Andrew Novocin
email: andrew.novocin@ens-lyon.fr

Damien Stehlé
email: damien.stehle@ens-lyon.fr

Gilles Villard
email: gilles.villard@ens-lyon.fr

An LLL-Reduction Algorithm with Quasi-linear Time Complexity 1

We devise an algorithm, e L 1 , with the following specifications: It takes as input an arbitrary basis B = (bi)i ∈ Z d×d of a Euclidean lattice L; It computes a basis of L which is reduced for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time O(d 5+ε β + d ω+1+ε β 1+ε) where β = log max bi (for any ε > 0 and ω is a valid exponent for matrix multiplication). This is the first LLL-reducing algorithm with a time complexity that is quasi-linear in β and polynomial in d. The backbone structure of e L 1 is able to mimic the Knuth-Schönhage fast gcd algorithm thanks to a combination of cutting-edge ingredients. First the bit-size of our lattice bases can be decreased via truncations whose validity are backed by recent numerical stability results on the QR matrix factorization. Also we establish a new framework for analyzing unimodular transformation matrices which reduce shifts of reduced bases, this includes bit-size control and new perturbation tools. We illustrate the power of this framework by generating a family of reduction algorithms.

Introduction

We present the first lattice reduction algorithm which has complexity both quasi-linear in the bit-length of the entries and polynomial time overall for an input basis B = (b i) i ∈ Z d×d . This is the first progress on quasi-linear lattice reduction in nearly 10 years, improving Schönhage [START_REF] Schönhage | Fast reduction and composition of binary quadratic forms[END_REF], Yap [START_REF] Yap | Fast unimodular reduction: planar integer lattices[END_REF], and Eisenbrand and Rote [START_REF] Eisenbrand | Fast reduction of ternary quadratic forms[END_REF] whose algorithm is exponential in d. Our result can be seen as a generalization of the Knuth-Schönhage quasi-linear GCD [START_REF] Knuth | The analysis of algorithms[END_REF][START_REF] Schönhage | Schnelle Berechnung von Kettenbruchentwicklungen[END_REF] from integers to matrices. For solving the matrix case difficulties which relate to multi-dimensionality we combine several new main ingredients. We establish a theoretical framework for analyzing and designing general lattice reduction algorithms. In particular we discover an underlying structure on any transformation matrix which reduces shifts of reduced lattices; this new structure reveals some of the inefficiencies of traditional lattice reduction algorithms. The multi-dimensional difficulty also leads us to establish new perturbation analysis results for mastering the complexity bounds. The Knuth-Schönhage scalar approach essentially relies on truncations of the Euclidean remainders [START_REF] Knuth | The analysis of algorithms[END_REF][START_REF] Schönhage | Schnelle Berechnung von Kettenbruchentwicklungen[END_REF] , while the matrix case requires truncating both the "remainder" and "quotient" matrices. We can use our theoretical framework to propose a family of new reduction algorithms, which includes a Lehmer-type sub-quadratic algorithm in addition to L 1 .

In 1982, Lenstra, Lenstra and Lovász devised an algorithm, L 3 , that computes reduced bases of integral Euclidean lattices (i.e., subgroups of a Z d) in polynomial time [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. This typically allows one to solve approximate variants of computationally hard problems such as the Shortest Vector, Closest Vector, and the Shortest Independent Vectors problems (see [START_REF] Micciancio | Complexity of lattice problems: a cryptographic perspective[END_REF]). L 3 has since proven useful in dozens of applications in a wide range including cryptanalysis, computer algebra, communications theory, combinatorial optimization, algorithmic number theory, etc (see [START_REF]The LLL Algorithm: Survey and Applications. Information Security and Cryptography[END_REF][START_REF] Eisenbrand | 50 Years of Integer Programming 1958-2008[END_REF] for two recent surveys).

In [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF], Lenstra, Lenstra and Lovász bounded the bit-complexity of L 3 by O(d 5+ε β 2+ε) when the input basis B = (b i) i ∈ Z d×d satisfies max b i ≤ 2 β . For the sake of simplicity, we will only consider full-rank lattices. The current best algorithm for integer multiplication is Fürer's, which allows one to multiply two k-bit long integers in time M(k) = O(k(log k)2 log * k). The analysis of L 3 was quickly refined by Kaltofen [START_REF] Kaltofen | On the complexity of finding short vectors in integer lattices[END_REF], who showed a O(d 5 β 2 (d + β) ε) complexity bound. Schnorr [START_REF] Schnorr | A more efficient algorithm for lattice basis reduction[END_REF] later proposed an algorithm of bit-complexity O(d 4 β(d + β) 1+ε), using approximate computations for internal Gram-Schmidt orthogonalizations. Some works have since focused on improving the complexity bounds with respect to the dimension d, including [START_REF] Schönhage | Factorization of univariate integer polynomials by Diophantine approximation and improved basis reduction algorithm[END_REF][START_REF] Storjohann | Faster Algorithms for Integer Lattice Basis Reduction[END_REF][START_REF] Koy | Segment LLL-reduction of lattice bases[END_REF][START_REF] Schnorr | Fast LLL-type lattice reduction[END_REF], but they have not lowered the cost with respect to β (for fixed d). More recently, Nguyen and Stehlé devised L 2 [START_REF] Nguyen | An LLL algorithm with quadratic complexity[END_REF], a variant of L 3 with complexity O(d 4+ε β(d + β)). The latter bound is quadratic with respect to β (even with naive integer multiplication), which led to the name L 2 . The same complexity bound was also obtained in [START_REF] Morel | H-LLL: using Householder inside LLL[END_REF] for a different algorithm, H-LLL, but with a simpler complexity analysis.

As a broad approximation, L 3 , L 2 and H-LLL are generalizations of Euclid's greatest common divisor algorithm. The successive bases computed during the execution play the role of Euclid's remainders, and the elementary matrix operations performed on the bases play the role of Euclid's quotients. L 3 may be interpreted in such a framework. It is slow because it computes its "quotients" using all the bits from the "remainders" rather than the most significant bits: The cost of computing one Euclidean division in an L 3 way is O(β 1+ε), leading to an overall O(β 2+ε) bound for Euclid's algorithm. Lehmer [START_REF] Lehmer | Euclid's algorithm for large numbers[END_REF] proposed an acceleration of Euclid's algorithm by the means of truncations. Since the most significant bits of the remainders provide the first Ω() bits of the sequence of quotients, one may: Truncate the remainders to precision ; Compute the sequence of quotients for the truncated remainders; Store the first Ω() bits of the quotients into an Ω()-bit matrix; Apply the latter to the input remainders, which are shortened by Ω() bits; And iterate. The cost gain stems from the decrease of the bit-lengths of the computed remainders. Choosing ≈ √ β leads to a complexity bound of O(β 3/2+ε). In the early 70's, Knuth [START_REF] Knuth | The analysis of algorithms[END_REF] and Schönhage [START_REF] Schönhage | Schnelle Berechnung von Kettenbruchentwicklungen[END_REF] independently observed that using Lehmer's idea recursively leads to a gcd algorithm with complexity bound O(β 1+ε). The above approach for the computation of gcds has been successfully adapted to two-dimensional lattices [START_REF] Yap | Fast unimodular reduction: planar integer lattices[END_REF][START_REF] Schönhage | Fast reduction and composition of binary quadratic forms[END_REF][START_REF] Eisenbrand | Short vectors of planar lattices via continued fractions[END_REF], and the resulting algorithm was then used in [START_REF] Eisenbrand | Fast reduction of ternary quadratic forms[END_REF] to reduce lattices in arbitrary dimensions in quasi-linear time. Unfortunately, the best known cost bound for the latter is O(β 1+ε (log β) d-1) for fixed d.

Our result. We adapt the Lehmer-Knuth-Schönhage gcd framework to the case of LLL-reduction. L 1 takes as input a non-singular B ∈ Z d×d ; terminates within O(d 5+ε β + d ω+1+ε β 1+ε) bit operations, where β = log max b i ; and returns a basis of the lattice L(B) spanned by B which is LLL-reduced in the sense of Definition 1 given hereafter. (L 3 reduces bases for Ξ = (3/4, 1/2, 0).) The time bound is obtained via an algorithm that can multiply two d × d matrices in O(d ω) scalar operations. (We can set ω ≈ 2.376 [START_REF] Coppersmith | Matrix multiplication via arithmetic progressions[END_REF].) Our complexity improvement is particularly relevant for applications of LLL reduction where β is large. These include the recognition of algebraic numbers [START_REF] Kannan | Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers[END_REF] and Coppersmith's method for finding the small roots of polynomials [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF].

Definition 1 ([2, Def. 5.3]). Let Ξ = (δ, η, θ) with η ∈ (1/2, 1), θ > 0 and δ ∈ (η 2 , 1). Let B ∈ R d×d be non-singular with QR factorization B = Q • R (i.e.
, the unique decomposition of B as a product of an orthogonal matrix and an upper triangular matrix with positive diagonal entries). The matrix B is Ξ-LLL-reduced if:

• for all i < j, we have |r i,j | ≤ ηr i,i + θr j,j (B is size-reduced); • for all i, we have δ • r 2 i,i ≤ r 2 i,i+1 + r 2 i+1,i+1 (B is said to satisfy Lovász' conditions).

Let Ξ i = (δ i , η i , θ i) be valid LLL-parameters for i ∈ {1, 2}. We say that Ξ 1 is stronger than Ξ 2 and write

Ξ 1 > Ξ 2 if δ 1 > δ 2 , η 1 < η 2 and θ 1 < θ 2 .
This modified LLL-reduction is as powerful as the classical one (note that by choosing (δ, η, θ) close to the ideal parameters (1, 1/2, 0), the derived α tends to 2/ √ 3):

Theorem 1 ([2, Th. 5.4]). Let B ∈ R d×d be (δ, η, θ)-LLL-reduced with R-factor R. Let α = ηθ+ √ (1+θ 2)δ-η 2 δ-η 2 . Then, for all i, r i,i ≤ α • r i+1,i+1 and r i,i ≤ b i ≤ α i • r i,i . This implies that b 1 ≤ α d-1 2 | det B| 1/d and α i-d r i,i ≤ λ i ≤ α i r i,i
, where λ i is the ith minimum of the lattice L(B).

L 1 and its analysis rely on two recent lattice reduction techniques (described below), whose contributions can be easily explained in the gcd framework. The efficiency of the fast gcd algorithms [START_REF] Knuth | The analysis of algorithms[END_REF][START_REF] Schönhage | Schnelle Berechnung von Kettenbruchentwicklungen[END_REF] stems from two sources: Performing operations on truncated remainders is meaningful (which allows one to consider remainders with smaller bit-sizes), and the obtained transformations corresponding to the quotients sequence have small bit-sizes (which allows one to transmit at low cost the information obtained on the truncated remainders back to the genuine remainders). We achieve an analogue of the latter by gradually feeding the input to the reduction algorithm, and the former is ensured thanks to the modified notion of LLL-reduction which is resilient to truncations.

The main difficulty in adapting the fast gcd framework lies in the multi-dimensionality of lattice reduction. In particular, the basis vectors may have significantly differing magnitudes. This means that basis truncations must be performed vector-wise. (Column-wise using the matrix setting.) Also, the resulting unimodular transformation matrices (integral with determinant ±1 so that the spanned lattice is preserved) may have large magnitudes, hence need to be truncated for being be stored on few bits.

To solve these dilemmas we focus on reducing bases which are a mere scalar shift from being reduced. We call this process lift-reducing, and it can be used to provide a family of new reduction algorithms. We illustrate in Section 2 that the general lattice reduction problem can be reduced to the problem of lift-reduction. Indeed, the LLL-reduction of B can be implemented as a sequence of lift-reductions by performing a Hermite Normal Form (HNF) computation on B beforehand. Note that there could be other means of seeding the lift-reduction process. Our lift-reductions are a generalization of recent gradual feeding algorithms.

Gradual feeding of the input. Gradual feeding was introduced by Belabas [1], Novocin, and van Hoeij [START_REF] Novocin | Factoring Univariate Polynomials over the Rationals[END_REF][START_REF] Van Hoeij | Gradual sub-lattice reduction and a new complexity for factoring polynomials[END_REF], in the context of specific lattice bases that are encountered while factoring rational polynomials (e.g., with the algorithm from [START_REF] Van Hoeij | Factoring polynomials and 0-1 vectors[END_REF]). Gradual feeding was restricted to reducing specific sub-lattices which avoid the above dimensionality difficulties. We generalize these results to the following. Suppose that we wish to reduce a matrix B with the property that B 0 := σ -k B is reduced for some k and σ is the diagonal matrix diag(2 , 1, . . . , 1). If one runs L 3 on B directly then the structure of B 0 is not being exploited. Instead, the matrix B can be slowly reduced allowing us to control and understand the intermediate transformations: Compute the unimodular transform U 1 (with any reduction algorithm) such that σ B 0 U 1 is reduced and repeat until we have

σ k B 0 U 1 • • • U k = B(U 1 • • • U k).
Each entry of U i and each entry of U 1 • • • U i can be bounded sensitive to the shape of the lattice. Further we will illustrate that the bit-size of any entry of U i can be made O(+ d) (see Theorems 2 and 4).

In addition, control over U gives us the ability to analyze the impact of efficient truncations on lift-reductions.

Truncations of basis matrices. In order to work on as few bits of basis matrices as possible during our lift-reductions, we apply column-wise truncations. A truncation of precision p replaces a matrix B by a truncated matrix B + ∆B such that max ∆b i b i ≤ 2 -p holds for all i, and only the most significant p + O(log d) bits of every column of B + ∆B are allowed to be non-zero. Each entry of B + ∆B is an integer multiplied by some power of 2. (In the notation ∆B, ∆ does not represent anything, i.e., the matrix ∆B is not a product of ∆ and B.) A truncation is an efficiency-motivated column-wise perturbation. The following lemmata explain why we are interested in such perturbations.

Lemma 1 ([2, Se. 2], refined from [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]). Let p > 0, B ∈ R d×d non-singular with R-factor R, and let ∆B with

max ∆b i b i ≤ 2 -p . If cond(R) = |R||R -1 | 2 (using the induced norm) satis- fies c 0 • cond(R) • 2 -p < 1 with c 0 = 8d 3/2 , then B + ∆B is non-singular and its R-factor R + ∆R satisfies max ∆r i r i ≤ c 0 • cond(R) • 2 -p . Lemma 2 ([2, Le. 5.5]). If B ∈ R d×d with R-factor R is (δ, η, θ)-reduced then cond(R) ≤ ρ+1 ρ-1 ρ d , with ρ = (1 + η + θ)α, with α as in Theorem 1.
These results imply that a column-wise truncation of a reduced basis with precision Ω(d) remains reduced. This explains why the parameter θ was introduced in Definition 1, as such a property does not hold if LLL-reduction is restricted to θ = 0 (see [START_REF] Stehlé | Floating-point LLL: theoretical and practical aspects[END_REF]Se. 3.1]).

Lemma 3 ([2, Co. 5.1]). Let Ξ 1 > Ξ 2 be valid reduction parameters. There exists a constant c 1 such that for any Ξ 1 -reduced B ∈ R d×d and any ∆B with max ∆b i b i ≤ 2 -c 1 •d , the matrix B + ∆B is non-singular and Ξ 2 -reduced.

As we will see in Section 3 (see Lemma 7) the latter lemmata will allow us to develop the gradual reduction strategy with truncation, which is to approximate the matrix to be reduced, reduce that approximation, and apply the unimodular transform to the original matrix, and repeat the process.

Lift-L 1 . Our quasi-linear general lattice reduction algorithm, L 1 , is composed of a sequence of calls to a specialized lift-reduction algorithm, Lift-L 1 . Sections 2 and 4.4 show the relationship between general reduction and lift-reduction via HNF.

Inputs: B0 reduced, and target lift . Output: U small such that σ B0U small is reduced.

1. Get U 1,small from pseudo-Lift-e L 1 (truncate(B0), /2). 2. B1 := σ /2 B0U 1,small . 3. Get U from refineReduction(C). 4. Get U 2,small from pseudo-Lift-e L 1 (truncate(B1U), /2). 5. U small :=clean(U 1,small • U • U 2,small). 6. Return U small . Fig. 1. pseudo-Lift-e L 1 .
When we combine lift-reduction (gradual feeding) and truncation we see another difficulty which must be addressed. That is, lift-reducing a truncation of B 0 will not give the same transformation as lift-reducing B 0 directly; likewise any truncation of U weakens our reduction even further. Thus after working with truncations we must apply any transformations to a higher precision lattice and refine the result. In other words, we will need to have a method for strengthening the quality of a weakly reduced basis. Such an algorithm exists in [START_REF] Morel | From an LLL-reduced basis to another[END_REF] and we adapt it to performing lift-reductions in section 3.2. Small lift-reductions with this algorithm also become the leaves of our recursive tree. The Lift-L 1 algorithm in Figure 4 is a rigorous implementation of the pseudo algorithm in Figure 1: Lift-L 1 must refine current matrices more often than this pseudo algorithm to properly handle a specified reduction.

It could be noted that clean is stronger than mere truncation. It can utilize our new understanding of the structure of any lift-reducing U to provide an appropriate transformation which is well structured and efficiently stored.

Comments on the cost of L 1 . The term O(d 5+ε β) stems from a series of β calls to H-LLL [START_REF] Morel | H-LLL: using Householder inside LLL[END_REF] or L 2 [START_REF] Nguyen | An LLL algorithm with quadratic complexity[END_REF] on integral matrices whose entries have bit-lengths O(d). These calls are at the leaves of the tree of the recursive algorithm. An amortized analysis allows us to show that the total number of LLL switches performed summed over all calls is O(d 2 β) (see Lemma 11). We recall that known LLL reduction algorithms perform two types of vector operations: Either translations or switches. The number of switches performed is a key factor of the complexity bounds. The H-LLL component of the cost of L 1 could be lowered by using faster LLL-reducing algorithms than H-LLL (with respect to d), but for our amortization to hold, they have to satisfy a standard property (see Section 3.2). The term O(d ω+1+ε β 1+ε) derives from both the HNF computation mentioned above and a series of product trees of balanced matrix multiplications whose overall product has bitlength O(dβ). Furthermore, the precise cost dependence of L 1 in β is Poly(d)•M(β) log β. We also remark that the cost can be proven to be O(

d 4+ε log | det B|+d 5+ε +d ω (log | det B|) 1+ε)+H(d, β),
where H(d, β) denotes the cost of computing the Hermite normal form. Finally, we may note that if the size-reduction parameter θ is not considered as a constant, then a factor Poly(log(1/θ)) is involved in the cost of the leaf calls.

Road-map. We construct L 1 in several generalization steps which, in the gcd framework, respectively correspond to Euclid's algorithm (Section 2), Lehmer's inclusion of truncations in Euclid's algorithm (Section 3) and the Knuth-Schönhage recursive generalization of Lehmer's algorithm (Section 4).

Lift-Reduction

In order to enable the adaptation of the gcd framework to lattice reduction, we introduce a new type of reduction which behaves more predictively and regularly. In this new framework, called lift-reduction, we are given a reduced matrix B and a lifting target ≥ 0, and we aim at computing a unimodular U such that σ BU is reduced (with σ = diag(2 , 1, . . . , 1)). Liftreduction can naturally be performed using any general purpose reduction algorithm, however we will design fast algorithms specific to lift-reduction in Sections 3 and 4. Lifting a lattice basis has a predictable impact on the r i,i 's and the successive minima.

. If R (resp. R) is the R-factor of B (resp. B = σ B), then r i,i ≥ r i,i for all i and r i,i = 2 r i,i . Furthermore, if (λ i) i (resp. (λ i) i) are the successive minima of L = L(B) (resp. L = L(B)), then λ i ≤ λ i ≤ 2 λ i for all i.
Proof. The first statement is proven in [START_REF] Van Hoeij | Gradual sub-lattice reduction and a new complexity for factoring polynomials[END_REF]Le. 4]. For the second one, notice that

r i,i = | det B | = 2 | det B| = 2
r i,i . We now prove the third statement. Let (v i) i and (v i) i be linearly independent vectors in L and L respectively with v i = λ i and v i = λ i for all i. For any i, we define S i = {σ v j , j ≤ i} and S i = {σ -1 v j , j ≤ i}. These are linearly independent sets in L and L respectively. Then for any i we have

λ i ≤ max • (S i) ≤ λ i ≤ max • (S i) ≤ 2 λ i .
We can now bound the entries of any matrix which performs lift-reduction. Lemma 5. Let Ξ 1 , Ξ 2 be valid parameters and α 1 and α 2 as in Theorem 1. Let ≥ 0, B ∈ R d×d be Ξ 1 -reduced and

U such that C = σ BU is Ξ 2 -reduced. Letting ζ 1 = (1 + η 1 + θ 1)α 1 α 2 , we have: ∀i, j : |u i,j | ≤ 4d 3 ζ d 1 • r j,j r i,i ≤ 2 +2 d 3 ζ 2d 1 • r j,j r i,i , where R (resp. R) is the R-factor of B (resp. C). In addition, if V = U -1 and ζ 2 = (1 + η 2 + θ 2)α 2 α 1 : ∀i, j : |v j,i | ≤ 2 +2 d 3 ζ d 2 • r i,i r j,j ≤ 2 +2 d 3 ζ 2d 2 • r i,i r j,j . Proof. Let B = QR, C = Q R be the QR-factorizations of B and C. Then U = R -1 Q t σ -1 Q R = diag(r -1 i,i) R-1 Q t σ -1 Q R diag(r j,j), with R = R • diag(1/r i,i) and R = R • diag(1/r j,j). From the proof of [2, Le. 5.5], we know that | R-1 | ≤ 2((1 + η 1 + θ 1)α 1) d T , where t i,j = 1 if i ≤ j and t i,j = 0 otherwise. By Theorem 1, we have | R | ≤ (η 2 α d-1 2 +θ 2)T ≤ 2α d 2 T (using θ 2 ≤ α 2 and η 2 ≤ 1)
. Finally, we have |Q|, |Q | ≤ M , where m i,j = 1 for all i, j. Using the triangular inequality, we obtain:

|U | ≤ 4ζ d diag(r -1 i,i)T M 2 T diag(r j,j) ≤ 4d 3 ζ d diag(r -1 i,i)M diag(r j,j).
Now, by Theorem 1 and Lemma 4, we have r j,j ≤ α d-j 2 λ j ≤ 2 α d-j 2 λ j ≤ 2 α j 1 α d-j 2 r j,j , which completes the proof of the first statement.

For the second statement note that

V = diag(r -1 i,i) R -1 Q t σ Q Rdiag(r j,j)
is similar to the expression for U in the proof of the first statement, except that σ can increase the innermost product by a factor 2 .

LLL-reduction as a sequence of lift-reductions. In the remainder of this section we illustrate that LLL-reduction can be achieved with an efficient sequence of lift-reductions. Lift-reduction is specialized to reducing a scalar-shift/lift of an already reduced basis. In Figure 2 we create reduced bases (of distinct lattices from the input lattice) which we use to progressively create a reduced basis for the input lattice. Here we use an HNF triangularization and scalar shifts to find suitable reduced lattice bases. We analyze the cost and accuracy of Figure 2 using a generic lift-reduction algorithm. The remainder of the paper can then focus on specialized lift-reduction algorithms which each use Figure 2 to achieve generic reduction. We note that other wrappers of lift-reduction are possible.

Recall that the HNF of a (full-rank) lattice L ⊆ Z d is the unique upper triangular basis H of L such that -h i,i /2 ≤ h i,j < h i,i /2 for any i < j and h i,i > 0 for any i. Using [START_REF] Mccurley | Asymptotically fast triangularization of matrices over rings[END_REF][START_REF] Storjohann | Asymptotically fast computation of Hermite normal forms of integer matrices[END_REF], it can be computed in time O(d ω+1+ε β 1+ε), where the input matrix

B ∈ Z d×d satisfies max b i ≤ 2 β .
Let H be the HNF of L(B). At the end of Step 1, the matrix B = H is upper triangular, b i,i = | det H| ≤ 2 dβ , and the 1×1 bottom rightmost sub-matrix of H is trivially Ξ-reduced.

In each iteration we Ξ-reduce a lower-right sub-matrix of B via lift-reduction (increasing the dimension with each iteration). This is done by augmenting the previous Ξ-reduced sub-matrix by a scaling down of the next row (such that the new values are tiny). This creates a C which is reduced and such that a lift-reduction of C will be a complete Ξ-reduction of the next largest sub-matrix of B. The column operations of the lift-reduction are then applied to rest of B with the triangular structure allowing us to reduce each remaining row modulo b i,i . From a cost point of view, it is worth noting that the sum of the lifts k is O(log | det H|) = O(dβ). Proof. We first prove the correctness of the algorithm. We let U H be the unimodular transformation such that H = BU H . For k < d, we let U k be the (d -k + 1) × (d -k + 1) unimodular transformation that reduces σ k C at Step 5 and U k be the unimodular transformation that reduces rows

Inputs: LLL parameters Ξ; a non-singular B ∈ Z d×d . Output: A Ξ-reduced basis of L(B). 1. B := HNF(B). 2. For k from d -1 down to 1 do 3. Let C be the bottom-right (d -k + 1)-dimensional submatrix of B. 4. k := log 2 (b k,k) , C := σ -1 k C. 5. Lift-reduction: Find U unimodular such that σ k CU is Ξ-reduced. 6. Let U be the block-diagonal matrix diag(I, U). 7. Compute B := B • U , reducing row i symmetrically modulo bi,i for i < k. 8. Return B.
1 ≤ i < k at Step 7. With input B the algorithm returns B • U H • diag(I, U d-1) • U d-1 . . . • diag(I, U 2) • U 2 • U 1 . Since B is
multiplied by a product of unimodular matrices, the output matrix is a basis of the lattice spanned by the columns of B.

We show by induction on k from d down to 1 that at the end of the (d -k)-th loop iteration, the bottom-right (d -k + 1)-dimensional submatrix of the current B is Ξ-reduced. The statement is valid for k = d, as a non-zero matrix in dimension 1 is always reduced, and instanciating the statement with k = 1 ensures that the matrix resturned by the algorithm is Ξ-reduced. The non-trivial ingredient of the proof of the statement is to show that for k < d, the input of the lift-reduction of Step 5 is valid, i.e., that at the beginning of Step 5 the matrix

C is Ξ-reduced. Let R be the R-factor of C. Let C be the bottom-right (d -k) × (d -k) submatrix of C.
By induction, we know that C is Ξ-reduced. It thus remains to show that the first row of R satisfies the size-reducedness condition, and that Lovász' condition between the first two rows is satisfied. We have r 1,j = h k,k+j-1 /2 k , for j ≤ d -k + 1, thus ensuring the size-reducedness condition. Furthermore, by the shape of the unimodular transformations applied so far, we know that C is a basis of the lattice L generated by the columns of the bottom-right (d -k)-dimensional submatrix of H, which has first minimum λ 1 (L) ≥ min i>k h i,i ≥ 1. As r 2,2 is the norm of the first vector of C , we have r 2,2 ≥ λ 1 (L) ≥ 1. Independently, by choice of k , we have r 1,1 ≤ 1. This ensures that Lovász' condition is satisfied, and completes the proof of correctness.

We now bound the cost of the algorithm of Figure 2 For i ≤ k, the magnitudes of the entries of the i-th row of B are uniformly bounded by h i,i . By Lemma 5, if e, j < d

-k + 1, then |u e,j | ≤ 2 k +2 d 3 ζ d 1 • r j,j
re,e (recall that R is the R-factor of C at the beginning of Step 5). As we saw above, we have r 2,2 ≥ 1, and, by reducedness, we have r e,e ≥ α -e for any e ≥ 2 (using Theorem 1). Also, by choice of k , we have r 1,1 ≥ 1/2. Overall, this gives that the jth column of U is uniformly bounded as log u j = O(k + d + log r j,j). The bounds on the bit-lengths of the rows of B and the bounds on the bit-lengths of the columns of U may be very unbalanced. We do not perform matrix multiplication naively, as this unbalancedness may lead to too large a cost (the maxima of row and column bounds may be much larger than the averages). To circumvent this difficulty we use Recipe 1, given in Appendix 1 p. 17, with "S = log det

H + d 2 + d k ". Since det H = | det B| the multiplication of B with U can be performed within O(d ω M((log | det B|)/d + d + k)) bit operations.
We now consider the product P := BU . By reducedness of B, we have b j ≤ α d r j,j (from Theorem 1). Recall that we have

|u e,j | ≤ 2 k +2 d 3 ζ d 1 • r j,j
re,e . As a consequence, we can uniformly bound log u j and log p j by O(k + d + log r j,j) for any j. We can thus use Recipe 3, given in Appendix 1 p. 17, to compute P , with "S = O(log det

H + d 2 + d k)" us- ing O(d ω+ε M((log | det B|)/d + d + k)) bit operations.
The proof can be completed by noting that the above matrix products are performed d -1 times during the execution of the algorithm and by also considering the cost O(d ω+1+ε β 1+ε) of converting B to Hermite normal form.

We use the term C k in order to amortize over the loop iterations the costs of the calls to the lift-reducing algorithm. In the algorithm of Figure 2 and in Lemma 6, the lift-reducing algorithm is not specified. It may be a general-purpose LLL-reducing algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF][START_REF] Kaltofen | On the complexity of finding short vectors in integer lattices[END_REF][START_REF] Nguyen | An LLL algorithm with quadratic complexity[END_REF][START_REF] Morel | H-LLL: using Householder inside LLL[END_REF] or a specifically designed lift-reducing algorithm such as Lift-L 1 , described in Section 4.

It can be noted from the proof of Lemma 6 that the non-reduction costs can be refined as O(d ω+ε M(log | det B|) + d ω+1+ε M(d)) + H(d, β). We note that the HNF is only used as a triangularization, thus any triangularization of the input B will suffice, however then it may be needed to perform d 2 reductions of entries b i,j modulo b i,i . Thus we could replace H(d, β) by O(d 2 β 1+ε) for upper triangular inputs. Using the cost of H-LLL for lift-reduction, we can bound the complexity of Figure 2 by Poly(d) • β 2 . This is comparable to L 2 and H-LLL.

Truncating matrix entries

We will now focus on improving the lift-reduction step introduced in the previous section. In this section we show how to truncate the "remainder" matrix and we give an efficient factorization for the "quotient" matrices encountered in the process. This way the unimodular transformations can be found and stored at low cost. In the first part of this section, we show that given any B reduced and ≥ 0, finding U such that σ BU is reduced can be done by looking at only the most significant bits of each column of B. In the context of gcd algorithms, this is equivalent to saying that the quotients can be computed by looking at the most significant bits of the remainders only. In the gcd case, using only the most significant bits of the remainders allows one to efficiently compute the quotients. Unfortunately, this is where the gcd analogy stops as a lift-reduction transformation U may still have entries that are much larger than the number of bits kept of B. In particular, if the diagonal coefficients of the R-factor of B are very unbalanced, then Lemma 5 does not prevent some entries of U from being as large as the magnitudes of the entries of B (as opposed to just the precision kept). The second part of this section is devoted to showing how to make the bit-size of U and the cost of computing it essentially independent of these magnitudes. In this framework we can then describe and analyze a Lehmer-like lift-reduction algorithm.

The most significant bits of B suffice for reducing σ B

It is a natural strategy to reduce a truncation of B rather than B, but in general it is unclear if some U which reduces a truncation of B would also reduce B even in a weaker sense. However, with lift-reduction we can control the size of U which allows us to overcome this problem. In this section we aim at computing a unimodular U such that σ BU is reduced, when B is reduced, by working on a truncation of B. We use the bounds of Lemma 5 on the magnitude of U to show that a column-wise truncation precision of + O(d) bits suffices for that purpose.

Lemma 7. Let Ξ 1 , Ξ 2 , Ξ 3 be valid reduction parameters with Ξ 3 > Ξ 2 . There exists a constant c 3 such that the following holds for any ≥ 0. Let B ∈ R d×d be Ξ 1 -reduced and ∆B be such that

max ∆b i b i ≤ 2 --c 3 •d . If σ (B + ∆B)U is Ξ 3 -reduced for some U , then σ BU is Ξ 2 -reduced.
The proof is given in Appendix 2 p. 19. The above result implies that to find a U such that σ BU is reduced, it suffices to find U such that σ (B • E)U is reduced (for a stronger Ξ), for well chosen matrices B and E, outlined as follows.

Definition 2. For B ∈ Z d×d with β = log max b j and precision p, we chose to store the p most significant bits of B, MSB p (B), as a matrix product B E or just the pair (B , E). This pair should satisfy B ∈ Z d×d with p = log max b j , E = diag(2 e i -p) with e i ∈ Z such that

2 e i -b i b i ≤ 2 d ,
and max

(b j -b j •2 e i -p b j ≤ 2 -p .

Finding a unimodular U reducing σ B at low cost

The algorithm TrLiftLLL (a truncated lift-LLL) we propose is an adaptation of the StrengthenLLL from [START_REF] Morel | From an LLL-reduced basis to another[END_REF], which aims at strengthening the LLL-reducedness of an already reduced basis, i.e., Ξ 2reducing a Ξ 1 -reduced basis with Ξ 1 < Ξ 2 . One can recover a variant of StrengthenLLL by setting = 0 below. We refer the reader to Appendix 3 p. 19 for a complete description of TrLiftLLL.

1. D = diag(2 d i) with d i ∈ Z satisfying max |e i -d i | ≤ c 4 (+ d), 2. U is unimodular and max |u i,j | ≤ 2 +c 4 •d , 3. D -1 U D is unimodular and σ (BE)(D -1 U D) is Ξ 2 -reduced.
When setting = O(d), we obtain the base case of lift-L 1 , the quasi-linear time recursive algorithm to be introduced in the next section. The most expensive step of TrLiftLLL is a call to an LLL-type algorithm, which must satisfy a standard property that we identify hereafter.

When called on a basis matrix B with R-factor R, the L 3 , L 2 and H-LLL algorithms perform two types of basis operations: They either subtract to a vector b k an integer combination of b 1 , . . . , b k-1 (translation), or they exchange b k-1 and b k (switches). Translations leave the r i,i 's unchanged. Switches are never perfomed when the optimal Lovász condition r

2 i,i ≤ r 2 i,i+1 +r 2 i+1,i+1
is satisfied, and thus cannot increase any of the quantities max j≤i r j,j (for varying i), nor decrease any of the quantities min j≥i r j,j . This implies that if we have max i<k r i,i < min i≥k r i,i for some k at the beginning of the execution, then the computed matrix U will be such that u i,j = 0 for any (i, j) such that i ≥ k and j < k. We say that a LLL-reducing algorithm satisfies Property (P) if for any k such that max i<k r i,i < min i≥k r i,i holds at the beginning of the execution, then it also holds at the end of the execution. Property (P) is for instance satisfied by L 3 ([16, p. 523]), L 2 ([21, Th. 6]) and H-LLL ([20, Th. 4.3]). We choose H-LLL as this currently provides the best complexity bound, although L 1 would remain quasi-linear with L 3 or L 2 .

TrLiftLLL will also be used with = 0 in the recursive algorithm for strengthening the reduction parameters. Such refinement is needed after the truncation of bases and transformation matrices which we will need to ensure that the recursive calls get valid inputs.

A Lehmer-like lift-LLL algorithm

By combining Lemma 7 and Theorem 2, we obtain a Lehmer-like Lift-LLL algorithm, given in Figure 3. In the input, we assume the base-case lifting target t divides . If it is not the case, we may replace by t /t , and add some more lifting at the end.

Inputs: LLL parameters Ξ; a Ξ-reduced matrix B ∈ Z d×d ; a lifting target ; a divisor t of . Output: A Ξ-reduced basis of σ B.

1. Let Ξ0, Ξ1 be valid parameters with Ξ0 < Ξ < Ξ1, c3 as in Le. 7 for "(Ξ1, Ξ2, Ξ3) := (Ξ, Ξ, Ξ1)", c1 as in Le. 3 with "(Ξ1, Ξ2) := (Ξ, Ξ0)", and c 4 as in Th. 2 with "(Ξ1, Ξ2, c4) := (Ξ0, Ξ1, c3 + 2)".

For

i ≤ 2 β , then its bit-complexity is O(d 3 (d 1+ε t + t -1+ε (+ β))).
Proof. The correctness is provided by Lemmata 3 and 7 and by Theorem 2. At any moment throughout the execution, the matrix B is a Ξ-reduced basis of the lattice spanned by an -lift of the input, for some ≤ . Therefore, by Theorem 1 and Lemma 4, the inequality max b i ≤ α d max r i,i ≤ 2 c•(+β) holds throughout the execution, for some constant c. The cost of Step

3 is O[d 2 (t + log(+ β))]. The cost of Step 4 is O[d 4+ε t 2 + d 2 log(+ β)].
Step 5 is performed by first computing σ t BD -1 , whose entries have bit-sizes O(+ β), and then multiplying by U and finally by D. This costs O(d 3 (+ β)t ε) bit operations. The claimed complexity bound can by obtained by summing over the /t loop iterations.

Note that if is sufficiently large with respect to d, then we may choose t = a for a ∈ (0, 1), to get a complexity bound that is subquadratic with respect to . By using Lehmer-LiftLLL at Step 5 of the algorithm of Figure 2 (with t = .5), it is possible to obtain an LLL-reducing algorithm of complexity Poly(d) • β 1.5+ε .

Quasi-linear algorithm

We now aim at constructing a recursive variant of the Lehmer-LiftLLL algorithm of the previous section. Because the lift-reducing unimodular transformations will be produced by recursive calls, we have little control over their structure (as opposed to those produced by TrLiftLLL). Before describing Lift-L 1 , we thus study lift-reducing unimodular transformations, without considering how they were computed. In particular, we are interested in how to work on them at low cost. This study is robust and fully general, and afterwards is used to analyze lift-L 1 .

Sanitizing unimodular transforms

In the previous section we have seen that working on the most significant bits of the input matrix B suffices to find a matrix U such that σ BU is reduced. Furthermore, as shown in Theorem 2, the unimodular U can be found and stored on few bits. Since the complexity of Theorem 2 is quadratic in we will use it only for small lift-reductions (the leaves of our recursive tree) and repairing reduction quality (when = 0). For large lifts we will use recursive lift-reduction. However, that means we no longer have a direct application of a well-understood LLL-reducing algorithm which was what allowed such efficient unimodular transforms to be found. Thus, in this section we show how any U which reduces σ B can be transformed into a factored unimodular U which also reduces σ B and for which each entry can be stored with only O(+ d) bits. We also explain how to quickly compute the products of such factored matrices. This analysis can be used as a general framework for studying lift-reductions.

The following lemmata work because lift-reducing transforms have a special structure which we gave in Lemma 5. Here we show a class of additive perturbations which, when viewed as a transformations, are in fact unimodular transformations themselves. Note that these entrywise perturbations are stronger than mere truncations since ∆u i,j could be larger than u i,j . Lemma 8 shows that a sufficiently small perturbation of a unimodular lift-reducing matrix remains unimodular.

Lemma 8. Let Ξ 1 , Ξ 2 be valid LLL parameters. There exists a contant c 7 such that the following holds for any ≥ 0. Let B ∈ R d×d (with R-factor R) be Ξ 1 -reduced, and U be unimodular such

that σ BU (with R-factor R) is Ξ 2 -reduced. If ∆U ∈ Z d×d satisfies |∆u i,j | ≤ 2 -(+c 7 •d) • r j,j
r i,i for all i, j, then U + ∆U is unimodular.

Proof. Since U is unimodular, the matrix V = U -1 exists and has integer entries. We can thus write U + ∆U = U (I + U -1 ∆U), and prove the result by showing that U -1 ∆U is strictly upper triangular, i.e., that (U -1 ∆U) i,j = 0 for i ≥ j. We have (U -1 ∆U) i,j = k≤d v i,k • ∆u k,j . We now show that if ∆u k,j = 0 and i ≥ j, then we must have v i,k = 0 (for a large enough c 7).

The inequality ∆u k,j = 0 and the hypothesis on ∆U imply that

r k,k r j,j ≤ 2 -(+c 7 •d) . Since i ≥ j
and σ BU is reduced, Theorem 1 implies that

r k,k r i,i ≤ 2 -+(c-c 7)d
, for some constant c > 0.

By using the second part of Lemma 5, we obtain that there exists c > 0 such that

|v i,k | ≤ 2 +c •d • r k,k r i,i
≤ 2 (c+c -c 7)d . As V is integral, setting c 7 > c + c allows us to ensure that v i,k = 0, as desired.

Lemma 9 shows that a sufficiently small perturbation of a unimodular lift-reducing matrix remains lift-reducing. Lemma 9. Let Ξ 1 , Ξ 2 , Ξ 3 be valid LLL parameters such that Ξ 2 > Ξ 3 . There exists a contant c 8 such that the following holds for any ≥ 0. Let B ∈ R d×d (with R-factor R) be Ξ 1 -reduced, and U be unimodular such that σ BU

(with R-factor R) is Ξ 2 -reduced. If ∆U ∈ Z d×d satisfies |∆u i,j | ≤ 2 -(+c 8 •d) • r j,j r i,i for all i, j, then σ B(U + ∆U) is Ξ 3 -reduced.
Proof. We proceed by showing that |σ B∆U | is column-wise small compared to |σ BU | and by applying Lemma 3. We have

|∆U | ≤ 2 -(+c 8 •d) diag(r -1 i,i)Cdiag(r j,j
) by assumption, where c i,j = 1 for all i, j. Since B is Ξ 1 -reduced, we also have |R| ≤ diag(r i,i)T + θ 1 T diag(r j,j), where T is upper triangular with t i,j = 1 for all i ≤ j. Then using

|R∆U | ≤ |R||∆U | we get |R∆U | ≤ 2 -(+c 8 •d) diag(r i,i)T diag(r -1 j,j)+θ 1 T Cdiag(r j,j).
Since B is Ξ 1 -reduced, by Theorem 1, we have r i,i ≤ α d 1 r j,j for all i ≤ j, hence it follows that

|R∆U | ≤ 2 -(+c 8 •d) (α d 1 + θ 1)T Cdiag(r j,j).
As a consequence, there exists a constant c > 0 such that for any j:

(σ B∆U) j ≤ 2 (B∆U) j = 2 (R∆U) j ≤ 2 (c-c 8)d r j,j .
We complete the proof by noting that r j,j ≤ (σ BU) j and by applying Lemma 3 (which requires that c 8 is set sufficiently large).

Lemmata 8 and 9 allow us to design an algorithmically efficient representation for lift-reducing unimodular transforms. Theorem 4. Let Ξ 1 , Ξ 2 , Ξ 3 be valid LLL parameters with Ξ 2 > Ξ 3 . There exist contants c 9 , c 10 > 0 such that the following holds for any ≥ 0. Let B ∈ R d×d be Ξ 1 -reduced, and U be unimodular such that σ BU is Ξ 2 -reduced. Let

d i := log b i for all i. Let D := diag(2 d i), x := + c 9 • d, U := 2 x DU D -1 and U := 2 -x D -1 U D. We write Clean(U, (d i) i ,) := (U , D, x). Then U is unimodular and σ BU is Ξ 3 -reduced. Furthermore, the matrix U satisfies max | u i,j | ≤ 2 2 +c 10 •d .
Proof. We first show that U is integral. If u i,j = u i,j , then u i,j = u i,j ∈ Z. Otherwise, we have u i,j ∈ Z, and thus x

+ d i -d j ≤ 0. This gives that u i,j ∈ Z ⊆ 2 x+d i -d j Z. We conclude that u i,j ∈ Z. Now, consider ∆U = U -U . Since ∆U = 2 -x D -1 (U -U)D, we have |∆u i,j | ≤ 2 d j -d i -x ,
for all i, j. Thus by Theorem 1 and Lemma 4, we have

|∆u i,j | ≤ 2 -x+c•d • r j,j
r i,i for some constant c. Applying Lemmata 8 and 9 shows that U is unimodular and σ BU is Ξ 3 -reduced (if c 9 is chosen sufficiently large).

By Lemma 5, we have for all i, j:

| u i,j | = |u i,j |2 x+d i -d j ≤ 2 x+ +c d • r j,j 2 log b j 2 log b i r i,i ,
for some constant c . Theorem 1 then provides the result.

The above representation of lift-reducing transforms is computationally powerful. Firstly, it can be efficiently combined with Theorem 2: Applying the process described in Theorem 4 to the unimodular matrix produced by TrLiftLLL may be performed in O(d 2 (d+)+d log max(1+|e i |)) bit operations, which is negligible comparable to the cost bound of TrLiftLLL. We call TrLiftLLL' the algorithm resulting from the combination of Theorems 2 and 4. TrLiftLLL' is to be used as base case of the recursion process of Lift-L 1 . Secondly, the following result shows how to combine lift-LLL-reducing unimodular transforms. This is an engine of the recursion process of Lift-L 1 .

Lemma 10. Let U = 2 -x D -1 U D ∈ Z d×d with U ∈ Z d×d and D = diag(2 d i). Let V = 2 -y E -1 V E ∈ Z d×d with V ∈ Z d×d and E = diag(2 e i). Let ∈ Z and f i ∈ Z for i ≤ d. Then it is possible to compute the output (W , F, z) of Clean(U • V, (f i) i ,) (see Theorem 4) from x, y, , U , V , (d i) i , (e i) i , (f i) i , in time O(d ω M(t + log d)), where max i,j max(|u i,j |, |v i,j |) ≤ 2 t and max i max(|d i -e i |, |f i -e i |, | -(x + y)|) ≤ t.
For short, we will write

W := U V , with W = 2 -z F -1 W F and F = diag(2 f i).
Proof. We first compute m = max |d i -e i |. We have

U V = 2 (-x-y-m) • F -1 T • F, where T = (F D -1)U diag(2 d i -e i +m)V (EF -1
).

Then we compute T . We multiply U by diag(2 d i -e i +m), which is a mere multiplication by a non-negative power of 2 of each column of U . This gives an integral matrix with coefficients of bit-sizes ≤ 3t. We then multiply the latter by V , which costs O(d ω M(t+log d)). We multiply the result from the left by (F D -1) and from the right by EF -1 . From T , the matrix W of Theorem 4 may be computed and rounded within O(d 2 t) bit operations.

It is crucial in the complexity analysis of Lift-L 1 that the cost of the merging process above is independent of the magnitude scalings (d i , e i and f i).

Lift-L 1 algorithm

The Lift-L 1 algorithm given in Figure 4 relies on two recursive calls, on MSB, truncations, and on calls to TrLiftLLL'. The latter is used as base case of the recursion, and also to strengthen the reducedness parameters (to ensure that the recursive calls get valid inputs). When strengthening, the lifting target is always 0, and we do not specify it explicitly in Figure 4.

Theorem 5. Lift-L 1 is correct.
Proof. When ≤ d the output is correct by Theorems 2 and 4. In Step 2, Theorems 2 and 4 give that BU 1 is Ξ 2 -reduced and that U 1 has the desired format. In Step 3, the constant c 3 ≥ c 1 is chosen so that Lemma 3 applies now and Lemma 7 will apply later in the proof. Thus B 1 is Ξ 1 -reduced and has the correct structure by definition of MSB. Step 4 works (by induction) because B 1 satisfies the input requirements of Lift-

L 1 . Thus σ /2 B 1 U R 1 is Ξ 1 -reduced.
Because of the selection of c 3 in Step 3 we know also that σ /2 BU 1 U R 1 is reduced (weaker than Ξ 1) using Lemma 7. Thus by Theorem 4, the matrix B 2 is reduced (weakly) and has an appropriate format for TrLiftLLL'. By Theorem 2, the matrix σ /2 BU 1R 1 U 2 is Ξ 3 -reduced and by Theorem 4 we have that σ /2 BU 1R 1 2 is Ξ 2 -reduced. By choice of c 3 and Lemma 3, we know that the matrix B 3 is Ξ 1 -reduced and satisfies the input requirements of Lift-L 1 . Thus, by recursion, we know that σ /2 B 3 U R 2 is Ξ 1 -reduced. By choice of c 3 and Lemma 7, the matrix σ BU 1R 1 2 U R 2 is weakly reduced. By Theorem 4, the matrix B 4 is reduced and satisfies the input requirements of TrLiftLLL'. Therefore, the matrix σ BU 1R 1 2R 2 is Ξ 4 -reduced. Theorem 4 can be used to ensure U has the correct format and σ BU is Ξ 1 -reduced.

Inputs: Valid LLL-parameters Ξ3 > Ξ2 ≥ Ξ4 > Ξ1; a lifting target ; (B , (ei)i) such that B = B diag(2 e i) is Ξ1-reduced and max |b i,j | ≤ 2 +c•d . Output: (U , (di)i, x) such that σ BU is Ξ1-reduced, with U = 2 -x diag(2 -d i)U diag(2 d i) and max |u i,j | ≤ 2 2 +2c•d .
1. If ≤ d, then use TrLiftLLL' with lifting target . Otherwise: 2. Call TrLiftLLL' on (B, Ξ2); Let U1 be the output.

/ * Prepare 1st recursive call * / 3.

B1 := MSB (/2+c 3 •d) (B • U1). 4.
Call Lift-L1 on B1, with lifting target /2; / * 1st recursive call * / Let UR 1 be the output. 5. U1R 1 := U1 UR 1 .

/ * Prepare 2nd recursive call * / 6. B2 := σ /2 BU1R 1 . 7. Call TrLiftLLL' on (B2, Ξ3). Let U2 be the output. 8. U1R 1 2 := U1R 1 U2. 9. B3 := MSB (/2+c 3 •d) (σ /2 BU1R 1 2). 10. Call Lift-L1 on B3, with lifting target /2; / * 2nd recursive call * / Let UR 2 be the output. 11. U1R 1 2R 2 := U1R 1 2 UR 2 .

/ * Prepare output * / 12. B4 := σ BU1R 1 2R 2 . 13. Call TrLiftLLL' on (B4, Ξ4); Let U3 be the output. 14. U := U1R 1 2R 2 U3; Return U .

L 1 algorithm

The algorithm of Figure 4 is the Knuth-Schönhage-like generalization of the Lehmer-like algorithm of Figure 3. Now we are ready to analyze a general lattice reduction algorithm by creating a wrapper for Lift-L 1 .

Algorithm L 1 : We define L 1 as the algorithm from Figure 2, where Figure 5 is used to implement lift-reduction.

As we will see Figure 5 uses the truncation process MSB described in Definition 2 and TrLiftLLL to ensure that L 1 provides valid inputs to Lift-L 1 . Its function is to process the input C from Step 5 of Figure 2 (the lift-reduction step) which is a full-precision basis with no special format into a valid input of Lift-L 1 which requires a truncated basis B • E. Just as in Lift-L 1 we use a stronger reduction parameter to compensate for needing a truncation. This processing before Lift-L 1 is similar to what goes on inside of Lift-L 1 . The accuracy follows from Lemma 3, Theorem 2, Theorem 5, and Lemma 7. While the complexity of this processing is necessarily less than the bit-complexity of Lift-L 1 , O(d 3+ε (d+ k +τ k)+d ω M(k) log k + k log(β k + k)) from Theorem 6, which we can use as C k from Lemma 6.

We now amortize the costs of all calls to Step 5 using Figure 5. More precisely, we bound k k and k τ k more tightly than using a generic bound for the k 's (resp. τ k 's). For the k 's, we have k k ≤ log det H ≤ dβ. To handle the τ k 's, we adjust the standard LLL energy/potential analysis to allow for the small perturbations of r i,i 's due to the various truncations. Lemma 11. Consider the execution of Steps 2-8 of L 1 (Figure 2). Let H ∈ Z d×d be the initial Hermite Normal Form. Let Ξ 0 = (δ 0 , η 0 , θ 0) be the strongest set of LLL-parameters used within the execution. Let B be a basis occuring at any moment of Step 5 during the execution. Let R be the Rfactor of B and n MSB be the number of times MSB has been called so far. We define the energy of B as E(B, n MSB) := Proof. The basis operations modifying the energy function are the LLL switches, the truncations (and returns from truncations), the adjunctions of a vector at Steps 3-4 of the algorithm from Figure 2 and the lifts. We show that any of these operations cannot decrease the energy function.

As Ξ 0 is the strongest set of LLL parameters ever considered during the execution of the algorithm, each LLL switch increases the weighted sum of the r i,i 's (see [16, (1.23)]) and hence E by at least 1.

We now consider truncations. Each increase of n MSB possibly decreases each r i,i (and again when we return from the truncation). We see from Lemma 1 and our choices of precisions p that for any two LLL parameters Ξ < Ξ there exists an ε < 1 such that each r i,i decreases by a factor no smaller than (1 + ε). Overall, the possible decrease of the weighted sum of the r i,i 's is counterbalanced by the term "d 2 n MSB " from the energy function, and hence E cannot decrease. Now, the act of adjoining a new row in Figure 2 does not change the previous r i,i 's but increases their weights. Since at the moment of an adjoining all log r i,i 's except possibly the first one are non-negative and since the weight of the first one is zero, Steps 3-4 cannot decrease E.

Finally, each product by σ (including those within the calls to TrLiftLLL') cannot decrease any r i,i , by Lemma 4.

To conclude, the energy never decreases and any switch increases it by at least 1. This implies that the number of switches is bounded by the growth E(B, n MSB) -E((h d,d), 0). The initial value E((h d,d), 0) of the energy is ≥ 0. Also, at the end of the execution, the term [(i-1) log r i,i] is O(log det H). As there are 5 calls to MSB in the algorithm from Figure 4 (including those contained in the calls to TrLiftLLL'), we can bound d 2 n MSB by 5d 2 k (k /d) = 5 log det H.

We obtain our main result by combining Theorems 5 and 6, and Lemma 11 to amortize the LLL-costs in Lemma 6 (we bound log det H by dβ). For l ≥ 0 we see that B has at most d/2 l columns b j such that log b j ≥ 2 l γ. For l > 0, let J l denote the set of the indices of the columns of B such that 2 l γ ≤ log b j < 2 l+1 γ. Note that J l = ∅ for l > log d. We denote by J 0 the set of indices of the columns with log b j < 2γ. For simplifying the cost bound discussion hereafter we assume that J l has exactly d/2 l elements (rather than ≤ d/2 l). Let also B (l) be the submatrix of B formed by the columns whose indices are in J l . Accordingly, let U (l) be the submatrix of U formed by the rows whose indices are in J l . Then we may compute C = BU in log d products since (taking a symmetric modulo representation)

C = l B (l) U (l) mod 2 2 k+1 γ . (1)
For k ≤ l, the matrix B (l) has dimension d × (d/2 l), its entries may be taken modulo 2 2 k+1 γ using O((d 2 /2 l)M(2 l γ)) hence O(d 2+ε M(γ)) bit operations. The resulting matrix is seen as the concatenation of 2 l square row blocks of dimension d/2 l . The matrix U (l) has d/2 l rows and d/2 k ≥ d/2 l columns. We may decompose U (l) into 2 l-k square column blocks with d/2 l columns.

The product B (l) U (l) in (1) can be done by blocks within O

(2 l × 2 l-k × (d/2 l) ω × M(2 k γ)) hence O(d ω+ε M(γ)) bit operations.
For k > l we proceed as for Recipe 1 with β := 2 l γ for expanding U (l) into a matrix with (d/2 k)•(2 k-l) columns. Hence B (l) is d×d/2 l , and the expansion of U (l) is square of dimension d/2 l . Both have entries of bit size O(2 l γ). By decomposing B (l) into 2 l square row blocks with d/2 l rows, we can compute the product B (l) U (l) in time O(2 l (d/2 l) ω M(2 l γ+log d)) and hence O(d ω+ε M(γ)) bit operations. Overall, the cost for computing C using (1) is O(d ω+ε M(γ)).

Recipe 3 Let B, U and C = BU be d × d integer matrices. Assume that there exists s 1 , . . . , s d such that log c j , and log u j are ≤ s j , and j log b j , and j s j are ≤ S, for some S. We show how to compute the product C within O(d ω+ε M(S/d)) bit operations, where ε is o(1).

We apply to C the column decomposition seen in Recipe 2 for B. For 0 < k ≤ log d, we let I k denote the set of the indices of the columns of C such that 2 k S/d ≤ log c j < 2 k+1 S/d. We denote by I 0 the set of indices of the columns with log c j < 2S/d. Let also U (k) be the submatrix of U formed by the columns whose indices are in I k . As prior, the cardinality of I k is at most d/2 k .

To compute C, it suffices to compute the B • U (k) 's, for 0 ≤ k ≤ log d. This can be done within O(d ω+ε M(S/d)) bit operations by using Recipe 2. Bounding the number of k's by O(log d) allows us to complete the proof.

Z d×d and E = diag(2 e i) with max b i ≤ 2 c 4 (+d) , e i ∈ Z and BE is Ξ 1 -reduced; It runs in time O(d 2+ε (d +)(d + + τ) + d 2 log max(1 + |e i |)), where τ = O(d 2 (+ d))
is the number of switches performed during the single call it makes to H-LLL; And it returns two matrices U and D such that:

1. D = diag(2 d i) with d i ∈ Z satisfying max |e i -d i | ≤ c 4 (+ d), 2. U is unimodular and max |u i,j | ≤ 2 +c 4 •d , 3. D -1 U D is unimodular and σ (BE)(D -1 U D) is Ξ 2 -reduced.
The possible unbalancedness of the columns of BE (due to E), prevents us from applying H-LLL directly on C = σ BE. Indeed, even if we were dividing the full matrix by a large common power of 2, the resulting basis may have a bit-size that is arbitrarily large compared to d and . Our goal is to call H-LLL on a integral matrix whose entries have bit-sizes O(d +). To circumvent the possible unbalanced-ness of the columns of C, we find blocks of consecutive vectors whose r (C) i,i 's have similar magnitudes, where R (C) is the R-factor of C, and we apply a column-scaling to re-balance C before calling H-LLL.

Finding blocks. The definition of block is motivated by Property (P) above. To determine meaningful blocks, the first step is to find good approximations to the r (C) i,i 's and r (BE) i,i 's (where R (BE) is the R-factor of BE). Computing the R-factor of a non-singular matrix is most often done by applying Householder's algorithm (see [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]Ch. 19]). The following lemma is a rigorous and explicit variant of standard backward stability results. ≤ 2 -cd . The latter can be made ≤ 1 100 . We now show that we can also compute approximations to the r (C) i,i 's. Let B = Q (B) R (B) and σ B = Q (σ B) R (σ B) be the QR factorizations of B and σ B respectively. We have:

cond(R (σ B)) = |R (σ B) ||(R (σ B)) -1 | = |(Q (σ B)) t σ Q (B) R (B) ||(R (B)) -1 (Q (B)) t σ -1 Q (σ B) | ≤ |(Q (σ B)) t |σ |Q (B) ||R (B) ||(R (B)) -1 ||(Q (B)) t |σ -1 |Q (σ B) | ≤ d 2 2 cond(R (B)) = d 2 2 cond(R (B) E).
Since R (B) E is the R-factor of BE which is reduced, Lemma 2 gives that cond(R (σ B)) ≤ d 2 ρ+1 ρ-1 ρ d 2 . Now, Lemmata 1 and 13 imply that for any c there exists c such that Householder's algorithm with precision p = 2 + c d allows us to find R (σ B) with max). We define the blocks of vectors of C as follows: The first block starts with c i 1 = c 1 and stops with c i 2 -1 where i 2 is the smallest i such that min j≥i r (C) j,j > ν • max j<i r (C) j,j (if i 2 = d + 1, then the process ends); The kth block starts with c i k and stops with c i k+1 -1 where i k+1 is the smallest index i > i k such that min j≥i r (C) j,j > ν • max j<i r (C) j,j . The purpose of the constant ν ≥ 4, to be set later, is to handle the inaccuracy of R (C) and to ensure that the matrix CD -1 U D eventually obtained by TrLiftLLL will be size-reduced.

Let I k = [i k , i k+1). Since ν ≥ 4, Property (P) implies that if we were to call H-LLL on C, the unimodular U that we would obtain would satisfy u i,j = 0 if i ∈ I k 1 and j ∈ I k 2 with k 1 < k 2 , i.e., U would be (I k)-block upper triangular. Any diagonal block-submatrix of U would be unimodular. Computing the I k 's from the r j,j 's may be done in time O(d 2 (d + + log max(1 + |e i |))).

By construction of the blocks, the amplitude of r (C) i,i 's within a block is bounded.

Lemma 14. We use the same notations as above. We let

(i = r (C) i,i /r (BE) i,i
. There exists a constant c 6 (depending on Ξ 1 and ν only) such that for any k, we have

max i∈I k r (C) i,i min i∈I k r (C) i,i ≤ 2 c 6 |I k | •max i∈I k i .
Proof. Let i, j ∈ I k . We are to compute an upper bound for .

We define D = diag(2 d i) such that the block structure is preserved, but the gaps get shrunk: For i ∈ I k , we set d i = e 1 + k <k log 2 g k / √ ν . We prove several facts about this scaling. i,i . Thanks to Lemmata 14 and 4 (in particular the fact that the product of all j 's is 2), the same holds for the d i 's.

Lemma 4 .

 4 Let B be non-singular and ≥ 0

Fig. 2 .

 2 Fig. 2. Reducing LLL-reduction to lift-reduction.

 . We bound the overall cost of the d -1 calls to lift-reduction by k<d C k . It remains to bound the contribution of Step 7 to the cost. The cost dominating component of Step 7 is the computation of the product of the last d -k + 1 columns of (the current value of) B by U . We consider separately the costs of computing the products by U of the k × (d -k + 1) top-right submatrix B of B, and of the (d -k) × (d -k + 1) bottom-right submatrix B of B

Theorem 2 .

 2 For any valid parameters Ξ 1 < Ξ 2 and constant c 4 , there exists a constant c 4 and an algorithm TrLiftLLL with the following specifications. It takes as inputs ≥ 0, B ∈ Z d×d and E = diag(2 e i) with max b i ≤ 2 c 4 (+d) , e i ∈ Z and BE is Ξ 1 -reduced; It runs in time O(d 2+ε (d +)(d + + τ) + d 2 log max(1 + |e i |)), where τ = O(d 2 (+ d)) is the number of switches performed during the single call it makes to H-LLL; And it returns two matrices U and D such that:

k from 1

 1 to /t do 3. (B , E) := MSB (t+c 3 d) (B). 4. (D, U) := TrLiftLLL(B , E, t). 5. B := σtBD -1 U D. 6. Return B.

Fig. 3 .

 3 Fig. 3. The Lehmer-LiftLLL algorithm.

Fig. 4 . 4 . 3

 443 Fig. 4. The Lifte L 1 algorithm.

Inputs:

 Valid LLL parameters Ξ1 > Ξ; C Ξ-reduced with β k = log max C ; a lifting target k ; Output: U unimodular, such that σ CU is Ξ-reduced 1. C F := MSB k +c 3 d (C) 2. Call TrLiftLLL on (C F, Ξ1). Let D -1 U0D be the output. 3. B := C F D -1 U0; E := D 4. Call Lifte L 1 on (B , E, Ξ1). Let U k be the output. 5. Return U := D -1 U0DU k .

Fig. 5 .

 5 Fig. 5. From Figure 2 to Lifte L 1

1 log 1

 1 /δ 0 i [(i -1) • log r i,i] + d 2 n MSB (using the natural logarithm). Then the number of LLL-switches performed so far satisfies τ ≤ E(B, n MSB) = O(d • log det H).

Theorem 7 .k 2 k 2 Recipe 2

 7222 Given as inputs Ξ and a matrix B ∈ Z d×d with max b j ≤ 2 β , the L 1 algorithm returns a Ξ-reduced basis of L(B) within O(d 5+ε β + d ω+1+ε β 1+ε) bit operations. Recipe 1 Let B and U be two d × d integer matrices such that d i=1 log max 1≤j≤d |b i,j | and d j=1 log max 1≤i≤d |u i,j | are both bounded by some S. We show how to compute the product B • U within O(d ω M(S/d + log d)) bit operations. We reduce the product B • U to a product with balanced row and column bit-sizes by splitting into several rows the rows of B for which log max 1≤j≤d |b i,j | ≥ β, with β := S/d . We also split into several columns the columns of U for which log max 1≤i≤d |u i,j | ≥ β. More precisely, for 1 ≤ i ≤ d, let s i = (log max 1≤j≤d |b i,j |)/β , and, for 1 ≤ j ≤ d, let t j = (log max 1≤i≤d |u i,j |)/β . If x and y respectively denote row i of B and column j of U , then they are respectively replaced by lβ , with log |x (l) k | ≤ β, and y k = lβ , with log |y (l) k | ≤ β. The inner product x • y is then obtained by summing the entries of D 1 P D 2 , where P is the product of the two matrices above (which are sub-matrices of the expansions of B and U), D 1 := diag l<s i (2 lβ), and D 2 := diag l<t j (2 lβ). Summing along antidiagonals and then summing the partial sums costs O(s i t j (β + log d)). The number of rows of the expansion of B is less than i s i ≤ d + d S i log max 1≤j≤d |b i,j | ≤ 2d. Similarly, the number of columns of the expansion of U is less than j t j ≤ d + d S j log max 1≤i≤d |u i,j | ≤ 2d. To complete the proof, note that all the entries of these expanded matrices have bit-lengths O(β). Let k ≤ log d. Let U be a d × (d/2 k) integer matrix whose entries have bit-size ≤ 2 k γ, and B a d × d integer matrix such that d j=1 log b j ≤ dγ, for some γ. Let C = BU and assume that the entries of C have bit-size ≤ 2 k γ. We show how to compute C within O(d ω+ε M(γ)) bit operations, where ε is o(1)

Lemma 13 (≤ 2

 132 [START_REF] Chang | Perturbation analysis of the QR Factor R in the context of LLL lattice basis reduction[END_REF] Se. 6]). Let p ≥ 0 and B ∈ R d×d be non-singular with R-factor R. Let R be the R-factor computed by Householder's algorithm with floating-point precision p. If c 5 2 -p < 1 with c 5 = 80d 2 , then there exists an orthogonalQ such that Q R = B + ∆B with max ∆b i b i ≤ c 5 2 -p .By Lemma 2, we have that cond(R (BE)) ≤ ρ+1 ρ-1 ρ d . Since R (BE) = R (B) • E, with R (B) the R-factor of B, we have cond(R (B)) ≤ ρ+1 ρ-1 ρ d (because cond(•) is invariant under column scaling). Now, by Lemmata 1 and 13, for any c there exists c such that Householder's algorithm with precision p = c d allows us to find R (B) with max b r -cd . By defining R (BE) by R (B) •E,

 1 and Lemma 4), we obtain that Householder's algorithm with precision 2 + O(d) provides some r R (C) = R (σ B) E, we have max |b r R (C) = R (σ B) E. Furthermore, as the run-time of Householder's algorithm in precision p is O(d 3 p 1+ε), the computation of these r (C) i,i 's costs O(d 3 (+ d) 1+ε

.≤≤

 If j ≤ i, the reducedness of BE α as in Theorem 1. The fact that i ≥ 1 (see Lemma 4) provides the result. Assume now that j > i. If r(C) i,i = max t≥i r (C)t,t , then the bound holds. Otherwise, by definition of the blocks, there exists i > i in I k such that r(C) i ,i ≤ 2ν • r (C)i,i (the factor 2 takes the inaccuracy of R into account). By induction, it can be shown that r(C) i ,i ≤ (2ν) |I k | r (C) i,i , with i = i k+1 -1. We conclude that r (2ν) |I k | r (C) (2να) |I k | j ,by using the first part of the proof (since j ≤ i). Re-balancing the columns of C. The blocks allow us to define the diagonal matrix D of Theorem 2. We define the gap between two blocks I k and I k+1 to be g k = min j∈I k+1 b r

(i)

 i The matrix B = BED -1 is Ξ 1 -reduced, because r (C) j,j ≥ r (BE) j,j for all j. (ii) The matrix C = CD -1 with R-factor R (C) = R (C) D -1 admits the same block-structure a C: For any k, we have min j∈I k+1 r (C) j,j ≥ ν • max j∈I k r (C) j,j , with ν = √ ν/2 ≥ 1. (iii) The d i 's satisfy Property 1 of Theorem 2: Thanks to the reducedness of BE, the size condition on B, and Lemma 4, each e i is within O(+ d) of log r (C)

Extended abstract appears in the Proc. 43rd ACM Symposium on Theory of Computing (STOC

2011), June 6-8, San Jose, California, 2011.

Acknowledgements

Andrew Novocin and Damien Stehlé were partly funded by the LaRedA ANR project. Gilles Villard was partly funded by the Gecko ANR project and by a CNRS research collaboration grant to visit the MAGMA computational algebra group of the University of Sydney. Part of this work was done while Damien Stehlé was hosted by Macquarie University and the University of Sydney, whose hospitalities are gratefully acknowledged.

Appendix 1 -Recipes used in the proof of Lemma 6 Let us first recall useful recipes for partially linearizing integer matrices and reducing the bit-cost of their products using asymptotically fast matrix multiplication algorithms. If one is interested in ω = 3, then applying the naive matrix multiplication algorithm directly (without the linearization) already provides the given complexity upper bounds.

Appendix 2 -Proof of Lemma 7

Lemma 12. Let Ξ 1 , Ξ 2 , Ξ 3 be valid reduction parameters with Ξ 3 > Ξ 2 . There exists a constant c 2 such that the following holds for any ≥ 0. Let B ∈ R d×d be Ξ 1 -reduced, U such that σ BU is Ξ 3 -reduced and ∆B with max

Proof. By Lemma 5, there exists a constant c such that for all i, j we have |u j,i | ≤ 2 c•d r i,i r j,j , where R (resp. R) is the R-factor of B (resp.

, by Theorem 1 and with p such that max ∆b i b i ≤ 2 -p . Furthermore, we have c i ≥ e i,i . This gives

By combining Lemmata 12 and 3, we have that a reducing U can be found by working on a truncation of B.

There exists a constant c 3 such that the following holds for any ≥ 0. Let B ∈ R d×d be Ξ 1 -reduced and ∆B be such that

Proof. Let Ξ 0 < Ξ 1 be a valid set of reduction parameters. By Lemma 3, there exists a constant c such that if max ∆b i b i ≤ 2 -c•d , then B + ∆B is non-singular and Ξ 0 -reduced. We conclude by using Lemma 12.

Appendix 3 -Proof of Theorem 2 and description of Algorithm TrLiftLLL

Theorem 2. For any valid parameters Ξ 1 < Ξ 2 and constant c 4 , there exists a constant c 4 and an algorithm TrLiftLLL with the following specifications. It takes as inputs ≥ 0, B ∈ LLL-reducing. We now call H-LLL on input matrix C , with LLL-parameters Ξ > Ξ 2 , and let C (2) be the output matrix. Thanks to (iii), the matrix C belongs to 2 -c(+d) Z d×d for some constant c, and each c i,j may be stored on O(+ d) bits. I.e., the matrix C is balanced. As a consequence, the call to H-LLL costs O(d 2+ε (d + + τ)(d +)) bit operations (see [START_REF] Morel | H-LLL: using Householder inside LLL[END_REF]Th. 4.4]), where τ be the number of switches performed.

Let U be the corresponding unimodular transform (which can be recovered from C and C (2) by a matrix inversion, costing O(d 3 (d +) 1+ε)). Lemma 5 and the fact that B is Ξ 1 -reduced (by (i)) ensure that Property 2 of Theorem 2 is satisfied. Also, since C follows the block-structure defined by the I k 's (by (ii)), Property (P) may be used to assert that U is (I k) k -block upper triangular and that its diagonal blocks are unimodular. The coefficients of D are non-decreasing, and they are constant within any I k . This ensures that D -1 U D is integral and that its diagonal blocks are exactly those of U , and thus that D -1 U D is unimodular.

Let 2) (resp. R (3)) be the R-factor of C (2) (resp. C (3)). Let Ξ = (δ, η, θ) and Ξ 2 = (δ 2 , η 2 , θ 2). If i and j belong to the same I k , then |r

j,j , because this holds for R (2) and

Since η < η 2 and θ < θ 2 , the size-reduction condition for (i, j) is satisfied. Similarly, the Lovász conditions are satisfied inside the I k 's. They are also satisfied for any i

It remains to check the size-reduction conditions for (i, j) with i ∈ I k , j ∈ I k and k > k. By reducedness of C (2) , we have |r

i,j | ≤ (θ+ 1 ν)r

(2) j,j . This gives |r (3) j,j . In order to ensure size-reducedness, it thus suffices to choose ν such that θ + 1 ν ≤ θ 2 .