j = 0 for i ≥ j. We have (U−1∆U)i,j =

∑
k≤d vi,k ·∆uk,j . We now

show that if ∆uk,j 6= 0 and i ≥ j, then we must have vi,k = 0 (for a large enough c7).

The inequality ∆uk,j 6= 0 and the hypothesis on ∆U imply that 2ℓ+c7·d ≤ 2c·d · r′j,j

rk,k
. We thus

have
rk,k

r′j,j
≤ 2−(ℓ+c7·d). Since i ≥ j and σℓBU is reduced, Theorem 1 implies that

rk,k

r′i,i
≤ 2−ℓ+(c−c7)d,

for some constant c > 0. By using the second part of Lemma 5, we obtain that there exists c′ > 0
such that |vi,k| ≤ 2ℓ+c′·d · rk,k

r′i,i
≤ 2(c+c′−c7)d. As V is integral, setting c7 > c+c′ allows us to ensure

that vi,k = 0, as desired. ⊓⊔

Lemma 12 shows that the “clean” transformation matrix remains valid for the reduction
process.

Lemma 12. Let Ξ1, Ξ2, Ξ3 be valid LLL parameters with Ξ2 > Ξ3. There exists a contant c8

such that the following holds for any ℓ ≥ 0. Let B ∈ R
d×d (with R-factor R) be Ξ1-reduced,

and U be unimodular such that σℓBU (with R-factor R′) is Ξ2-reduced. If ∆U ∈ Z
d×d satisfies

|∆ui,j | ≤ 2−(ℓ+c8·d) · r′j,j

ri,i
for all i, j, then σℓB(U + ∆U) is Ξ3-reduced.
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Proof. We proceed by showing that |σℓB∆U | is column-wise small compared to |σℓBU | and by
applying Lemma 3. By assumption, we have |∆U | ≤ 2−(ℓ+c8·d)diag(r−1

i,i )Cdiag(r′j,j), where ci,j = 1
for all i, j. Since B is Ξ1-reduced, we have |R| ≤ diag(ri,i)T + θ1Tdiag(rj,j), where T is upper
triangular with ti,j = 1 for all i ≤ j. Then we get

|R∆U | ≤ |R||∆U | ≤ 2−(ℓ+c8·d)
(
diag(ri,i)Tdiag(r−1

j,j ) + θ1T
)

Cdiag(r′j,j).

Since B is Ξ1-reduced, by Theorem 1, we have ri,i ≤ αd
1rj,j for all i ≤ j, hence it follows that

|R∆U | ≤ 2−(ℓ+c8·d)(αd
1 + θ1)TCdiag(r′j,j).

As a consequence, there exists a constant c > 0 such that for any j:

‖(σℓB∆U)j‖ ≤ 2ℓ‖(B∆U)j‖ = 2ℓ‖(R∆U)j‖ ≤ 2(c−c8)dr′j,j .

We complete the proof by noting that r′j,j ≤ ‖(σℓBU)j‖ and by applying Lemma 3 (which requires
that c8 is set sufficiently large). ⊓⊔

Lemmata 11 and 12 allow us to impose an algorithmically efficient representation for lift-
reducing unimodular transforms.

Theorem 4. Let Ξ1, Ξ2, Ξ3 be valid LLL parameters with Ξ2 > Ξ3. There exist contants c9, c10 >
0 such that the following holds for any ℓ ≥ 0. Let B ∈ R

d×d be Ξ1-reduced, and U be unimodular
such that σℓBU is Ξ2-reduced. Let di := ⌊log ‖bi‖⌋ for all i. Let D := diag(2di), x := ℓ + c9 · d,
Û := 2xDUD−1 and U ′ := 2−xD−1⌊Û⌋D. We write Clean(U, (di)i, ℓ) := (U ′, D, x). Then U ′ is
unimodular and σℓBU ′ is Ξ3-reduced. Furthermore, the matrix Û satisfies |ûi,j | ≤ 22ℓ+c10·d.

Proof. We first show that U ′ ∈ Z
d×d. If ⌊ûi,j⌋ = ûi,j , then u′

i,j = ui,j ∈ Z. Otherwise, we

have ûi,j 6∈ Z, and thus x + di − dj ≤ 0. This gives that ⌊ûi,j⌋ ∈ Z ⊆ 2x+di−dj Z. We conclude
that u′

i,j ∈ Z.

Now, consider ∆U = U ′−U . Since ∆U = 2−xD−1(⌊Û⌋−Û)D, we have |∆ui,j | ≤ 2dj−di−x, for

all i, j. Thus by Theorem 1 and Lemma 4, we have |∆ui,j | ≤ 2−x+c·d · r′j,j

ri,i
. Applying Lemmata 11

and 12 shows that U ′ is unimodular and σℓBU ′ is Ξ3-reduced (if c9 is chosen sufficiently large).
By Lemma 5, we have for all i, j:

|ûi,j | = |ui,j |2x+di−dj ≤ 2x+ℓ+c′d · rj,j

2⌊log ‖bj‖⌋

2⌊log ‖bi‖⌋

ri,i
,

for some constant c′. Theorem 1 then provides the result. ⊓⊔
The above representation of Lift-reducing transforms is computationally powerful. Firstly, it

can be efficiently combined with Theorem 2: Applying the process described in Theorem 4 to the
unimodular matrix produced by TrLiftLLL may be performed in O(d2(d+ℓ)+d log max(1+ |ei|))
bit operations, which is negligible comparable to the cost bound of TrLiftLLL. We call TrLiftLLL’
the algorithm resulting from the combination of Theorems 4 and 2. TrLiftLLL’ is to be used
as base case of the recursion process of Lift-L̃1. Secondly, the following shows how to combine
lift-LLL-reducing unimodular transforms, which is the engine of the recursion.

Lemma 13. Let U = 2−xD−1U ′D ∈ Z
d×d with U ′ ∈ Z

d×d and D = diag(2di). Let V =
2−yE−1V ′E ∈ Z

d×d be defined similarly. Let z ∈ Z and fi ∈ Z for i ≤ d. Then it is possible to com-
pute the output (W ′, F, z) of Clean(U ·V, (fi)i, ℓ) (see Theorem 4) from x, y, z, U ′, V ′, (di)i, (ei)i, (fi)i,
in time O(d3M(t)), where maxi,j(|u′

i,j |, |v′i,j |) ≤ 2t and maxi(|di − ei|, |fi − ei|, |z − x + y|) ≤ t.

For short, we will write W := U ⊙ V , where W = 2−zF−1W ′F .
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Proof. We first compute m = max |di − ei|. We have UV = 2(−x−y−m)D−1U ′diag(2di−ei+m)V ′E.
We first multiply U ′ by diag(2di−ei+m), which is a mere multiplication by a non-negative power
of 2 of each column of U ′. This gives an integral matrix with coefficients of bit-sizes ≤ 2X. We
then multiply the latter by V ′, which costs O(d3M(X)). The matrix Ŵ from Theorem 4 may be
computed and rounded within O(d2X) bit operations. ⊓⊔

It is crucial in the complexity analysis of Lift-L̃1 that the cost of the merging process above
is independent of the magnitude scalings (di, ei and fi).

4.2 Lift-L̃1 and L̃
1

The algorithm of Figure 4 is the Knuth-Schönhage-like generalization of the Lehmer-like algorithm
of Figure 3. We define L̃1 as the algorithm from Figure 2, where Lift-L̃1 is used to implement
lift-reduction. As we will see we use the truncation process MSB described after Lemma 8 and
TrLiftLLL’ to ensure that L̃1 provides valid inputs to Lift-L̃1.

The Lift-L̃1 algorithm relies on two recursive calls, on MSB, truncations, and on calls to
TrLiftLLL’. The latter is used as base case of the recursion, and also to strengthen the reduced-
ness parameters (to ensure that the recursive calls get valid inputs). When strengthening, the
lifting target is always 0, and we do not specify it explicitly in Figure 4.

Inputs: Valid LLL-parameters Ξ3 > Ξ2 ≥ Ξ4 > Ξ1; A lifting target ℓ;
(B′, (ei)i) such that B = B′diag(2ei) is Ξ1-reduced and max |b′i,j | ≤ 2ℓ+c·d.

Output: (U ′, (di)i, x) such that σℓBU is Ξ1-reduced,
with U = 2−xdiag(2−di)U ′diag(2di) and max |u′

i,j | ≤ 22ℓ+2c·d.

1. If ℓ ≤ d, then use TrLiftLLL’ with lifting target ℓ. Otherwise:
2. Call TrLiftLLL’ on (B, Ξ2); Let U1 be the output. /∗ Prepare 1st recursive call
3. B1 := MSB(ℓ/2+c3·d)(B · U1).
4. Call Lift-L1 on B1, with lifting target ℓ/2; Let UR1

be the output. /∗ 1st recursive call
5. U1R1

:= U1 ⊙ UR1
. /∗ Prepare 2nd recursive call

6. B2 := σℓ/2BU1R1
.

7. Call TrLiftLLL’ on (B2, Ξ3). Let U2 be the output.
8. U1R12 := U1R1

⊙ U2.
9. B3 := MSB(ℓ/2+c3·d)(σℓ/2BU1R12).
10. Call Lift-L1 on B3, with lifting target ℓ/2; Let UR2

be the output. /∗ 2nd recursive call
11. U1R12R2

:= U1R12 ⊙ UR2
. /∗ Prepare output

12. B4 := σℓBU1R12R2
.

13. Call TrLiftLLL’ on (B4, Ξ4); Let U3 be the output.
14. U := U1R12R2

⊙ U3; Return U .

Fig. 4. The Lift-eL1 algorithm.

Theorem 5. Lift-L̃1 is correct.

Proof. When ℓ ≤ d the output is correct by Theorems 2 and 4. In Step 2, Theorems 2 and 4 give
that BU1 is Ξ2-reduced and that U1 has the desired format. In Step 3, the constant c3 is chosen so
that Lemma 7 applies now and Lemma 8 will apply at Step 6. Thus B1 is Ξ1-reduced and has the
correct structure by definition of MSB. Step 4 works (by induction) because B1 satisfies the input
requirements of Lift-L̃1. Thus σℓ/2B1UR1 is Ξ1-reduced. Because of the selection of c3 in Step 3
we know also that σℓ/2BU1UR1 is reduced (weaker than Ξ1) using Lemma 8. Thus by Theorem 4,
the matrix B2 is reduced (weakly) and has an appropriate format for TrLiftLLL’. By Theorem 2,
the matrix σℓ/2BU1R1U2 is Ξ3-reduced and by Theorem 4 we have that σℓ/2BU1R12 is Ξ2-reduced.
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By choice of c3 and Lemma 7, we know that the matrix B3 is Ξ1-reduced and satisfies the input
requirements of Lift-L̃1. Thus, by recursion, we know that σℓ/2B3UR2 is Ξ1-reduced. By choice
of c3, the matrix σℓBU1R12UR2 is weakly reduced. By Theorem 4, the matrix B4 is reduced and
satisfies the input requirements of TrLiftLLL’. Therefore, the matrix σℓBU1R12R2 is Ξ4-reduced.
Theorem 4 can be used to ensure U has the correct format and σℓBU is Ξ1-reduced. ⊓⊔

4.3 Complexity analysis

Theorem 6. Lift-L̃1 has bit-complexity

O
(
d3+ε(d + ℓ + τ) + dωM(ℓ) log ℓ + ℓ log(β + ℓ)

)
,

where τ is the total number of LLL-switches performed by the calls to H-LLL (through TrLiftLLL),
and max |bi,j | ≤ 2β.

Proof. We isolate the total cost of the calls to TrLiftLLL’. There are O(1 + ℓ/d) such calls,
and for any of these the lifting target is O(d). Their contribution to the cost of Lift-L̃1 is
therefore O(d3+ε(d + ℓ + τ). Also, the cost of handling the exponents in the diverse diagonal
matrices is O(d(1 + ℓ/d) log(β + ℓ)).

Now, let C(d, ℓ) be the cost of the remaining operations performed by Lift-L̃1, in dimension d
and with lifting target ℓ. If ℓ ≤ d, then C(d, ℓ) = O(1) (as the cost of TrLiftLLL’ has been put
aside). Assume now that ℓ > d. The operations to be taken into account include two recursive
calls (each of them costing C(d, ℓ/2)), and O(1) multiplications of d-dimensional integer matrices
whose coefficients have bit-length O(d+ ℓ). This leads to the inequality C(d, ℓ) ≤ 2C(d, ℓ/2)+K ·
dωM(d+ ℓ), for some absolute constant K. This leads to C(d, ℓ) = O(dωM(d+ ℓ) log(d+ ℓ)). ⊓⊔

Using Lift-L̃1 as lift-reduction. We can now bound the cost of L̃1 by using the wrapper
algorithm from Figure 2 where lift-reduction is implemented by Lift-L̃1. Some care must be taken
as the input of Lift-L̃1 is a truncated basis B′E while the input to Step 5, C, is a full-precision
basis.

Thus to use Lift-L̃1 we choose Ξ1 > Ξ and let C ′F := MSBℓk−c3·d(C) be chosen as in
lemma 8. By the construction of MSB and the choice of c3 we know that C ′F is reduced and
‖(C − C ′F )j‖ ≤ 2−ℓk+c3·d‖Cj‖. Thus we can call TrLiftLLL on (C ′F,Ξ1) to get D−1UD such
that C ′FD−1UD is Ξ1 reduced and then we let B′ := C ′FD−1U and E := D. Now we may call
Lift-L̃1 to get Ul so that σℓk

C ′FD−1UDUl is Ξ1-reduced and thus by lemma 8, σℓk
CD−1UDUl

is Ξ-reduced. On an intuitive level we see that the larger ei the lower the impact of shifting will
be and the smaller precision we need in b′1,i (if all ei were larger than ℓk + c · d then σℓk

C would
already be reduced).

This pre/post-processing for Lift-L̃1 is similar to what goes on inside of Lift-L̃1, and the
complexity of this processing is less than the complexity in Theorem 6 which we can use as
C(d − k + 1, τk, βk, ℓk) from lemma 6. Now we need only amortize over all calls to step 5. Using
τ in the complexity of lattice reduction allows us to amortize the costs of the LLL-switches over
many subsequent calls in the style of [20, 7]. We must adjust the standard Energy function to
allow for the truncations which occur.

Lemma 14. If we define the energy of B with R-factor R as E(B,ntrunc) =
∑

[(i−1)·logα1
(ri,i)]+

2ntrunc · d where ntrunc is the number of times MSB has been called so far, and α1 is the α of Ξ1,
then the number of switches so far satisfies τ ≤ E − E0 = O(d log |det B| + dntrunc) where E0 is
the initial value of E.
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Proof. Each LLL switch increases the weighted sum of the r′i,is (see [13, (1.23)]) hence E by at
least 1. The lemma is true if ℓ <= d, then each increase of ntrunc has the potential of decreasing
each G-S norm (and again when we return from the truncation). We see in the proof of [1, Co.
5.1] that for any two reduction parameters Ξ ′ < Ξ there exists an ǫ < 1 such that each G-S
norm decreases by a factor no smaller than (1 − ǫ). However we could adapt the choice of c3 to
c3 + 1 to ensure that (1 − ǫ) > (1 − (1/2d)) and each decrease in G-S norm must overall not
decrease E. We should also note that in Figure 1 the act of adjoining a new row does not change
the previous G-S norms but increases their weights. Thus at the time of adjoining a new row E
increases at most by log |det C|. Note that each product by σℓ (including those within the calls
to TrLiftLLL ) cannot decrease G-S norms by lemma 4. Thus the energy never decreases and
number of switches is bounded by the growth E − E0. ⊓⊔

We obtain our main result by combining Theorems 5 and 6, and Lemma 14 to amortize the
LLL-costs in Lemma 6 with ntrunc bounded by 2β =

∑
2(ℓk/d).

Theorem 7. Given as inputs Ξ and a matrix B ∈ Z
d×d with max ‖bj‖ ≤ 2β, then the L̃1

algorithm returns a Ξ-reduced basis of L(B) in time O(d5+ǫβ + dω+1+ǫβ1+ǫ).

We can refine this analysis to O(d5+ǫ + d4+ǫ log |det B|+ dω(log |det B|)1+ǫ) +H(d, β) where
H(d, β) is the cost of computing the HNF or O(d2β1+ǫ) if B is already upper-triangular. We note
for instance that knapsack lattices (see for instance [11]) can be reduced in time O(d5+ǫ +d4+ǫβ+
dωβ1+ǫ).
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