
HAL Id: ensl-00534899
https://ens-lyon.hal.science/ensl-00534899v2

Submitted on 7 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An LLL-reduction algorithm with quasi-linear time
complexity

Andrew Novocin, Damien Stehlé, Gilles Villard

To cite this version:
Andrew Novocin, Damien Stehlé, Gilles Villard. An LLL-reduction algorithm with quasi-linear time
complexity. STOC’11 - 43rd annual ACM symposium on Theory of computing, 2011, San Jose, United
States. pp.403-412, �10.1145/1993636.1993691�. �ensl-00534899v2�

https://ens-lyon.hal.science/ensl-00534899v2
https://hal.archives-ouvertes.fr

An LLL-Reduction Algorithm
with Quasi-linear Time Complexity1

Andrew Novocin, Damien Stehlé, and Gilles Villard

CNRS, ENS de Lyon, INRIA, UCBL, U. Lyon
Laboratoire LIP 46 Allée d’Italie, 69364 Lyon Cedex 07, France.
{andrew.novocin,damien.stehle,gilles.villard}@ens-lyon.fr

Abstract. We devise an algorithm, eL1, with the following specifications: It takes as input an ar-
bitrary basis B = (bi)i ∈ Zd×d of a Euclidean lattice L; It computes a basis of L which is reduced
for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time O(d5+εβ +
dω+1+εβ1+ε) where β = log max ‖bi‖ (for any ε > 0 and ω is a valid exponent for matrix multiplica-
tion). This is the first LLL-reducing algorithm with a time complexity that is quasi-linear in β and
polynomial in d.
The backbone structure of eL1 is able to mimic the Knuth-Schönhage fast gcd algorithm thanks to
a combination of cutting-edge ingredients. First the bit-size of our lattice bases can be decreased
via truncations whose validity are backed by recent numerical stability results on the QR matrix
factorization. Also we establish a new framework for analyzing unimodular transformation matrices
which reduce shifts of reduced bases, this includes bit-size control and new perturbation tools. We
illustrate the power of this framework by generating a family of reduction algorithms.

1 Introduction

We present the first lattice reduction algorithm which has complexity both quasi-linear in the
bit-length of the entries and polynomial time overall for an input basis B = (bi)i ∈ Zd×d. This is
the first progress on quasi-linear lattice reduction in nearly 10 years, improving Schönhage [28],
Yap [32], and Eisenbrand and Rote [7] whose algorithm is exponential in d. Our result can be
seen as a generalization of the Knuth-Schönhage quasi-linear GCD [13, 26] from integers to ma-
trices. For solving the matrix case difficulties which relate to multi-dimensionality we combine
several new main ingredients. We establish a theoretical framework for analyzing and designing
general lattice reduction algorithms. In particular we discover an underlying structure on any
transformation matrix which reduces shifts of reduced lattices; this new structure reveals some
of the inefficiencies of traditional lattice reduction algorithms. The multi-dimensional difficulty
also leads us to establish new perturbation analysis results for mastering the complexity bounds.
The Knuth-Schönhage scalar approach essentially relies on truncations of the Euclidean remain-
ders [13, 26] , while the matrix case requires truncating both the “remainder” and “quotient”
matrices. We can use our theoretical framework to propose a family of new reduction algorithms,
which includes a Lehmer-type sub-quadratic algorithm in addition to L̃1.

In 1982, Lenstra, Lenstra and Lovász devised an algorithm, L3, that computes reduced bases
of integral Euclidean lattices (i.e., subgroups of a Zd) in polynomial time [16]. This typically
allows one to solve approximate variants of computationally hard problems such as the Shortest
Vector, Closest Vector, and the Shortest Independent Vectors problems (see [18]). L3 has since
proven useful in dozens of applications in a wide range including cryptanalysis, computer algebra,
communications theory, combinatorial optimization, algorithmic number theory, etc (see [22, 6]
for two recent surveys).
1 Extended abstract appears in the Proc. 43rd ACM Symposium on Theory of Computing (STOC 2011), June

6-8, San Jose, California, 2011.

2 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

In [16], Lenstra, Lenstra and Lovász bounded the bit-complexity of L3 by O(d5+εβ2+ε) when
the input basis B = (bi)i ∈ Zd×d satisfies max ‖bi‖ ≤ 2β . For the sake of simplicity, we will only
consider full-rank lattices. The current best algorithm for integer multiplication is Fürer’s, which
allows one to multiply two k-bit long integers in time M(k) = O(k(log k)2log∗ k). The analysis
of L3 was quickly refined by Kaltofen [11], who showed a O(d5β2(d + β)ε) complexity bound.
Schnorr [24] later proposed an algorithm of bit-complexity O(d4β(d+ β)1+ε), using approximate
computations for internal Gram-Schmidt orthogonalizations. Some works have since focused on
improving the complexity bounds with respect to the dimension d, including [27, 30, 14, 25], but
they have not lowered the cost with respect to β (for fixed d). More recently, Nguyen and Stehlé
devised L2 [21], a variant of L3 with complexity O(d4+εβ(d+ β)). The latter bound is quadratic
with respect to β (even with naive integer multiplication), which led to the name L2. The same
complexity bound was also obtained in [20] for a different algorithm, H-LLL, but with a simpler
complexity analysis.

As a broad approximation, L3, L2 and H-LLL are generalizations of Euclid’s greatest common
divisor algorithm. The successive bases computed during the execution play the role of Euclid’s
remainders, and the elementary matrix operations performed on the bases play the role of Eu-
clid’s quotients. L3 may be interpreted in such a framework. It is slow because it computes its
“quotients” using all the bits from the “remainders” rather than the most significant bits: The
cost of computing one Euclidean division in an L3 way is O(β1+ε), leading to an overall O(β2+ε)
bound for Euclid’s algorithm. Lehmer [15] proposed an acceleration of Euclid’s algorithm by the
means of truncations. Since the ` most significant bits of the remainders provide the first Ω(`)
bits of the sequence of quotients, one may: Truncate the remainders to precision `; Compute the
sequence of quotients for the truncated remainders; Store the first Ω(`) bits of the quotients into
an Ω(`)-bit matrix; Apply the latter to the input remainders, which are shortened by Ω(`) bits;
And iterate. The cost gain stems from the decrease of the bit-lengths of the computed remain-
ders. Choosing ` ≈

√
β leads to a complexity bound of O(β3/2+ε). In the early 70’s, Knuth [13]

and Schönhage [26] independently observed that using Lehmer’s idea recursively leads to a gcd
algorithm with complexity bound O(β1+ε). The above approach for the computation of gcds has
been successfully adapted to two-dimensional lattices [32, 28, 5], and the resulting algorithm was
then used in [7] to reduce lattices in arbitrary dimensions in quasi-linear time. Unfortunately, the
best known cost bound for the latter is O(β1+ε(log β)d−1) for fixed d.

Our result. We adapt the Lehmer-Knuth-Schönhage gcd framework to the case of LLL-reduction.
L̃1 takes as input a non-singular B ∈ Zd×d; terminates within O(d5+εβ + dω+1+εβ1+ε) bit oper-
ations, where β = log max ‖bi‖; and returns a basis of the lattice L(B) spanned by B which is
LLL-reduced in the sense of Definition 1 given hereafter. (L3 reduces bases for Ξ = (3/4, 1/2, 0).)
The time bound is obtained via an algorithm that can multiply two d × d matrices in O(dω)
scalar operations. (We can set ω ≈ 2.376 [4].) Our complexity improvement is particularly rele-
vant for applications of LLL reduction where β is large. These include the recognition of algebraic
numbers [12] and Coppersmith’s method for finding the small roots of polynomials [3].

Definition 1 ([2, Def. 5.3]). Let Ξ = (δ, η, θ) with η ∈ (1/2, 1), θ > 0 and δ ∈ (η2, 1).
Let B ∈ Rd×d be non-singular with QR factorization B = Q · R (i.e., the unique decomposition
of B as a product of an orthogonal matrix and an upper triangular matrix with positive diagonal
entries). The matrix B is Ξ-LLL-reduced if:

• for all i < j, we have |ri,j | ≤ ηri,i + θrj,j (B is size-reduced);
• for all i, we have δ · r2i,i ≤ r2i,i+1 + r2i+1,i+1 (B is said to satisfy Lovász’ conditions).

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 3

Let Ξi = (δi, ηi, θi) be valid LLL-parameters for i ∈ {1, 2}. We say that Ξ1 is stronger than Ξ2

and write Ξ1 > Ξ2 if δ1 > δ2, η1 < η2 and θ1 < θ2.

This modified LLL-reduction is as powerful as the classical one (note that by choosing (δ, η, θ)
close to the ideal parameters (1, 1/2, 0), the derived α tends to 2/

√
3):

Theorem 1 ([2, Th. 5.4]). Let B ∈ Rd×d be (δ, η, θ)-LLL-reduced with R-factor R. Let α =
ηθ+
√

(1+θ2)δ−η2

δ−η2 . Then, for all i, ri,i ≤ α · ri+1,i+1 and ri,i ≤ ‖bi‖ ≤ αi · ri,i. This implies

that ‖b1‖ ≤ α
d−1
2 |detB|1/d and αi−dri,i ≤ λi ≤ αiri,i, where λi is the ith minimum of the

lattice L(B).

L̃1 and its analysis rely on two recent lattice reduction techniques (described below), whose
contributions can be easily explained in the gcd framework. The efficiency of the fast gcd algo-
rithms [13, 26] stems from two sources: Performing operations on truncated remainders is mean-
ingful (which allows one to consider remainders with smaller bit-sizes), and the obtained trans-
formations corresponding to the quotients sequence have small bit-sizes (which allows one to
transmit at low cost the information obtained on the truncated remainders back to the genuine
remainders). We achieve an analogue of the latter by gradually feeding the input to the reduction
algorithm, and the former is ensured thanks to the modified notion of LLL-reduction which is
resilient to truncations.

The main difficulty in adapting the fast gcd framework lies in the multi-dimensionality of
lattice reduction. In particular, the basis vectors may have significantly differing magnitudes.
This means that basis truncations must be performed vector-wise. (Column-wise using the matrix
setting.) Also, the resulting unimodular transformation matrices (integral with determinant ±1
so that the spanned lattice is preserved) may have large magnitudes, hence need to be truncated
for being be stored on few bits.

To solve these dilemmas we focus on reducing bases which are a mere scalar shift from being
reduced. We call this process lift-reducing, and it can be used to provide a family of new reduction
algorithms. We illustrate in Section 2 that the general lattice reduction problem can be reduced to
the problem of lift-reduction. Indeed, the LLL-reduction of B can be implemented as a sequence
of lift-reductions by performing a Hermite Normal Form (HNF) computation on B beforehand.
Note that there could be other means of seeding the lift-reduction process. Our lift-reductions
are a generalization of recent gradual feeding algorithms.

Gradual feeding of the input. Gradual feeding was introduced by Belabas [1], Novocin,
and van Hoeij [23, 10], in the context of specific lattice bases that are encountered while factoring
rational polynomials (e.g., with the algorithm from [9]). Gradual feeding was restricted to reducing
specific sub-lattices which avoid the above dimensionality difficulties. We generalize these results
to the following. Suppose that we wish to reduce a matrix B with the property that B0 := σ−k` B
is reduced for some k and σ` is the diagonal matrix diag(2`, 1, . . . , 1). If one runs L3 on B
directly then the structure of B0 is not being exploited. Instead, the matrix B can be slowly
reduced allowing us to control and understand the intermediate transformations: Compute the
unimodular transform U1 (with any reduction algorithm) such that σ`B0U1 is reduced and repeat
until we have σk`B0U1 · · ·Uk = B(U1 · · ·Uk). Each entry of Ui and each entry of U1 · · ·Ui can be
bounded sensitive to the shape of the lattice. Further we will illustrate that the bit-size of any
entry of Ui can be made O(`+ d) (see Theorems 2 and 4).

In addition, control over U gives us the ability to analyze the impact of efficient truncations
on lift-reductions.

4 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

Truncations of basis matrices. In order to work on as few bits of basis matrices as possible
during our lift-reductions, we apply column-wise truncations. A truncation of precision p replaces
a matrix B by a truncated matrix B + ∆B such that max ‖∆bi‖

‖bi‖ ≤ 2−p holds for all i, and only
the most significant p + O(log d) bits of every column of B + ∆B are allowed to be non-zero.
Each entry of B + ∆B is an integer multiplied by some power of 2. (In the notation ∆B, ∆
does not represent anything, i.e., the matrix ∆B is not a product of ∆ and B.) A truncation
is an efficiency-motivated column-wise perturbation. The following lemmata explain why we are
interested in such perturbations.

Lemma 1 ([2, Se. 2], refined from [8]). Let p > 0, B ∈ Rd×d non-singular with R-factor R,
and let ∆B with max ‖∆bi‖

‖bi‖ ≤ 2−p. If cond(R) = ‖|R||R−1|‖2 (using the induced norm) satis-
fies c0 · cond(R) · 2−p < 1 with c0 = 8d3/2, then B+∆B is non-singular and its R-factor R+∆R

satisfies max ‖∆ri‖
‖ri‖ ≤ c0 · cond(R) · 2−p.

Lemma 2 ([2, Le. 5.5]). If B ∈ Rd×d with R-factor R is (δ, η, θ)-reduced then cond(R) ≤ ρ+1
ρ−1ρ

d,
with ρ = (1 + η + θ)α, with α as in Theorem 1.

These results imply that a column-wise truncation of a reduced basis with precision Ω(d)
remains reduced. This explains why the parameter θ was introduced in Definition 1, as such a
property does not hold if LLL-reduction is restricted to θ = 0 (see [29, Se. 3.1]).

Lemma 3 ([2, Co. 5.1]). Let Ξ1 > Ξ2 be valid reduction parameters. There exists a constant c1
such that for any Ξ1-reduced B ∈ Rd×d and any ∆B with max ‖∆bi‖

‖bi‖ ≤ 2−c1·d, the matrix B+∆B
is non-singular and Ξ2-reduced.

As we will see in Section 3 (see Lemma 7) the latter lemmata will allow us to develop the
gradual reduction strategy with truncation, which is to approximate the matrix to be reduced,
reduce that approximation, and apply the unimodular transform to the original matrix, and
repeat the process.

Lift-L̃1. Our quasi-linear general lattice reduction algorithm, L̃1, is composed of a sequence of
calls to a specialized lift-reduction algorithm, Lift-L̃1. Sections 2 and 4.4 show the relationship
between general reduction and lift-reduction via HNF.

Inputs: B0 reduced, and target lift `.
Output: Usmall such that σ`B0Usmall is reduced.

1. Get U1,small from pseudo-Lift-eL1(truncate(B0), `/2).
2. B1 := σ`/2B0U1,small.
3. Get U from refineReduction(C).
4. Get U2,small from pseudo-Lift-eL1(truncate(B1U), `/2).
5. Usmall :=clean(U1,small · U · U2,small).
6. Return Usmall.

Fig. 1. pseudo-Lift-eL1.

When we combine lift-reduction (gradual feeding) and truncation we see another difficulty
which must be addressed. That is, lift-reducing a truncation of B0 will not give the same trans-
formation as lift-reducing B0 directly; likewise any truncation of U weakens our reduction even
further. Thus after working with truncations we must apply any transformations to a higher

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 5

precision lattice and refine the result. In other words, we will need to have a method for strength-
ening the quality of a weakly reduced basis. Such an algorithm exists in [19] and we adapt it to
performing lift-reductions in section 3.2. Small lift-reductions with this algorithm also become
the leaves of our recursive tree. The Lift-L̃1 algorithm in Figure 4 is a rigorous implementation
of the pseudo algorithm in Figure 1: Lift-L̃1 must refine current matrices more often than this
pseudo algorithm to properly handle a specified reduction.

It could be noted that clean is stronger than mere truncation. It can utilize our new under-
standing of the structure of any lift-reducing U to provide an appropriate transformation which
is well structured and efficiently stored.
Comments on the cost of L̃1. The term O(d5+εβ) stems from a series of β calls to H-LLL [20]
or L2 [21] on integral matrices whose entries have bit-lengths O(d). These calls are at the leaves of
the tree of the recursive algorithm. An amortized analysis allows us to show that the total number
of LLL switches performed summed over all calls is O(d2β) (see Lemma 11). We recall that
known LLL reduction algorithms perform two types of vector operations: Either translations or
switches. The number of switches performed is a key factor of the complexity bounds. The H-LLL
component of the cost of L̃1 could be lowered by using faster LLL-reducing algorithms than H-LLL
(with respect to d), but for our amortization to hold, they have to satisfy a standard property (see
Section 3.2). The term O(dω+1+εβ1+ε) derives from both the HNF computation mentioned above
and a series of product trees of balanced matrix multiplications whose overall product has bit-
length O(dβ). Furthermore, the precise cost dependence of L̃1 in β is Poly(d)·M(β) log β. We also
remark that the cost can be proven to be O(d4+ε log |detB|+d5+ε+dω(log | detB|)1+ε)+H(d, β),
where H(d, β) denotes the cost of computing the Hermite normal form. Finally, we may note that
if the size-reduction parameter θ is not considered as a constant, then a factor Poly(log(1/θ)) is
involved in the cost of the leaf calls.

Road-map. We construct L̃1 in several generalization steps which, in the gcd framework, respec-
tively correspond to Euclid’s algorithm (Section 2), Lehmer’s inclusion of truncations in Euclid’s
algorithm (Section 3) and the Knuth-Schönhage recursive generalization of Lehmer’s algorithm
(Section 4).

2 Lift-Reduction

In order to enable the adaptation of the gcd framework to lattice reduction, we introduce a
new type of reduction which behaves more predictively and regularly. In this new framework,
called lift-reduction, we are given a reduced matrix B and a lifting target ` ≥ 0, and we aim
at computing a unimodular U such that σ`BU is reduced (with σ` = diag(2`, 1, . . . , 1)). Lift-
reduction can naturally be performed using any general purpose reduction algorithm, however we
will design fast algorithms specific to lift-reduction in Sections 3 and 4. Lifting a lattice basis has
a predictable impact on the ri,i’s and the successive minima.

Lemma 4. Let B be non-singular and ` ≥ 0. If R (resp. R′) is the R-factor of B (resp. B′ =
σ`B), then r′i,i ≥ ri,i for all i and

∏
r′i,i = 2`

∏
ri,i. Furthermore, if (λi)i (resp. (λ′i)i) are the

successive minima of L = L(B) (resp. L′ = L(B′)), then λi ≤ λ′i ≤ 2`λi for all i.

Proof. The first statement is proven in [10, Le. 4]. For the second one, notice that
∏
r′i,i =

|detB′| = 2`| detB| = 2`
∏
ri,i. We now prove the third statement. Let (vi)i and (v′i)i be linearly

independent vectors in L and L′ respectively with ‖vi‖ = λi and ‖v′i‖ = λ′i for all i. For any i,
we define S′i = {σ`vj , j ≤ i} and Si = {σ−1

` v′j , j ≤ i}. These are linearly independent sets in L′

and L respectively. Then for any i we have λi ≤ max‖·‖(Si) ≤ λ′i ≤ max‖·‖(S′i) ≤ 2`λi. ut

6 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

We can now bound the entries of any matrix which performs lift-reduction.

Lemma 5. Let Ξ1, Ξ2 be valid parameters and α1 and α2 as in Theorem 1. Let ` ≥ 0, B ∈ Rd×d

be Ξ1-reduced and U such that C = σ`BU is Ξ2-reduced. Letting ζ1 = (1 +η1 +θ1)α1α2, we have:

∀i, j : |ui,j | ≤ 4d3ζd1 ·
r′j,j
ri,i
≤ 2`+2d3ζ2d

1 ·
rj,j
ri,i

,

where R (resp. R′) is the R-factor of B (resp. C). In addition, if V = U−1 and ζ2 = (1 + η2 +
θ2)α2α1:

∀i, j : |vj,i| ≤ 2`+2d3ζd2 ·
ri,i
r′j,j
≤ 2`+2d3ζ2d

2 ·
ri,i
rj,j

.

Proof. Let B = QR, C = Q′R′ be the QR-factorizations of B and C. Then

U = R−1Qtσ−1
` Q′R′

= diag(r−1
i,i)R̄−1

(
Qtσ−1

` Q′
)
R̄′diag(r′j,j),

with R̄ = R · diag(1/ri,i) and R̄′ = R′ · diag(1/r′j,j). From the proof of [2, Le. 5.5], we know
that |R̄−1| ≤ 2((1 + η1 + θ1)α1)dT , where ti,j = 1 if i ≤ j and ti,j = 0 otherwise. By Theorem 1,
we have |R̄′| ≤ (η2α

d−1
2 +θ2)T ≤ 2αd2T (using θ2 ≤ α2 and η2 ≤ 1). Finally, we have |Q|, |Q′| ≤M ,

where mi,j = 1 for all i, j. Using the triangular inequality, we obtain:

|U | ≤ 4ζddiag(r−1
i,i)TM2Tdiag(r′j,j)

≤ 4d3ζddiag(r−1
i,i)Mdiag(r′j,j).

Now, by Theorem 1 and Lemma 4, we have r′j,j ≤ αd−j2 λ′j ≤ 2`αd−j2 λj ≤ 2`αj1α
d−j
2 rj,j , which

completes the proof of the first statement.
For the second statement note that

V = diag(r′−1
i,i)R̄′−1 (

Q′tσ`Q
)
R̄diag(rj,j)

is similar to the expression for U in the proof of the first statement, except that σ` can increase
the innermost product by a factor 2`. ut

LLL-reduction as a sequence of lift-reductions. In the remainder of this section we
illustrate that LLL-reduction can be achieved with an efficient sequence of lift-reductions.

Lift-reduction is specialized to reducing a scalar-shift/lift of an already reduced basis. In
Figure 2 we create reduced bases (of distinct lattices from the input lattice) which we use to
progressively create a reduced basis for the input lattice. Here we use an HNF triangularization
and scalar shifts to find suitable reduced lattice bases. We analyze the cost and accuracy of
Figure 2 using a generic lift-reduction algorithm. The remainder of the paper can then focus on
specialized lift-reduction algorithms which each use Figure 2 to achieve generic reduction. We
note that other wrappers of lift-reduction are possible.

Recall that the HNF of a (full-rank) lattice L ⊆ Zd is the unique upper triangular basis H
of L such that −hi,i/2 ≤ hi,j < hi,i/2 for any i < j and hi,i > 0 for any i. Using [17, 31], it can
be computed in time O(dω+1+εβ1+ε), where the input matrix B ∈ Zd×d satisfies max ‖bi‖ ≤ 2β .

Let H be the HNF of L(B). At the end of Step 1, the matrix B = H is upper triangu-
lar,

∏
bi,i = | detH| ≤ 2dβ , and the 1×1 bottom rightmost sub-matrix ofH is trivially Ξ-reduced.

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 7

In each iteration we Ξ-reduce a lower-right sub-matrix of B via lift-reduction (increasing the di-
mension with each iteration). This is done by augmenting the previous Ξ-reduced sub-matrix by
a scaling down of the next row (such that the new values are tiny). This creates a C which is
reduced and such that a lift-reduction of C will be a complete Ξ-reduction of the next largest
sub-matrix of B. The column operations of the lift-reduction are then applied to rest of B with
the triangular structure allowing us to reduce each remaining row modulo bi,i. From a cost point
of view, it is worth noting that the sum of the lifts `k is O(log |detH|) = O(dβ).

Inputs: LLL parameters Ξ; a non-singular B ∈ Zd×d.
Output: A Ξ-reduced basis of L(B).

1. B := HNF(B).
2. For k from d− 1 down to 1 do
3. Let C be the bottom-right (d− k + 1)-dimensional submatrix of B.
4. `k := dlog2(bk,k)e, C := σ−1

`k
C.

5. Lift-reduction: Find U ′ unimodular such that σ`kCU
′ is Ξ-reduced.

6. Let U be the block-diagonal matrix diag(I, U ′).
7. Compute B := B · U , reducing row i symmetrically modulo bi,i for i < k.
8. Return B.

Fig. 2. Reducing LLL-reduction to lift-reduction.

Lemma 6. The algorithm of Figure 2 Ξ-reduces B such that max ‖bi‖ ≤ 2β using

O(dω+1+ε(β1+ε + d)) +
1∑

k=d−1

Ck

bit operations, where Ck is the cost of Step 5 for the specific value of k.

Proof. We first prove the correctness of the algorithm. We let UH be the unimodular transfor-
mation such that H = BUH . For k < d, we let U ′k be the (d − k + 1) × (d − k + 1) unimodular
transformation that reduces σ`kC at Step 5 and U ′′k be the unimodular transformation that re-
duces rows 1 ≤ i < k at Step 7. With input B the algorithm returns B · UH · diag(I, U ′d−1) ·
U ′′d−1 . . . · diag(I, U ′2) · U ′′2 · U ′1. Since B is multiplied by a product of unimodular matrices, the
output matrix is a basis of the lattice spanned by the columns of B.

We show by induction on k from d down to 1 that at the end of the (d− k)-th loop iteration,
the bottom-right (d−k+1)-dimensional submatrix of the current B is Ξ-reduced. The statement
is valid for k = d, as a non-zero matrix in dimension 1 is always reduced, and instanciating the
statement with k = 1 ensures that the matrix resturned by the algorithm is Ξ-reduced. The
non-trivial ingredient of the proof of the statement is to show that for k < d, the input of the
lift-reduction of Step 5 is valid, i.e., that at the beginning of Step 5 the matrix C is Ξ-reduced.
Let R be the R-factor of C. Let C ′ be the bottom-right (d − k) × (d − k) submatrix of C. By
induction, we know that C ′ is Ξ-reduced. It thus remains to show that the first row of R satisfies
the size-reducedness condition, and that Lovász’ condition between the first two rows is satisfied.
We have r1,j = hk,k+j−1/2`k , for j ≤ d − k + 1, thus ensuring the size-reducedness condition.
Furthermore, by the shape of the unimodular transformations applied so far, we know that C ′

is a basis of the lattice L′ generated by the columns of the bottom-right (d − k)-dimensional
submatrix of H, which has first minimum λ1(L′) ≥ mini>k hi,i ≥ 1. As r2,2 is the norm of the
first vector of C ′, we have r2,2 ≥ λ1(L′) ≥ 1. Independently, by choice of `k, we have r1,1 ≤ 1.
This ensures that Lovász’ condition is satisfied, and completes the proof of correctness.

8 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

We now bound the cost of the algorithm of Figure 2. We bound the overall cost of the d− 1
calls to lift-reduction by

∑
k<d Ck. It remains to bound the contribution of Step 7 to the cost.

The cost dominating component of Step 7 is the computation of the product of the last d− k+ 1
columns of (the current value of) B by U ′. We consider separately the costs of computing the
products by U ′ of the k× (d− k+ 1) top-right submatrix B of B, and of the (d− k)× (d− k+ 1)
bottom-right submatrix B of B

For i ≤ k, the magnitudes of the entries of the i-th row of B are uniformly bounded by hi,i. By
Lemma 5, if e, j < d−k+1, then |u′e,j | ≤ 2`k+2d3ζd1 ·

rj,j
re,e

(recall that R is the R-factor of C at the
beginning of Step 5). As we saw above, we have r2,2 ≥ 1, and, by reducedness, we have re,e ≥ α−e
for any e ≥ 2 (using Theorem 1). Also, by choice of `k, we have r1,1 ≥ 1/2. Overall, this gives
that the jth column of U ′ is uniformly bounded as log ‖u′j‖ = O(`k + d + log rj,j). The bounds
on the bit-lengths of the rows of B and the bounds on the bit-lengths of the columns of U ′ may
be very unbalanced. We do not perform matrix multiplication naively, as this unbalancedness
may lead to too large a cost (the maxima of row and column bounds may be much larger than
the averages). To circumvent this difficulty we use Recipe 1, given in Appendix 1 p. 17, with
“S = log detH + d2 + d`k". Since detH = | detB| the multiplication of B with U ′ can be
performed within O(dωM((log | detB|)/d+ d+ `k)) bit operations.

We now consider the product P := BU ′. By reducedness of B, we have ‖bj‖ ≤ αdrj,j
(from Theorem 1). Recall that we have |u′e,j | ≤ 2`k+2d3ζd1 ·

rj,j
re,e

. As a consequence, we can
uniformly bound log ‖u′j‖ and log ‖pj‖ by O(`k + d + log rj,j) for any j. We can thus use
Recipe 3, given in Appendix 1 p. 17, to compute P , with “S = O(log detH + d2 + d`k)” us-
ing O(dω+εM((log | detB|)/d+ d+ `k)) bit operations.

The proof can be completed by noting that the above matrix products are performed d − 1
times during the execution of the algorithm and by also considering the cost O(dω+1+εβ1+ε) of
converting B to Hermite normal form. ut

We use the term Ck in order to amortize over the loop iterations the costs of the calls to the
lift-reducing algorithm. In the algorithm of Figure 2 and in Lemma 6, the lift-reducing algorithm is
not specified. It may be a general-purpose LLL-reducing algorithm [16, 11, 21, 20] or a specifically
designed lift-reducing algorithm such as Lift-L̃1, described in Section 4.

It can be noted from the proof of Lemma 6 that the non-reduction costs can be refined
as O(dω+εM(log | detB|) + dω+1+εM(d)) + H(d, β). We note that the HNF is only used as a
triangularization, thus any triangularization of the input B will suffice, however then it may be
needed to perform d2 reductions of entries bi,j modulo bi,i. Thus we could replace H(d, β) by
O(d2β1+ε) for upper triangular inputs. Using the cost of H-LLL for lift-reduction, we can bound
the complexity of Figure 2 by Poly(d) · β2. This is comparable to L2 and H-LLL.

3 Truncating matrix entries

We will now focus on improving the lift-reduction step introduced in the previous section. In this
section we show how to truncate the “remainder” matrix and we give an efficient factorization
for the “quotient” matrices encountered in the process. This way the unimodular transformations
can be found and stored at low cost. In the first part of this section, we show that given any B
reduced and ` ≥ 0, finding U such that σ`BU is reduced can be done by looking at only the most
significant bits of each column of B. In the context of gcd algorithms, this is equivalent to saying
that the quotients can be computed by looking at the most significant bits of the remainders only.
In the gcd case, using only the most significant bits of the remainders allows one to efficiently

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 9

compute the quotients. Unfortunately, this is where the gcd analogy stops as a lift-reduction
transformation U may still have entries that are much larger than the number of bits kept of B.
In particular, if the diagonal coefficients of the R-factor of B are very unbalanced, then Lemma 5
does not prevent some entries of U from being as large as the magnitudes of the entries of B (as
opposed to just the precision kept). The second part of this section is devoted to showing how to
make the bit-size of U and the cost of computing it essentially independent of these magnitudes.
In this framework we can then describe and analyze a Lehmer-like lift-reduction algorithm.

3.1 The most significant bits of B suffice for reducing σ`B

It is a natural strategy to reduce a truncation of B rather than B, but in general it is unclear if
some U which reduces a truncation of B would also reduce B even in a weaker sense. However,
with lift-reduction we can control the size of U which allows us to overcome this problem. In this
section we aim at computing a unimodular U such that σ`BU is reduced, when B is reduced, by
working on a truncation of B. We use the bounds of Lemma 5 on the magnitude of U to show
that a column-wise truncation precision of `+O(d) bits suffices for that purpose.

Lemma 7. Let Ξ1, Ξ2, Ξ3 be valid reduction parameters with Ξ3 > Ξ2. There exists a constant c3
such that the following holds for any ` ≥ 0. Let B ∈ Rd×d be Ξ1-reduced and ∆B be such
that max ‖∆bi‖

‖bi‖ ≤ 2−`−c3·d. If σ`(B+∆B)U is Ξ3-reduced for some U , then σ`BU is Ξ2-reduced.

The proof is given in Appendix 2 p. 19. The above result implies that to find a U such
that σ`BU is reduced, it suffices to find U such that σ`(B′ · E)U is reduced (for a stronger Ξ),
for well chosen matrices B′ and E, outlined as follows.

Definition 2. For B ∈ Zd×d with β = log max ‖bj‖ and precision p, we chose to store the p most
significant bits of B, MSBp(B), as a matrix product B′E or just the pair (B′, E). This pair should
satisfy B′ ∈ Zd×d with p = log max ‖b′j‖, E = diag(2ei−p) with ei ∈ Z such that 2ei−‖bi‖

‖bi‖ ≤ 2d,

and max ‖(bj−b′j ·2ei−p‖
‖bj‖ ≤ 2−p.

3.2 Finding a unimodular U reducing σ`B at low cost

The algorithm TrLiftLLL (a truncated lift-LLL) we propose is an adaptation of the StrengthenLLL
from [19], which aims at strengthening the LLL-reducedness of an already reduced basis, i.e., Ξ2-
reducing a Ξ1-reduced basis with Ξ1 < Ξ2. One can recover a variant of StrengthenLLL by
setting ` = 0 below. We refer the reader to Appendix 3 p. 19 for a complete description of
TrLiftLLL.

Theorem 2. For any valid parameters Ξ1 < Ξ2 and constant c4, there exists a constant c′4 and
an algorithm TrLiftLLL with the following specifications. It takes as inputs ` ≥ 0, B ∈ Zd×d
and E = diag(2ei) with max ‖bi‖ ≤ 2c4(`+d), ei ∈ Z and BE is Ξ1-reduced; It runs in time
O(d2+ε(d+ `)(d+ `+ τ) + d2 log max(1 + |ei|)), where τ = O(d2(`+ d)) is the number of switches
performed during the single call it makes to H-LLL; And it returns two matrices U and D such
that:

1. D = diag(2di) with di ∈ Z satisfying max |ei − di| ≤ c′4(`+ d),
2. U is unimodular and max |ui,j | ≤ 2`+c

′
4·d,

3. D−1UD is unimodular and σ`(BE)(D−1UD) is Ξ2-reduced.

10 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

When setting ` = O(d), we obtain the base case of lift-L̃1, the quasi-linear time recursive
algorithm to be introduced in the next section. The most expensive step of TrLiftLLL is a call
to an LLL-type algorithm, which must satisfy a standard property that we identify hereafter.

When called on a basis matrix B with R-factor R, the L3, L2 and H-LLL algorithms per-
form two types of basis operations: They either subtract to a vector bk an integer combination
of b1, . . . ,bk−1 (translation), or they exchange bk−1 and bk (switches). Translations leave the ri,i’s
unchanged. Switches are never perfomed when the optimal Lovász condition r2i,i ≤ r2i,i+1 +r2i+1,i+1

is satisfied, and thus cannot increase any of the quantities maxj≤i rj,j (for varying i), nor decrease
any of the quantities minj≥i rj,j . This implies that if we have maxi<k ri,i < mini≥k ri,i for some k
at the beginning of the execution, then the computed matrix U will be such that ui,j = 0 for
any (i, j) such that i ≥ k and j < k. We say that a LLL-reducing algorithm satisfies Property (P)
if for any k such that maxi<k ri,i < mini≥k ri,i holds at the beginning of the execution, then it
also holds at the end of the execution.

Property (P) is for instance satisfied by L3 ([16, p. 523]), L2 ([21, Th. 6]) and H-LLL ([20,
Th. 4.3]). We choose H-LLL as this currently provides the best complexity bound, although L̃1

would remain quasi-linear with L3 or L2.
TrLiftLLL will also be used with ` = 0 in the recursive algorithm for strengthening the

reduction parameters. Such refinement is needed after the truncation of bases and transformation
matrices which we will need to ensure that the recursive calls get valid inputs.

3.3 A Lehmer-like lift-LLL algorithm

By combining Lemma 7 and Theorem 2, we obtain a Lehmer-like Lift-LLL algorithm, given in
Figure 3. In the input, we assume the base-case lifting target t divides `. If it is not the case, we
may replace ` by tb`/tc, and add some more lifting at the end.

Inputs: LLL parameters Ξ; a Ξ-reduced matrix B ∈ Zd×d; a lifting target `; a divisor t of `.
Output: A Ξ-reduced basis of σ`B.

1. Let Ξ0, Ξ1 be valid parameters with Ξ0 < Ξ < Ξ1,
c3 as in Le. 7 for “(Ξ1, Ξ2, Ξ3) := (Ξ,Ξ,Ξ1)”,
c1 as in Le. 3 with “(Ξ1, Ξ2) := (Ξ,Ξ0)”,
and c′4 as in Th. 2 with “(Ξ1, Ξ2, c4) := (Ξ0, Ξ1, c3 + 2)”.

2. For k from 1 to `/t do
3. (B′, E) := MSB(t+c3d)(B).
4. (D,U) := TrLiftLLL(B′, E, t).
5. B := σtBD

−1UD.
6. Return B.

Fig. 3. The Lehmer-LiftLLL algorithm.

Theorem 3. Lehmer-LiftLLL is correct. Furthermore, if the input matrix B satisfies max ‖bi‖ ≤
2β, then its bit-complexity is O(d3`(d1+εt+ t−1+ε(`+ β))).

Proof. The correctness is provided by Lemmata 3 and 7 and by Theorem 2. At any moment
throughout the execution, the matrix B is a Ξ-reduced basis of the lattice spanned by an `′-lift
of the input, for some `′ ≤ `. Therefore, by Theorem 1 and Lemma 4, the inequality max ‖bi‖ ≤
αd max ri,i ≤ 2c·(`+β) holds throughout the execution, for some constant c. The cost of Step 3
is O[d2(t+log(`+β))]. The cost of Step 4 is O[d4+εt2 +d2 log(`+β)]. Step 5 is performed by first

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 11

computing σtBD−1, whose entries have bit-sizes O(`+β), and then multiplying by U and finally
by D. This costs O(d3(`+ β)tε) bit operations. The claimed complexity bound can by obtained
by summing over the `/t loop iterations. ut

Note that if ` is sufficiently large with respect to d, then we may choose t = `a for a ∈ (0, 1),
to get a complexity bound that is subquadratic with respect to `. By using Lehmer-LiftLLL
at Step 5 of the algorithm of Figure 2 (with t = `.5), it is possible to obtain an LLL-reducing
algorithm of complexity Poly(d) · β1.5+ε.

4 Quasi-linear algorithm

We now aim at constructing a recursive variant of the Lehmer-LiftLLL algorithm of the previous
section. Because the lift-reducing unimodular transformations will be produced by recursive calls,
we have little control over their structure (as opposed to those produced by TrLiftLLL). Before
describing Lift-L̃1, we thus study lift-reducing unimodular transformations, without considering
how they were computed. In particular, we are interested in how to work on them at low cost.
This study is robust and fully general, and afterwards is used to analyze lift-L̃1.

4.1 Sanitizing unimodular transforms

In the previous section we have seen that working on the most significant bits of the input matrixB
suffices to find a matrix U such that σ`BU is reduced. Furthermore, as shown in Theorem 2, the
unimodular U can be found and stored on few bits. Since the complexity of Theorem 2 is quadratic
in ` we will use it only for small lift-reductions (the leaves of our recursive tree) and repairing
reduction quality (when ` = 0). For large lifts we will use recursive lift-reduction. However, that
means we no longer have a direct application of a well-understood LLL-reducing algorithm which
was what allowed such efficient unimodular transforms to be found. Thus, in this section we show
how any U which reduces σ`B can be transformed into a factored unimodular U ′ which also
reduces σ`B and for which each entry can be stored with only O(`+d) bits. We also explain how
to quickly compute the products of such factored matrices. This analysis can be used as a general
framework for studying lift-reductions.

The following lemmata work because lift-reducing transforms have a special structure which
we gave in Lemma 5. Here we show a class of additive perturbations which, when viewed as
a transformations, are in fact unimodular transformations themselves. Note that these entry-
wise perturbations are stronger than mere truncations since ∆ui,j could be larger than ui,j .
Lemma 8 shows that a sufficiently small perturbation of a unimodular lift-reducing matrix remains
unimodular.

Lemma 8. Let Ξ1, Ξ2 be valid LLL parameters. There exists a contant c7 such that the following
holds for any ` ≥ 0. Let B ∈ Rd×d (with R-factor R) be Ξ1-reduced, and U be unimodular such
that σ`BU (with R-factor R′) is Ξ2-reduced. If ∆U ∈ Zd×d satisfies |∆ui,j | ≤ 2−(`+c7·d) · r

′
j,j

ri,i
for

all i, j, then U +∆U is unimodular.

Proof. Since U is unimodular, the matrix V = U−1 exists and has integer entries. We can thus
write U +∆U = U(I + U−1∆U), and prove the result by showing that U−1∆U is strictly upper
triangular, i.e., that (U−1∆U)i,j = 0 for i ≥ j. We have (U−1∆U)i,j =

∑
k≤d vi,k ·∆uk,j . We now

show that if ∆uk,j 6= 0 and i ≥ j, then we must have vi,k = 0 (for a large enough c7).
The inequality ∆uk,j 6= 0 and the hypothesis on ∆U imply that rk,k

r′j,j
≤ 2−(`+c7·d). Since i ≥ j

and σ`BU is reduced, Theorem 1 implies that rk,k
r′i,i
≤ 2−`+(c−c7)d, for some constant c > 0.

12 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

By using the second part of Lemma 5, we obtain that there exists c′ > 0 such that |vi,k| ≤
2`+c

′·d · rk,k
r′i,i
≤ 2(c+c′−c7)d. As V is integral, setting c7 > c + c′ allows us to ensure that vi,k = 0,

as desired. ut

Lemma 9 shows that a sufficiently small perturbation of a unimodular lift-reducing matrix
remains lift-reducing.

Lemma 9. Let Ξ1, Ξ2, Ξ3 be valid LLL parameters such that Ξ2 > Ξ3. There exists a contant c8
such that the following holds for any ` ≥ 0. Let B ∈ Rd×d (with R-factor R) be Ξ1-reduced,
and U be unimodular such that σ`BU (with R-factor R′) is Ξ2-reduced. If ∆U ∈ Zd×d satisfies
|∆ui,j | ≤ 2−(`+c8·d) · r

′
j,j

ri,i
for all i, j, then σ`B(U +∆U) is Ξ3-reduced.

Proof. We proceed by showing that |σ`B∆U | is column-wise small compared to |σ`BU | and by
applying Lemma 3. We have |∆U | ≤ 2−(`+c8·d)diag(r−1

i,i)Cdiag(r′j,j) by assumption, where ci,j = 1
for all i, j. Since B is Ξ1-reduced, we also have |R| ≤ diag(ri,i)T +θ1Tdiag(rj,j), where T is upper
triangular with ti,j = 1 for all i ≤ j. Then using |R∆U | ≤ |R||∆U | we get

|R∆U | ≤ 2−(`+c8·d)
(

diag(ri,i)Tdiag(r−1
j,j)+θ1T

)
Cdiag(r′j,j).

Since B is Ξ1-reduced, by Theorem 1, we have ri,i ≤ αd1rj,j for all i ≤ j, hence it follows that

|R∆U | ≤ 2−(`+c8·d)(αd1 + θ1)TCdiag(r′j,j).

As a consequence, there exists a constant c > 0 such that for any j:

‖(σ`B∆U)j‖ ≤ 2`‖(B∆U)j‖ = 2`‖(R∆U)j‖ ≤ 2(c−c8)dr′j,j .

We complete the proof by noting that r′j,j ≤ ‖(σ`BU)j‖ and by applying Lemma 3 (which requires
that c8 is set sufficiently large). ut

Lemmata 8 and 9 allow us to design an algorithmically efficient representation for lift-reducing
unimodular transforms.

Theorem 4. Let Ξ1, Ξ2, Ξ3 be valid LLL parameters with Ξ2 > Ξ3. There exist contants c9, c10 >
0 such that the following holds for any ` ≥ 0. Let B ∈ Rd×d be Ξ1-reduced, and U be unimodular
such that σ`BU is Ξ2-reduced. Let di := blog ‖bi‖c for all i. Let D := diag(2di), x := ` + c9 · d,
Û := 2xDUD−1 and U ′ := 2−xD−1bÛcD. We write Clean(U, (di)i, `) := (U ′, D, x). Then U ′ is
unimodular and σ`BU ′ is Ξ3-reduced. Furthermore, the matrix Û satisfies max |ûi,j | ≤ 22`+c10·d.

Proof. We first show that U ′ is integral. If bûi,jc = ûi,j , then u′i,j = ui,j ∈ Z. Otherwise, we
have ûi,j 6∈ Z, and thus x + di − dj ≤ 0. This gives that bûi,jc ∈ Z ⊆ 2x+di−djZ. We conclude
that u′i,j ∈ Z.

Now, consider ∆U = U ′ − U . Since ∆U = 2−xD−1(bÛc − Û)D, we have |∆ui,j | ≤ 2dj−di−x,

for all i, j. Thus by Theorem 1 and Lemma 4, we have |∆ui,j | ≤ 2−x+c·d · r
′
j,j

ri,i
for some constant c.

Applying Lemmata 8 and 9 shows that U ′ is unimodular and σ`BU ′ is Ξ3-reduced (if c9 is chosen
sufficiently large).

By Lemma 5, we have for all i, j:

|ûi,j | = |ui,j |2x+di−dj ≤ 2x+`+c
′d · rj,j

2blog ‖bj‖c
2blog ‖bi‖c

ri,i
,

for some constant c′. Theorem 1 then provides the result. ut

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 13

The above representation of lift-reducing transforms is computationally powerful. Firstly, it
can be efficiently combined with Theorem 2: Applying the process described in Theorem 4 to the
unimodular matrix produced by TrLiftLLL may be performed in O(d2(d+`)+d log max(1+ |ei|))
bit operations, which is negligible comparable to the cost bound of TrLiftLLL. We call TrLiftLLL’
the algorithm resulting from the combination of Theorems 2 and 4. TrLiftLLL’ is to be used as
base case of the recursion process of Lift-L̃1. Secondly, the following result shows how to combine
lift-LLL-reducing unimodular transforms. This is an engine of the recursion process of Lift-L̃1.

Lemma 10. Let U = 2−xD−1U ′D ∈ Zd×d with U ′ ∈ Zd×d and D = diag(2di). Let V =
2−yE−1V ′E ∈ Zd×d with V ′ ∈ Zd×d and E = diag(2ei). Let ` ∈ Z and fi ∈ Z for i ≤ d.
Then it is possible to compute the output (W ′, F, z) of Clean(U · V, (fi)i, `) (see Theorem 4)
from x, y, `, U ′, V ′, (di)i, (ei)i, (fi)i, in time O(dωM(t+ log d)), where

max
i,j

max(|u′i,j |, |v′i,j |) ≤ 2t

and
max
i

max(|di − ei|, |fi − ei|, |`− (x+ y)|) ≤ t.

For short, we will write W := U � V , with W = 2−zF−1W ′F and F = diag(2fi).

Proof. We first compute m = max |di − ei|. We have

UV = 2(−x−y−m) · F−1T · F,

where
T = (FD−1)U ′diag(2di−ei+m)V ′(EF−1).

Then we compute T . We multiply U ′ by diag(2di−ei+m), which is a mere multiplication by a
non-negative power of 2 of each column of U ′. This gives an integral matrix with coefficients of
bit-sizes ≤ 3t. We then multiply the latter by V ′, which costs O(dωM(t+log d)). We multiply the
result from the left by (FD−1) and from the right by EF−1. From T , the matrix Ŵ of Theorem 4
may be computed and rounded within O(d2t) bit operations. ut

It is crucial in the complexity analysis of Lift-L̃1 that the cost of the merging process above
is independent of the magnitude scalings (di, ei and fi).

4.2 Lift-L̃1 algorithm

The Lift-L̃1 algorithm given in Figure 4 relies on two recursive calls, on MSB, truncations, and
on calls to TrLiftLLL’. The latter is used as base case of the recursion, and also to strengthen the
reducedness parameters (to ensure that the recursive calls get valid inputs). When strengthening,
the lifting target is always 0, and we do not specify it explicitly in Figure 4.

Theorem 5. Lift-L̃1 is correct.

Proof. When ` ≤ d the output is correct by Theorems 2 and 4. In Step 2, Theorems 2 and 4
give that BU1 is Ξ2-reduced and that U1 has the desired format. In Step 3, the constant c3 ≥ c1
is chosen so that Lemma 3 applies now and Lemma 7 will apply later in the proof. Thus B1

is Ξ1-reduced and has the correct structure by definition of MSB. Step 4 works (by induction)
because B1 satisfies the input requirements of Lift-L̃1. Thus σ`/2B1UR1 is Ξ1-reduced. Because
of the selection of c3 in Step 3 we know also that σ`/2BU1UR1 is reduced (weaker than Ξ1) using

14 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

Lemma 7. Thus by Theorem 4, the matrix B2 is reduced (weakly) and has an appropriate for-
mat for TrLiftLLL’. By Theorem 2, the matrix σ`/2BU1R1U2 is Ξ3-reduced and by Theorem 4
we have that σ`/2BU1R12 is Ξ2-reduced. By choice of c3 and Lemma 3, we know that the ma-
trix B3 is Ξ1-reduced and satisfies the input requirements of Lift-L̃1. Thus, by recursion, we
know that σ`/2B3UR2 is Ξ1-reduced. By choice of c3 and Lemma 7, the matrix σ`BU1R12UR2 is
weakly reduced. By Theorem 4, the matrix B4 is reduced and satisfies the input requirements of
TrLiftLLL’. Therefore, the matrix σ`BU1R12R2 is Ξ4-reduced. Theorem 4 can be used to ensure
U has the correct format and σ`BU is Ξ1-reduced. ut

Inputs: Valid LLL-parameters Ξ3 > Ξ2 ≥ Ξ4 > Ξ1; a lifting target `;
(B′, (ei)i) such that B = B′diag(2ei) is Ξ1-reduced and max |b′i,j | ≤ 2`+c·d.

Output: (U ′, (di)i, x) such that σ`BU is Ξ1-reduced,
with U = 2−xdiag(2−di)U ′diag(2di) and max |u′i,j | ≤ 22`+2c·d.

1. If ` ≤ d, then use TrLiftLLL’ with lifting target `.
Otherwise:

2. Call TrLiftLLL’ on (B,Ξ2); Let U1 be the output. /∗ Prepare 1st recursive call ∗/
3. B1 := MSB(`/2+c3·d)(B · U1).
4. Call Lift-L1 on B1, with lifting target `/2; /∗ 1st recursive call ∗/

Let UR1 be the output.
5. U1R1 := U1 � UR1 . /∗ Prepare 2nd recursive call ∗/
6. B2 := σ`/2BU1R1 .
7. Call TrLiftLLL’ on (B2, Ξ3). Let U2 be the output.
8. U1R12 := U1R1 � U2.
9. B3 := MSB(`/2+c3·d)(σ`/2BU1R12).
10. Call Lift-L1 on B3, with lifting target `/2; /∗ 2nd recursive call ∗/

Let UR2 be the output.
11. U1R12R2 := U1R12 � UR2 . /∗ Prepare output ∗/
12. B4 := σ`BU1R12R2 .
13. Call TrLiftLLL’ on (B4, Ξ4); Let U3 be the output.
14. U := U1R12R2 � U3; Return U .

Fig. 4. The Lift-eL1 algorithm.

4.3 Complexity analysis

Theorem 6. Lift-L̃1 has bit-complexity

O
(
d3+ε(d+ `+ τ) + dωM(`) log `+ ` log(β + `)

)
,

where τ is the total number of LLL-switches performed by the calls to H-LLL (through TrLiftLLL),
and max |bi,j | ≤ 2β.

Proof. We first bound the total cost of the calls to TrLiftLLL’. There are O(1 + `/d) such
calls, and for any of these the lifting target is O(d). Their contribution to the cost of Lift-L̃1

is therefore O(d3+ε(d+ `+ τ)). Also, the cost of handling the exponents in the diverse diagonal
matrices is O(d(1 + `/d) log(β + `)).

Now, let C(d, `) be the cost of the remaining operations performed by Lift-L̃1, in dimension d
and with lifting target `. If ` ≤ d, then C(d, `) = O(1) (as the cost of TrLiftLLL’ has been put
aside). Assume now that ` > d. The operations to be taken into account include two recursive

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 15

calls (each of them costing C(d, `/2)), and O(1) multiplications of d-dimensional integer matrices
whose coefficients have bit-length O(d+ `). This leads to the inequality C(d, `) ≤ 2C(d, `/2) +K ·
dωM(d+ `), for some absolute constant K. This leads to C(d, `) = O(dωM(d+ `) log(d+ `)). ut

4.4 L̃1 algorithm

The algorithm of Figure 4 is the Knuth-Schönhage-like generalization of the Lehmer-like algorithm
of Figure 3. Now we are ready to analyze a general lattice reduction algorithm by creating a
wrapper for Lift-L̃1.

Algorithm L̃1: We define L̃1 as the algorithm from Figure 2, where Figure 5 is used to
implement lift-reduction.

As we will see Figure 5 uses the truncation process MSB described in Definition 2 and
TrLiftLLL to ensure that L̃1 provides valid inputs to Lift-L̃1. Its function is to process the
input C from Step 5 of Figure 2 (the lift-reduction step) which is a full-precision basis with no
special format into a valid input of Lift-L̃1 which requires a truncated basis B′ · E. Just as in
Lift-L̃1 we use a stronger reduction parameter to compensate for needing a truncation.

Inputs: Valid LLL parameters Ξ1 > Ξ; C Ξ-reduced with βk = log max ‖C‖;
a lifting target `k;

Output: U unimodular, such that σ`CU is Ξ-reduced

1. C′F := MSB`k+c3d(C)
2. Call TrLiftLLL on (C′F,Ξ1). Let D−1U0D be the output.
3. B′ := C′FD−1U0; E := D

4. Call Lift-eL1 on (B′, E,Ξ1). Let U`k be the output.
5. Return U := D−1U0DU`k .

Fig. 5. From Figure 2 to Lift-eL1

This processing before Lift-L̃1 is similar to what goes on inside of Lift-L̃1. The accuracy
follows from Lemma 3, Theorem 2, Theorem 5, and Lemma 7. While the complexity of this pro-
cessing is necessarily less than the bit-complexity of Lift-L̃1,O(d3+ε(d+`k+τk)+dωM(`k) log `k+
`k log(βk + `k)) from Theorem 6, which we can use as Ck from Lemma 6.

We now amortize the costs of all calls to Step 5 using Figure 5. More precisely, we bound
∑

k `k
and

∑
k τk more tightly than using a generic bound for the `k’s (resp. τk’s). For the `k’s, we

have
∑

k `k ≤ log detH ≤ dβ. To handle the τk’s, we adjust the standard LLL energy/potential
analysis to allow for the small perturbations of ri,i’s due to the various truncations.

Lemma 11. Consider the execution of Steps 2–8 of L̃1 (Figure 2). Let H ∈ Zd×d be the initial
Hermite Normal Form. Let Ξ0 = (δ0, η0, θ0) be the strongest set of LLL-parameters used within the
execution. Let B be a basis occuring at any moment of Step 5 during the execution. Let R be the R-
factor of B and nMSB be the number of times MSB has been called so far. We define the energy of
B as E(B,nMSB) := 1

log 1/δ0

(∑
i[(i− 1) · log ri,i] + d2nMSB

)
(using the natural logarithm). Then

the number of LLL-switches performed so far satisfies τ ≤ E(B,nMSB) = O(d · log detH).

Proof. The basis operations modifying the energy function are the LLL switches, the truncations
(and returns from truncations), the adjunctions of a vector at Steps 3–4 of the algorithm from
Figure 2 and the lifts. We show that any of these operations cannot decrease the energy function.

16 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

As Ξ0 is the strongest set of LLL parameters ever considered during the execution of the
algorithm, each LLL switch increases the weighted sum of the ri,i’s (see [16, (1.23)]) and hence E
by at least 1.

We now consider truncations. Each increase of nMSB possibly decreases each ri,i (and again
when we return from the truncation). We see from Lemma 1 and our choices of precisions p that
for any two LLL parameters Ξ ′ < Ξ there exists an ε < 1 such that each ri,i decreases by a
factor no smaller than (1 + ε). Overall, the possible decrease of the weighted sum of the ri,i’s is
counterbalanced by the term “d2nMSB” from the energy function, and hence E cannot decrease.

Now, the act of adjoining a new row in Figure 2 does not change the previous ri,i’s but
increases their weights. Since at the moment of an adjoining all log ri,i’s except possibly the first
one are non-negative and since the weight of the first one is zero, Steps 3–4 cannot decrease E .

Finally, each product by σ` (including those within the calls to TrLiftLLL’) cannot decrease
any ri,i, by Lemma 4.

To conclude, the energy never decreases and any switch increases it by at least 1. This implies
that the number of switches is bounded by the growth E(B,nMSB) − E((hd,d), 0). The initial
value E((hd,d), 0) of the energy is ≥ 0. Also, at the end of the execution, the term

∑
[(i−1) log ri,i]

is O(log detH). As there are 5 calls to MSB in the algorithm from Figure 4 (including those
contained in the calls to TrLiftLLL’), we can bound d2nMSB by 5d2

∑
k(`k/d) = 5 log detH. ut

We obtain our main result by combining Theorems 5 and 6, and Lemma 11 to amortize the
LLL-costs in Lemma 6 (we bound log detH by dβ).

Theorem 7. Given as inputs Ξ and a matrix B ∈ Zd×d with max ‖bj‖ ≤ 2β, the L̃1 algorithm
returns a Ξ-reduced basis of L(B) within O(d5+εβ + dω+1+εβ1+ε) bit operations.

Acknowledgements

Andrew Novocin and Damien Stehlé were partly funded by the LaRedA ANR project. Gilles
Villard was partly funded by the Gecko ANR project and by a CNRS research collaboration
grant to visit the MAGMA computational algebra group of the University of Sydney. Part of this
work was done while Damien Stehlé was hosted by Macquarie University and the University of
Sydney, whose hospitalities are gratefully acknowledged.

References

1. Karim Belabas. A relative van Hoeij algorithm over number fields. Journal of Symbolic Computation,
37(5):641–668, 2004.

2. X.-W. Chang, D. Stehlé, and G. Villard. Perturbation analysis of the QR Factor R in the context of LLL
lattice basis reduction. To appear in Mathematics of Computation. HAL Report ensl-00529425, http://
prunel.ccsd.cnrs.fr/ensl-00529425/en, École Normale Supérieure de Lyon, France, 2010.

3. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of
Cryptology, 10(4):233–260, 1997.

4. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic
Computation, 9(3):251–280, 1990.

5. F. Eisenbrand. Short vectors of planar lattices via continued fractions. Inf. Process. Lett., 79(3):121–126,
2001.

6. F. Eisenbrand. 50 Years of Integer Programming 1958-2008, From the Early Years to the State-of-the-Art,
chapter Integer Programming and Algorithmic Geometry of Numbers. Springer-Verlag, 2009.

7. F. Eisenbrand and G. Rote. Fast reduction of ternary quadratic forms. In Proceedings of the 2001 Cryptography
and Lattices Conference (CALC’01), volume 2146 of Lecture Notes in Computer Science, pages 32–44. Springer-
Verlag, 2001.

8. N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM Publications, 2002.

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 17

9. M. van Hoeij. Factoring polynomials and 0-1 vectors. In Proceedings of the 2001 Cryptography and Lattices
Conference (CALC’01), volume 2146 of Lecture Notes in Computer Science, pages 45–50. Springer-Verlag,
2001.

10. M. van Hoeij and A. Novocin. Gradual sub-lattice reduction and a new complexity for factoring polynomials.
In Proceedings of the 9th Latin American Theoretical Informatics Symposium LATIN 2010, volume 6034 of
Lecture Notes in Computer Science, pages 539–553. Springer-Verlag, 2010.

11. E. Kaltofen. On the complexity of finding short vectors in integer lattices. In Proceedings of EUROCAL’83,
volume 162 of Lecture Notes in Computer Science, pages 236–244. Springer-Verlag, 1983.

12. R. Kannan, A. K. Lenstra, and L. Lovász. Polynomial factorization and nonrandomness of bits of algebraic
and some transcendental numbers. In Proceedings of STOC 1984, pages 191–200. ACM Press, 1984.

13. D. Knuth. The analysis of algorithms. In Actes du Congrès International des Mathématiciens (Nice, 1970),
volume 3, pages 269–274. Gauthiers-Villars, 1971.

14. H. Koy and C. P. Schnorr. Segment LLL-reduction of lattice bases. In Proceedings of the 2001 Cryptography and
Lattices Conference (CALC’01), volume 2146 of Lecture Notes in Computer Science, pages 67–80. Springer-
Verlag, 2001.

15. D. H. Lehmer. Euclid’s algorithm for large numbers. American Mathematical Monthly, 45:227–233, 1938.
16. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathema-

tische Annalen, 261:515–534, 1982.
17. K. S. McCurley and J. L. Hafner. Asymptotically fast triangularization of matrices over rings. SIAM Journal

on Computing, 20:1068–1083, 1991.
18. D. Micciancio and S. Goldwasser. Complexity of lattice problems: a cryptographic perspective. Kluwer Academic

Press, 2002.
19. I. Morel, D. Stehlé, and G. Villard. From an LLL-reduced basis to another. In progress.
20. I. Morel, D. Stehlé, and G. Villard. H-LLL: using Householder inside LLL. In Proceedings of the 2009

international symposium on Symbolic and algebraic computation (ISSAC’09), pages 271–278. ACM Press,
2009.

21. P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM Journal on Computing,
39(3):874–903, 2009.

22. P. Q. Nguyen and B. Vallée (editors). The LLL Algorithm: Survey and Applications. Information Security
and Cryptography. Springer-Verlag, 2009. Published after the LLL25 conference held in Caen in June 2007,
in honour of the 25-th anniversary of the LLL algorithm.

23. A. Novocin. Factoring Univariate Polynomials over the Rationals. PhD thesis, Florida State University, 2008.
24. C. P. Schnorr. A more efficient algorithm for lattice basis reduction. Journal of Algorithms, 9(1):47–62, 1988.
25. C. P. Schnorr. Fast LLL-type lattice reduction. Information and Computation, 204:1–25, 2005.
26. A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica, 1:139–144, 1971.
27. A. Schönhage. Factorization of univariate integer polynomials by Diophantine approximation and improved

basis reduction algorithm. In Proceedings of the 1984 International Colloquium on Automata, Languages and
Programming (ICALP 1984), volume 172 of Lecture Notes in Computer Science, pages 436–447. Springer-
Verlag, 1984.

28. A. Schönhage. Fast reduction and composition of binary quadratic forms. In Proceedings of the 1991 Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC’91), pages 128–133. ACM Press, 1991.

29. D. Stehlé. Floating-point LLL: theoretical and practical aspects. Chapter of [22].
30. A. Storjohann. Faster Algorithms for Integer Lattice Basis Reduction. Technical Report TR 249, ETH, Dpt.

Comp. Sc., Zürich, Switzerland, 1996.
31. A. Storjohann and G. Labahn. Asymptotically fast computation of Hermite normal forms of integer matrices.

In Proceedings of the 1996 international symposium on Symbolic and algebraic computation (ISSAC’96), pages
259–266. ACM Press, 1996.

32. C. K. Yap. Fast unimodular reduction: planar integer lattices. In Proceedings of the 1992 Symposium on the
Foundations of Computer Science (FOCS 1992), pages 437–446. IEEE Computer Society Press, 1992.

Appendix 1 - Recipes used in the proof of Lemma 6

Let us first recall useful recipes for partially linearizing integer matrices and reducing the bit-cost
of their products using asymptotically fast matrix multiplication algorithms. If one is interested
in ω = 3, then applying the naive matrix multiplication algorithm directly (without the lineariza-
tion) already provides the given complexity upper bounds.

18 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

Recipe 1 Let B and U be two d × d integer matrices such that
∑d

i=1 log max1≤j≤d |bi,j | and∑d
j=1 log max1≤i≤d |ui,j | are both bounded by some S. We show how to compute the product B ·U

within O(dωM(S/d+ log d)) bit operations.
We reduce the product B ·U to a product with balanced row and column bit-sizes by splitting

into several rows the rows of B for which log max1≤j≤d |bi,j | ≥ β, with β := dS/de. We also
split into several columns the columns of U for which log max1≤i≤d |ui,j | ≥ β. More precisely, for
1 ≤ i ≤ d, let si = d(log max1≤j≤d |bi,j |)/βe, and, for 1 ≤ j ≤ d, let tj = d(log max1≤i≤d |ui,j |)/βe.
If x and y respectively denote row i of B and column j of U , then they are respectively replaced
by  x

(0)
1 x

(0)
d

...
...

x
(si−1)
1 x

(si−1)
d


and 

y
(0)
1 . . . y

(tj−1)
1

... . . .
...

... . . .
...

y
(0)
d . . . y

(tj−1)
d

 ,

where xk =
∑si−1

l=0 x
(l)
k 2lβ , with log |x(l)

k | ≤ β, and yk =
∑tj−1

l=0 y
(l)
k 2lβ , with log |y(l)

k | ≤ β.
The inner product x · y is then obtained by summing the entries of D1PD2, where P is the
product of the two matrices above (which are sub-matrices of the expansions of B and U),
D1 := diagl<si(2

lβ), and D2 := diagl<tj (2
lβ). Summing along antidiagonals and then summing

the partial sums costs O(sitj(β + log d)). The number of rows of the expansion of B is less than∑
i si ≤ d + d

S

∑
i log max1≤j≤d |bi,j | ≤ 2d. Similarly, the number of columns of the expansion

of U is less than
∑

j tj ≤ d+ d
S

∑
j log max1≤i≤d |ui,j | ≤ 2d. To complete the proof, note that all

the entries of these expanded matrices have bit-lengths O(β). ut

Recipe 2 Let k ≤ log d. Let U be a d× (d/2k) integer matrix whose entries have bit-size ≤ 2kγ,
and B a d×d integer matrix such that

∑d
j=1 log ‖bj‖ ≤ dγ, for some γ. Let C = BU and assume

that the entries of C have bit-size ≤ 2kγ. We show how to compute C within O(dω+εM(γ)) bit
operations, where ε is o(1)

For l ≥ 0 we see that B has at most d/2l columns bj such that log ‖bj‖ ≥ 2lγ. For l > 0,
let Jl denote the set of the indices of the columns of B such that 2lγ ≤ log ‖bj‖ < 2l+1γ. Note
that Jl = ∅ for l > log d. We denote by J0 the set of indices of the columns with log ‖bj‖ < 2γ.
For simplifying the cost bound discussion hereafter we assume that Jl has exactly d/2l elements
(rather than ≤ d/2l). Let also B(l) be the submatrix of B formed by the columns whose indices are
in Jl. Accordingly, let U (l) be the submatrix of U formed by the rows whose indices are in Jl. Then
we may compute C = BU in log d products since (taking a symmetric modulo representation)

C =
∑
l

B(l)U (l) mod 22k+1γ . (1)

For k ≤ l, the matrix B(l) has dimension d × (d/2l), its entries may be taken modulo 22k+1γ

using O((d2/2l)M(2lγ)) hence O(d2+εM(γ)) bit operations. The resulting matrix is seen as the
concatenation of 2l square row blocks of dimension d/2l. The matrix U (l) has d/2l rows and
d/2k ≥ d/2l columns. We may decompose U (l) into 2l−k square column blocks with d/2l columns.

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 19

The product B(l)U (l) in (1) can be done by blocks within O(2l× 2l−k× (d/2l)ω×M(2kγ)) hence
O(dω+εM(γ)) bit operations.

For k > l we proceed as for Recipe 1 with β := 2lγ for expanding U (l) into a matrix with
(d/2k)·(2k−l) columns. Hence B(l) is d×d/2l, and the expansion of U (l) is square of dimension d/2l.
Both have entries of bit size O(2lγ). By decomposing B(l) into 2l square row blocks with d/2l rows,
we can compute the product B(l)U (l) in time O(2l(d/2l)ωM(2lγ+log d)) and hence O(dω+εM(γ))
bit operations. Overall, the cost for computing C using (1) is O(dω+εM(γ)). ut

Recipe 3 Let B, U and C = BU be d × d integer matrices. Assume that there exists s1, . . . , sd
such that log ‖cj‖, and log ‖uj‖ are ≤ sj, and

∑
j log ‖bj‖, and

∑
j sj are ≤ S, for some S. We

show how to compute the product C within O(dω+εM(S/d)) bit operations, where ε is o(1).
We apply to C the column decomposition seen in Recipe 2 for B. For 0 < k ≤ log d, we

let Ik denote the set of the indices of the columns of C such that 2kS/d ≤ log ‖cj‖ < 2k+1S/d.
We denote by I0 the set of indices of the columns with log ‖cj‖ < 2S/d. Let also U (k) be the
submatrix of U formed by the columns whose indices are in Ik. As prior, the cardinality of Ik is
at most d/2k.

To compute C, it suffices to compute the B · U (k)’s, for 0 ≤ k ≤ log d. This can be done
within O(dω+εM(S/d)) bit operations by using Recipe 2. Bounding the number of k’s by O(log d)
allows us to complete the proof. ut

Appendix 2 - Proof of Lemma 7

Lemma 12. Let Ξ1, Ξ2, Ξ3 be valid reduction parameters with Ξ3 > Ξ2. There exists a con-
stant c2 such that the following holds for any ` ≥ 0. Let B ∈ Rd×d be Ξ1-reduced, U such
that σ`BU is Ξ3-reduced and ∆B with max ‖∆bi‖

‖bi‖ ≤ 2−`−c2·d. Then σ`(B +∆B)U is Ξ2-reduced.

Proof. By Lemma 5, there exists a constant c such that for all i, j we have |uj,i| ≤ 2c·d
r′i,i
rj,j

,
where R (resp. R′) is the R-factor of B (resp. C = σ`BU). Let C + ∆C = σ`(B + ∆B)U . The
norm of ∆ci =

∑
j uj,iσ`∆bj is ≤

∑
j 2−p+`+c·d

r′i,i
rj,j
‖bj‖ ≤ dαd12−p+`+c·dr′i,i, by Theorem 1 and

with p such that max ‖∆bi‖
‖bi‖ ≤ 2−p. Furthermore, we have ‖ci‖ ≥ e′i,i. This gives max ‖∆ci‖

‖ci‖ ≤
dαd12−p+`+c·d. By Lemma 3 (applied to C and C +∆C), there exists c′ such that if p ≥ `+ c′ · d,
then C +∆C is Ξ2-reduced. ut

By combining Lemmata 12 and 3, we have that a reducing U can be found by working on a
truncation of B.

Lemma 7. Let Ξ1, Ξ2, Ξ3 be valid reduction parameters with Ξ3 > Ξ2. There exists a constant c3
such that the following holds for any ` ≥ 0. Let B ∈ Rd×d be Ξ1-reduced and ∆B be such
that max ‖∆bi‖

‖bi‖ ≤ 2−`−c3·d. If σ`(B+∆B)U is Ξ3-reduced for some U , then σ`BU is Ξ2-reduced.

Proof. Let Ξ0 < Ξ1 be a valid set of reduction parameters. By Lemma 3, there exists a constant c
such that if max ‖∆bi‖

‖bi‖ ≤ 2−c·d, then B + ∆B is non-singular and Ξ0-reduced. We conclude by
using Lemma 12. ut

Appendix 3 - Proof of Theorem 2 and description of Algorithm TrLiftLLL

Theorem 2. For any valid parameters Ξ1 < Ξ2 and constant c4, there exists a constant c′4
and an algorithm TrLiftLLL with the following specifications. It takes as inputs ` ≥ 0, B ∈

20 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

Zd×d and E = diag(2ei) with max ‖bi‖ ≤ 2c4(`+d), ei ∈ Z and BE is Ξ1-reduced; It runs in
time O(d2+ε(d + `)(d + ` + τ) + d2 log max(1 + |ei|)), where τ = O(d2(` + d)) is the number
of switches performed during the single call it makes to H-LLL; And it returns two matrices U
and D such that:

1. D = diag(2di) with di ∈ Z satisfying max |ei − di| ≤ c′4(`+ d),
2. U is unimodular and max |ui,j | ≤ 2`+c

′
4·d,

3. D−1UD is unimodular and σ`(BE)(D−1UD) is Ξ2-reduced.

The possible unbalancedness of the columns of BE (due to E), prevents us from applying
H-LLL directly on C = σ`BE. Indeed, even if we were dividing the full matrix by a large common
power of 2, the resulting basis may have a bit-size that is arbitrarily large compared to d and `. Our
goal is to call H-LLL on a integral matrix whose entries have bit-sizes O(d+`). To circumvent the
possible unbalanced-ness of the columns of C, we find blocks of consecutive vectors whose r(C)

i,i ’s
have similar magnitudes, where R(C) is the R-factor of C, and we apply a column-scaling to
re-balance C before calling H-LLL.

Finding blocks. The definition of block is motivated by Property (P) above. To determine mean-
ingful blocks, the first step is to find good approximations to the r(C)

i,i ’s and r(BE)
i,i ’s (where R(BE)

is the R-factor of BE). Computing the R-factor of a non-singular matrix is most often done by
applying Householder’s algorithm (see [8, Ch. 19]). The following lemma is a rigorous and explicit
variant of standard backward stability results.

Lemma 13 ([2, Se. 6]). Let p ≥ 0 and B ∈ Rd×d be non-singular with R-factor R. Let R̂ be
the R-factor computed by Householder’s algorithm with floating-point precision p. If c52−p < 1
with c5 = 80d2, then there exists an orthogonal Q̂ such that Q̂R̂ = B + ∆B with max ‖∆bi‖

‖bi‖ ≤
c52−p.

By Lemma 2, we have that cond(R(BE)) ≤ ρ+1
ρ−1ρ

d. Since R(BE) = R(B) · E, with R(B) the
R-factor of B, we have cond(R(B)) ≤ ρ+1

ρ−1ρ
d (because cond(·) is invariant under column scaling).

Now, by Lemmata 1 and 13, for any c there exists c′ such that Householder’s algorithm with

precision p = c′d allows us to find R̂(B) with max ‖br(B)
i −r

(B)
i ‖

‖r(B)
i ‖

≤ 2−cd. By defining R̂(BE) by R̂(B)·E,

we have max ‖br(BE)
i −r

(BE)
i ‖

‖r(BE)
i ‖

≤ 2−cd. The latter can be made ≤ 1
100 .

We now show that we can also compute approximations to the r(C)
i,i ’s. Let B = Q(B)R(B) and

σ`B = Q(σ`B)R(σ`B) be the QR factorizations of B and σ`B respectively. We have:

cond(R(σ`B)) =
∥∥∥|R(σ`B)||(R(σ`B))−1|

∥∥∥
=
∥∥∥|(Q(σ`B))tσ`Q

(B)R(B)||(R(B))−1(Q(B))tσ−1
` Q(σ`B)|

∥∥∥
≤
∥∥∥|(Q(σ`B))t|σ`|Q(B)||R(B)||(R(B))−1||(Q(B))t|σ−1

` |Q
(σ`B)|

∥∥∥
≤ d22`cond(R(B)) = d22`cond(R(B)E).

Since R(B)E is the R-factor of BE which is reduced, Lemma 2 gives that cond(R(σ`B)) ≤
d2 ρ+1

ρ−1ρ
d2`. Now, Lemmata 1 and 13 imply that for any c there exists c′ such that House-

holder’s algorithm with precision p = 2`+ c′d allows us to find R̂(σ`B) with max ‖br(σ`B)

i −r
(σ`B)

i ‖
‖r(σ`B)

i ‖
≤

Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 21

2−`−cd. Since ‖r(σ`B)
i ‖ ≤ 2`‖r(B)

i ‖ ≤ 2`αdr(B)
i,i ≤ 2`αdr(σ`B)

i,i (using Theorem 1 and Lemma 4),

we obtain that Householder’s algorithm with precision 2` + O(d) provides some r̂(σ`B)
i,i ’s such

that max
|br(σ`B)

i,i −r(σ`B)

i,i |

r
(σ`B)

i,i

≤ 1
100 . Since R

(C) = R(σ`B)E, we have max
|br(C)
i,i −r

(C)
i,i |

r
(C)
i,i

≤ 1
100 , with R̂

(C) =

R̂(σ`B)E. Furthermore, as the run-time of Householder’s algorithm in precision p is O(d3p1+ε),
the computation of these r̂(C)

i,i ’s costs O(d3(`+ d)1+ε).
We define the blocks of vectors of C as follows: The first block starts with ci1 = c1 and stops

with ci2−1 where i2 is the smallest i such that minj≥i r̂
(C)
j,j > ν ·maxj<i r̂

(C)
j,j (if i2 = d + 1, then

the process ends); The kth block starts with cik and stops with cik+1−1 where ik+1 is the smallest
index i > ik such that minj≥i r̂

(C)
j,j > ν · maxj<i r̂

(C)
j,j . The purpose of the constant ν ≥ 4, to be

set later, is to handle the inaccuracy of R̂(C) and to ensure that the matrix CD−1UD eventually
obtained by TrLiftLLL will be size-reduced.

Let Ik = [ik, ik+1). Since ν ≥ 4, Property (P) implies that if we were to call H-LLL on C, the
unimodular U that we would obtain would satisfy ui,j = 0 if i ∈ Ik1 and j ∈ Ik2 with k1 < k2, i.e.,
U would be (Ik)-block upper triangular. Any diagonal block-submatrix of U would be unimodular.
Computing the Ik’s from the r̂j,j ’s may be done in time O(d2(d+ `+ log max(1 + |ei|))).

By construction of the blocks, the amplitude of r(C)
i,i ’s within a block is bounded.

Lemma 14. We use the same notations as above. We let (`i = r
(C)
i,i /r

(BE)
i,i . There exists a con-

stant c6 (depending on Ξ1 and ν only) such that for any k, we have
maxi∈Ik r

(C)
i,i

mini∈Ik r
(C)
i,i

≤ 2c6|Ik|·maxi∈Ik `i.

Proof. Let i, j ∈ Ik. We are to compute an upper bound for
r
(C)
j,j

r
(C)
i,i

. If j ≤ i, the reducedness of BE

implies that
r
(C)
j,j

`j
≤ αi−j r

(C)
i,i

`i
, for α as in Theorem 1. The fact that `i ≥ 1 (see Lemma 4) provides

the result. Assume now that j > i. If r(C)
i,i = maxt≥i r

(C)
t,t , then the bound holds. Otherwise,

by definition of the blocks, there exists i′ > i in Ik such that r(C)
i′,i′ ≤ 2ν · r(C)

i,i (the factor 2

takes the inaccuracy of R̂ into account). By induction, it can be shown that r(C)
i′′,i′′ ≤ (2ν)|Ik|r(C)

i,i ,

with i′′ = ik+1 − 1. We conclude that
r
(C)
j,j

r
(C)
i,i

≤ (2ν)|Ik|
r
(C)
j,j

r
(C)

i′′,i′′
≤ (2να)|Ik|`j , by using the first part of

the proof (since j ≤ i′′). ut

Re-balancing the columns of C. The blocks allow us to define the diagonal matrix D

of Theorem 2. We define the gap between two blocks Ik and Ik+1 to be gk =
minj∈Ik+1

br(BE)
j,j

maxj∈Ik br(C)
j,j

.

We define D = diag(2di) such that the block structure is preserved, but the gaps get shrunk:
For i ∈ Ik, we set di = e1 +

∑
k′<kdlog2 gk′/

√
νe.

We prove several facts about this scaling.

(i) The matrix B′ = BED−1 is Ξ1-reduced, because r
(C)
j,j ≥ r

(BE)
j,j for all j.

(ii) The matrix C ′ = CD−1 with R-factor R(C′) = R(C)D−1 admits the same block-structure a C:
For any k, we have minj∈Ik+1

r
(C′)
j,j ≥ ν ′ ·maxj∈Ik r

(C′)
j,j , with ν ′ =

√
ν/2 ≥ 1.

(iii) The di’s satisfy Property 1 of Theorem 2: Thanks to the reducedness of BE, the size condition
on B, and Lemma 4, each ei is within O(`+ d) of log r(C)

i,i . Thanks to Lemmata 14 and 4 (in
particular the fact that the product of all `j ’s is 2`), the same holds for the di’s.

22 Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard

LLL-reducing. We now call H-LLL on input matrix C ′, with LLL-parameters Ξ > Ξ2, and
let C(2) be the output matrix. Thanks to (iii), the matrix C ′ belongs to 2−c(`+d)Zd×d for some
constant c, and each c′i,j may be stored on O(` + d) bits. I.e., the matrix C ′ is balanced. As a
consequence, the call to H-LLL costs O(d2+ε(d+ `+ τ)(d+ `)) bit operations (see [20, Th. 4.4]),
where τ be the number of switches performed.

Let U be the corresponding unimodular transform (which can be recovered from C ′ and C(2) by
a matrix inversion, costing O(d3(d+`)1+ε)). Lemma 5 and the fact that B′ is Ξ1-reduced (by (i))
ensure that Property 2 of Theorem 2 is satisfied. Also, since C ′ follows the block-structure defined
by the Ik’s (by (ii)), Property (P) may be used to assert that U is (Ik)k-block upper triangular
and that its diagonal blocks are unimodular. The coefficients of D are non-decreasing, and they
are constant within any Ik. This ensures that D−1UD is integral and that its diagonal blocks are
exactly those of U , and thus that D−1UD is unimodular.

Let C(3) = σ`BED
−1UD = C(2)D. It remains to show that C(3) is Ξ2-reduced. Let R(2) (resp.

R(3)) be the R-factor of C(2) (resp. C(3)). Let Ξ = (δ, η, θ) and Ξ2 = (δ2, η2, θ2). If i and j belong

to the same Ik, then |r
(3)
i,j | ≤ ηr

(3)
i,i +θr

(3)
j,j , because this holds for R

(2) and
r
(3)
i,j

r
(2)
i,j

=
r
(3)
i,i

r
(2)
i,i

=
r
(3)
j,j

r
(2)
j,j

= 2dik .

Since η < η2 and θ < θ2, the size-reduction condition for (i, j) is satisfied. Similarly, the Lovász
conditions are satisfied inside the Ik’s. They are also satisfied for any i = ik − 1, since c(2)

ik
is

multiplied by 2dik ≥ 2dik−1 . It remains to check the size-reduction conditions for (i, j) with i ∈ Ik,
j ∈ Ik′ and k′ > k. By reducedness of C(2), we have |r(2)

i,j | ≤ ηr
(2)
i,i + θr

(2)
j,j . Since it was the case

for R′, by Property (P), we have that r(2)
i,i ≤

1
ν′ r

(2)
j,j (with ν ′ =

√
ν/2), and thus |r(2)

i,j | ≤ (θ+ 1
ν′)r

(2)
j,j .

This gives |r(3)
i,j | ≤ (θ + 1

ν′)r
(3)
j,j . In order to ensure size-reducedness, it thus suffices to choose ν

such that θ + 1
ν′ ≤ θ2. ut

