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Multipartite Table Methods
Florent de Dinechin, Member, IEEE, and Arnaud Tisserand, Member, IEEE

Abstract—A unified view of most previous table-lookup-and-addition methods (bipartite tables, SBTM, STAM, and multipartite

methods) is presented. This unified view allows a more accurate computation of the error entailed by these methods, which enables a

wider design space exploration, leading to tables smaller than the best previously published ones by up to 50 percent. The synthesis of

these multipartite architectures on Virtex FPGAs is also discussed. Compared to other methods involving multipliers, the multipartite

approach offers the best speed/area tradeoff for precisions up to 16 bits. A reference implementation is available at www.ens-lyon.fr/

LIP/Arenaire/.

Index Terms—Computer arithmetic, elementary function evaluation, hardware operator, table lookup and addition method.
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1 INTRODUCTION

TABLE-LOOKUP-AND-ADDITIONmethods, such as the bipartite
method, have been the subject of much recent attention

[1], [2], [3], [4], [5]. They allow us to compute commonly

used functions with low accuracy (up to 20 bits) with

significantly lower hardware cost than that of a straightfor-

ward table implementation, while being faster than shift-

and-add algorithms à la CORDIC or polynomial approx-

imations. They are particularly useful in digital signal or

image processing. They may also provide initial seed values

to iterative methods, such as the Newton-Raphson algo-

rithms for division and square root [6], [7], which are

commonly used in the floating-point units of current

processors. They also have recently been successfully used

to implement addition and subtraction in the logarithm

number system [8].
The main contribution of this paper is to unify two

complementary approaches to multipartite tables by Stine

and Schulte [4] and Muller [5]. Completely defining the

implementation space for multipartite tables allows us to

provide a methodology for selecting the best implementa-

tion that fulfills arbitrary accuracy and cost requirements.

This methodology has been implemented and is demon-

strated on a few examples. This paper also clarifies some of

the cost and accuracy questions which are incompletely

formulated in previous papers. This paper is an extended

version of an article published in the Proceedings of the 15th

IEEE International Symposium on Computer Arithmetic [9].
After some notations and definitions in Section 2,

Section 3 presents previous work on table-lookup-and-

addition methods. Section 4 presents our unified multi-

partite approach in all the details. Section 5 gives results

and compares them to previous work. Section 6 concludes.

2 GENERALITIES

2.1 Notations

Throughout this paper, we discuss the implementation of a
function with inputs and outputs in fixed-point format. We
shall use the following notations:

. We note f : ½a; b½! ½c; d½, the function to be evaluated
with its domain and range.

. We note wI and wO, the required input and output
size.

In general,wewill identify anyword of p bits to the integer
in f0; . . . ; 2p � 1g it codes, writing such a word in capital
letters. When needed, we will provide explicit functions to
map such an integer into the real domain or range of the
function. For instance, an inputwordXwill denote an integer
in f0; . . . ; 2wI � 1g, and we will express the real number x 2
½a; b½ that it codes by x ¼ aþ ðb� aÞX=2wI . Note that no
integermaps to b, the right bound of the input interval, which
explains why we define this interval as open in b. Such a
mapping should be part of the specification of a hardware
function evaluator and several alternatives exist, depending
on the function to be evaluated and the needs of the
application. Some applications may require that the
integer X denotes x ¼ aþ ðb� aÞðX þ 1=2Þ=2wI , some may
require that it denotes x ¼ aþ ðb� aÞX=ð2wI � 1Þ. For other
applications to floating-point hardware, the input interval
may span over two consecutive binades, in which case, we
will consider two input intervals with different mappings.
The reader should keep in mind that all the following work
can be straightforwardly extended to any such mapping
between reals and integers. A general presentation would
degrade readability without increasing the interest of the
paper. Our implementation, however, can accommodate
arbitrary styles of discretization of the input and output
intervals.

2.2 Errors in Function Evaluation

Usually, three different kinds of error sum up to the total
error of an evaluation of fðxÞ:

. The input discretization or quantization error measures
the fact that an input number usually represents a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005 319
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small interval of values centered around this
number.

. The approximation or method error measures the
difference between the pure mathematical function f
and the approximated mathematical function (here,
a piecewise affine function) used to evaluate it.

. Finally, the actual computation involves rounding
errors due to the discrete nature of the final and
intermediate values.

In the following, we will ignore the question of input
discretization by considering that an input number only
represents itself as an exact mathematical number. Again,
all the following work could probably be extended to take
quantization errors into account.

3 PREVIOUS AND RELATED WORKS

An approximation of a function may be simply stored in
a look-up table containing 2wI values. This approach
becomes impractical as soon as wI exceeds 10-12 bits. In
this section, we explore various methods which allow us
to approximate functions with much less memory and
very little computation.

The present paper improves on the bipartite idea and its
successors, which are first presented in detail (Sections 3.1
to 3.3). As our results should be compared to other
competitive hardware approximation methods, we then
also present these methods (Sections 3.4 to 3.6). We leave
out of this survey methods more specifically designed for a
particular function, such as the indirect bipartite method for
postscaled division [10], many methods developed for
evaluating fðxÞ ¼ log2ð1� 2xÞ for Logarithm Number Sys-
tem (LNS) arithmetic [11], [12], [13], [14], and many others.

3.1 The Bipartite Method

First presented by Das Sarma and Matula [1] in the specific
case of the reciprocal function and generalized by Schulte
and Stine [3], [4] and Muller [5], this method consists of
approximating the function by affine segments, as illu-
strated in Fig. 1.

The 2� segments (16 in Fig. 1) are indexed by the � most
significant bits of the input word, as depicted in Fig. 2. For

each segment, one initial value is tabulated and the other
values are interpolated by adding, to this initial value, an
offset computed out of the wI � � least significant bits of the
input word.

The idea behind the bipartite method is to group the
2� input intervals into 2� (with � < �) larger intervals (four in
Fig. 1) such that the slope of the segments is considered
constant on each larger interval. These four constant slopes
are figured inFig. 1 andmaybe tabulated:Now, thereareonly
2� tables of offsets, each containing 2� offsets. Altogether, we
thus need to store 2� þ 2�þ� values instead of 2wI ¼ 2�þ�.

In all the following, we will call the table that stores the
initial points of each segment the Table of Initial Values (TIV).
This table will be addressed by a subword A of the input
word, made of the � most significant bits. A Table of Offsets
(TO) will be addressed by the concatenation of two
subwords of the input word: C (the � most significant bits)
and B (the � least significant bits). Fig. 2 depicts this
decomposition of the input word.

Previous authors [5], [4] have expressed the bipartite
idea in terms of a Taylor approximation, which allows a
formal error analysis. They find that, for � � � � �=2, it is
possible to keep the error entailed by this method in
“acceptable bounds” (the error obviously depends on the
function under consideration). We develop in this paper a
more geometrical approach to the error analysis with the
purpose of computing the approximation error exactly,
where Taylor formulas only give upper bounds.

3.2 Exploiting Symmetry

Schulte and Stine have remarked [3] that it is possible to
exploit the symmetry of the segments on each small interval
(see Fig. 3, which is a zoom view of Fig. 1) to halve the size
of the TO: They store the value of the function in the middle
of the small interval in the TIV and the offsets for a half
segment in the TO. The offsets for the other half are
computed by symmetry. The extra hardware cost (mostly a
few XOR gates) is usually more than compensated by the
reduction in the TO size (see the SBTM paper, for Symmetric
Bipartite Table Addition Method [3]).
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Fig. 1. The bipartite approximation.

Fig. 2. Bipartite input word decomposition.

Fig. 3. Segment symmetry.



Note that the initial bipartite paper [1] suggested using

an “average curve” approximation instead of a linear one

for the TO. This idea wouldn’t improve the maximum error,

but would bring a small improvement to the average error

(a fraction of half an ulp, as Section 4 will show). However,

in this case, Fig. 3 is no longer symmetric and the table size

reduction discussed here is no longer possible. Therefore,

this idea will not be considered further.

3.3 Multipartite Methods

In another paper [4], Stine and Schulte have remarked that

the TO can be decomposed into several smaller tables: What

the TO computes is a linear function TOðCBÞ ¼ sðCÞ �B,

where sðCÞ is the slope of the segment. The subword B can

be decomposed (as seen in Fig. 6) into m subwords, Bi, of

sizes �i for 0 � i < m:

B ¼ B0 þ 2�0B1 þ . . .þ 2�0þ�1þ...þ�m�2Bm�1:

Let us define p0 ¼ 0 and pi ¼
Pi�1

j¼0 �j for i > 0. The

function computed by the TO is then:

TOðCBÞ ¼ sðCÞ �
Xm�1

i¼0

2piBi

¼
Xm�1

i¼0

2pisðCÞ �Bi

¼
Xm�1

i¼0

2piTOiðCBiÞ:

ð1Þ

Thus, the TO can be distributed into m smaller tables,

TOiðCBiÞ, resulting in much smaller area (symmetry still

applies for the m TOis). This comes at the cost of m� 1

additions. This improvement thus entails two tradeoffs:

. A cost tradeoff between the cost of the additions and
the table size reduction.

. An accuracy tradeoff: Equation (1) is not an
approximation, but it will lead to more discretization
errors (one per table), which will sum up to a larger
global discretization error unless the smaller tables
have a bigger output accuracy (and, thus, are
bigger). We will formalize this later.

Schulte and Stine have termed this method STAM, for

Symmetric Table and Addition Method. It can still be

improved: Note, in (1) that, for j > i, the weight of the

LSB of TOj is 2pj�pi times the weight of the LSB of TOi. In

other terms, TOi is more accurate than TOj. It will be

possible, therefore, to build even smaller tables than Schulte

and Stine by compensating for the (wasted) higher accuracy

of TOi by a rougher approximation on sðCÞ, obtained by

removing some least significant bits from the input C.
A paper from Muller [5], contemporary to that of Stine

and Schulte, indeed exploits this idea in a specific case.

The multipartite method presented there is based on a

decomposition of the input word into 2pþ 1 subwords

X1; . . . ; X2pþ1 of identical sizes. An error analysis based on a

Taylor formula shows that equivalent accuracies are

obtained by a table addressed by X2pþ1 and a slope

determined only by X1, a table addressed by X2p and a

slope determined by X1X2, and, in general, a table

addressed by X2pþ2�i and the i most significant subwords.
Muller claims (although without any numerical support)

that the error/cost tradeoffs of this approach are compar-

able to Schulte and Stine’s method. His decomposition,

however, is too rigid to be really practical, while his error

analysis is based on potentially overestimated error bounds

due to the Taylor approximation. Besides, he doesn’t

address the rounding issue.

3.4 ATA Methods

The Addition-Table-Addition methods allow additions before

and after the table look-ups. They are termed after Wong

and Goto [15]; however, a whole range of such methods is

possible and, to our knowledge, unpublished. This section

is a survey of these methods.
Let us note X ¼ Aþ 2��B ¼ a��1 . . . a0b��1 . . . b0, where

� > �.
To compute fðAþ 2��BÞ, it is possible to use the first-

order Taylor approximation:

fðAþ 2��BÞ � fðAÞ þ 2��Bf 0ðAÞ

with

Bf 0ðAÞ � fðAþBÞ � fðAÞ:

Finally,

fðAþ 2��BÞ � fðAÞ þ 2��ðfðAþBÞ � fðAÞÞ:

In other terms, this first-order ATA method approxi-

mates, in a neighborhood of A, the graph of f with a

homotetic reduction of this graph with a ratio of 2�, as

pictured in Fig. 4.
Evaluating fðxÞ thus involves

. one �-bit addition to compute a��1 . . . a0 þ b��1 . . . b0,

. two lookups in the same table,

- fða��1 . . . a0Þ and
- fða��1:::a0 þ b��1 . . . b0Þ,

. one subtraction to compute the difference between
the previous two lookups on less than � bits (the size
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of this subtraction depends on f and � and may be
computed exactly),

. one shift by � bits to perform the division by 2�, and

. one final addition on wO bits.

Both table lookups can be performed in parallel in a

dual-port table or in parallel using two tables or in

sequence/pipeline (one read before the addition and one

read after). This leads to a range of architectural tradeoffs.
This method can be extended to the second order by

using a central difference formula to compute a much better

approximation of the derivative (the error is a third-order

term) as depicted in Fig. 5.
The formula used is now

Bf 0ðAÞ � fðAþBÞ � fðA�BÞ
2

and the algorithm consists of the following steps:

. Compute (in parallel) AþB and A�B;

. Read in a table fðAÞ, fðAþBÞ, and fðA�BÞ;

. Compute

fðAþ 2��BÞ �
fðAÞ þ 2���1 fðAþBÞ � fðA�BÞð Þ:

We now need three lookups in the same table and seven

additions. Here again, a range of space/time tradeoffs is

possible.
The original method by Wong and Goto [15] is actually

more sophisticated: As in the STAM method, they split B

into two subwords of equal sizes, B ¼ B1 þ 2�=2B2, and

distribute Bf 0ðAÞ using two centered differences, which

reduces table sizes. Besides they add a table which contains

second and third-order corrections, indexed by the most-

significant half-word of A and the most-significant half-

word of B. For 24 bits of precision, their architecture

therefore consists of six tables with 12 or 13 bits of inputs

and a total of nine additions.
Another option would be to remark that, with these three

table lookups, it is also possible to use a second-order

Taylor formula:

fðAþ 2��BÞ �

fðAÞ þ 2��Bf 0ðAÞ þ ð2��BÞ2

2
f 00ðAÞ:

Indeed, we may approximate the term f 00ðAÞ by

f 00ðAÞ � f 0ðAþB=2Þ � f 0ðA�B=2Þ
B

�
fðAþBÞ�fðAÞ

B � fðAÞ�fðA�BÞ
B

B

� fðAþBÞ � 2fðAÞ þ fðA�BÞ
B2

:

And, finally,

fðAþ 2��BÞ � fðAÞ
þ 2���1 fðAþBÞ � fðA�BÞð Þ
þ 2�2��1 fðAþBÞ � 2fðAÞ þ fðA�BÞð Þ:

However, the larger number of look-ups and arithmetic
operations entails more rounding errors, which actually
consume the extra accuracy obtained thanks to this formula.

Finally, the ATA methods can be improved using
symmetry, just like multipartite methods.

These methods have been studied by the authors and
found to perform better than the original bipartite
approaches, but worse than the generalized multipartite
approach which is the subject of this paper. This is also true
of the initial ATA architecture by Wong and Goto [15], as
will be exposed in Section 5.1.

3.5 Partial Product Arrays

This method is due to Hassler and Takagi [2]. The idea is to
approximate the function with a polynomial of arbitrary
degree (they use a Taylor approximation). WritingX and all
the constant coefficients as sums of weighted bits (as in
X ¼

P
xi2

�i), they distribute all the multiplications within
the polynomial, thus rewriting the polynomial as the sum of
a huge set of weighted products of some of the xi. A second
approximation then consists of neglecting as many of these
terms as possible in order to be able to partition the
remaining ones into several tables.

This idea is very powerful because the implementation
space is very wide. However, for the same reason, it needs
to rely on heuristics to explore this space. The heuristic
chosen by Hassler and Takagi in [2] leads to architectures
which are less compact than their multipartite counterpart
[4] (and are interestingly similar). The reason is probably
that the multipartite method exploits the higher-level
property of continuity of the function, which is lost in the
set of partial products.

3.6 Methods Involving Multipliers

The previous two methods involve higher order approx-
imation of the function, but the architecture involves only
adders and tables. If this constraint is relaxed, a huge range
of approximations becomes possible. The general scheme is
to approximate the function with one or several polyno-
mials and trade table size for multiplications. Papers
relevant to this work include (but this list is far from
exhaustive):
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Fig. 5. Second order ATA.



. an architecture by Defour et al. [16] involving only
two small multipliers (small meaning that their area
and delay are comparable to a few adders as one of
the inputs is only wI=5 bits wide);

. an architecture by Piñeiro et al. [17] using a squarer
unit and a multiplication tree;

. several implementations of addition and subtraction
in the logarithm number system with (among others)
approximation of order zero [11], order one [12], and
order two [13], [14]. As already mentioned, the
function to be evaluated is fðxÞ ¼ log2ð1� 2xÞ and
lends itself to specific tricks, like replacing multi-
plications with additions in the log domain.

These methods will be quantitatively compared to the

multipartite approach in Section 5.5.

3.7 Conclusion: Architectural Consideration

A common feature of all the methods presented in this

section is that they lead to architectures where the result is

the output of an adder tree. This adder tree lends itself to a

range of area/time tradeoffs which depends on the

architectural target and also on the time/area constraints

of the application.
However, as initially noted by Das Sarma and Matula,

there are many applications where the last stage of the

adder tree (which is the most costly as it involves the carry

propagation) is not needed: Instead, the result may be

provided in redundant form to the operator that consumes

it. It is the case when a table-and-addition architecture

provides the seed to a Newton-Raphson iteration, for

instance: The result can be recoded (using Booth or

modified Booth algorithm) without carry propagation to

be input to a multiplier.
This remark shows that the cost of the adder tree

depends not only on the target, but also on the application.

For these reasons, the sequel focuses on minimizing the

table size.

4 THE UNIFIED MULTIPARTITE METHOD

4.1 A General Input-Word Decomposition

Investigating what is common to Schulte and Stine’s STAM

and Muller’s multipartite methods leads us to define a

decomposition into subwords thatgeneralizeboth (seeFig. 6):

. The input word is split into two subwords, A and B,
of respective sizes � and �, with �þ � ¼ wI .

. The most significant subword A addresses the TIV.

. The least significant subword B will be used to
address m � 1 TOs.

- B will in turn be decomposed into m subwords
B0; . . . ; Bm�1, the least significant being B0.

- A subword Bi starts at position pi and consists
of �i bits. We have p0 ¼ 0 and piþ1 ¼ pi þ �i.

- The subword Bi is used to address the TOi,
along with a subword Ci of length �i of A.

. Finally, to simplify notations, we will denote D ¼
f�; �;m; ð�i; pi; �iÞi¼0...m�1g such a decomposition.

The maximum approximation error entailed by TOi will
be a function of ð�i; pi; �iÞ which we will be able to compute
exactly in Section 4.3. The TOs implementation will exploit
their symmetry, just as in the STAM method.

The reader may check that the bipartite decomposition is
a special case of our multipartite decomposition with
m ¼ 1, � ¼ 2wI=3, � ¼ wI=3, � ¼ �0 ¼ wI=3. Similarly, Stine
and Schulte’s STAM [4] is a multipartite decomposition
where all the Cis are equal and Muller’s multipartite
approach [5] is a specific case of our decomposition where
the �is are multiples of some integer.

Fig. 7 shows a general multipartite implementation,
using symmetry. It should be clear that general decomposi-
tions are more promising than Stine and Schulte’s in that
they allow us to reduce the accuracy of the slopes involved
in the TOs (and, thus, their size). They are also more
promising than Muller’s as they are more flexible (for
example, the size of the input word need not be a multiple
of some 2pþ 1). Our methodology will also be slightly more
accurate than both in computing the slopes and in the error
analysis. Section 5 will quantify these improvements.

4.2 An Algorithm for Choosing a Decomposition

Having defined the space of all the possible multipartite
decompositions, we define in this section an efficient
methodology to explore this space. The purpose of such an
exploration is to select the best decomposition (in terms of
speedor area) that fulfills the accuracy requirement knownas
faithful rounding: The returned result should be one of the two
fixed-point numbers closest to the mathematical value. In
other words, the total error should be smaller than the value
�total of one unit in the last place (ulp):

�total ¼ ðd� cÞ2�wO: ð2Þ

This error will be the sum of an approximation error, which
depends only on the decomposition, and the various
rounding errors.
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Unfortunately, the tables cannot be filled with results

rounded to the target precision: Each table would entail a

maximum rounding error of 0:5�total, meaning that the total

error budget of �total is unfeasible as soon as there is more

than one table. The tables will therefore be filled with a

precision greater than the target precision by g bits (guard

bits). Thus, rounding errors in filling one table are now

�rnd table ¼ 2�g�1�total ð3Þ

and can be made as small as desired by increasing g. The

sum of these errors will be smaller than

�rnd m tables ¼ ðmþ 1Þ�rnd table; ð4Þ

where ðmþ 1Þ is the number of tables.
However, the final summation is now also performed on

g more bits than the target precision. Rounding the final

sum to the target precision now entails a rounding error up

to �rnd final ¼ 0:5�total. A trick due to Das Sarma and Matula

[1] allows us to improve it to

�rnd final ¼ 0:5�totalð1� 2�gÞ: ð5Þ

This trick will be presented in Section 4.6.2.
This error budget suggests the following algorithm:

1. Choose the number of tables m. A larger m means
smaller tables, but more additions.

2. Enumerate the decompositions

D ¼ f�; �;m; ð�i; pi; �iÞi¼0...m�1g:

3. For each decomposition D,

a. Compute the bounds �Di on the approximation
errors entailed by each TOi (see Section 4.3) and
sum them to get �Dapprox ¼

Pm�1
i¼0 �Di . Keep only

those decompositions for which this error is
smaller than the error budget.

b. As the two other error terms �rnd final and
�rnd m tables depend on g, compute the smallest g
allowing to match the total error budget. This
will be detailed in Section 4.4.

c. Knowing g allows precise evaluation of the size
of the implementation of D, as will be detailed in
Section 4.5.

4. Synthesize the few best candidates to evaluate their
speed and area accurately (with target constraints).

Enumerating the decompositions is an exponential task.

Fortunately, there are two simple tricks which are enough

to cut the enumeration down to less than a minute for 24-bit

operands (the maximum size for which multipartite

methods architectures make sense).

. The approximation error due to a TOi is actually
only dependent on the function evaluated, the input
precision, and the three parameters pi, �i, and �i of
this TOi. It is therefore possible to compute all these
errors only once and store them in a three-dimen-
sional array �TO½p�½��½��. The size of this array is at
most 243 double-precision floating-point numbers.

. For a given pair ðpi; �iÞ, this error grows as �i
decreases. There exists a �min such that, for any
�i � �min, this error is larger than the required output
precision. These �minðpi; �iÞ may also be computed
once and stored in a table.

Finally, the enumeration of the ðpi; �iÞ is limited by the
relation piþ1 ¼ pi þ �i and the enumeration on �i is limited
by �min < �i < �. Note that we have only left out decom-
positions which were unable to provide faithful rounding. It
would also be possible, in addition, to leave out decom-
position whose area is bigger than the current best. This
turns out not to be needed.

The rest of this section details the steps of this algorithm.

4.3 Computing the Approximation Error

Here, we consider a monotonic function with monotonic
derivative (i.e., convex or concave) on its domain. This is
not a very restrictive assumption: It is the case, after
argument reduction, of all the functions studied by
previous authors.

The error function we consider here is the difference
"ðxÞ ¼ fðxÞ � effðxÞ between the exact mathematical value
and the approximation. Note that other error functions are
possible, for example, taking into account the input
discretization. The formulas set up here would not apply
in that case, but it would be possible to set up equivalent
formulas.

Using these hypotheses, it is possible to exactly compute,
using only a few floating-point operations in double
precision, the minimum approximation error which will
be entailed by a TOi with parameters pi, �i, and �i, and also
the exact value to fill in these tables as well as in the TIV to
reach this minimal error.

The main idea is that, for a given ðpi; �i; �iÞ, the
parameters that can vary to get the smallest error are the
slope sðCiÞ of the segments and the values TIVðAÞ. With
our decomposition, several TIVðAÞ will share the same
sðCiÞ. Fig. 8 (another zoom of Fig. 1) depicts this situation.

As the figure suggests, with our hypothesis of a
monotonic (decreasing on the figure) derivative, the
approximation error is maximal on the borders of the
interval on which the segment slope is constant. The
minimum �Di ðCiÞ of this maximum error is obtained when

"1 ¼ �"2 ¼ �"3 ¼ "4 ¼ �Di ðCiÞ ð6Þ

with the notations of the figure. This system of equations is
easily expressed in terms of sðCiÞ, pi, �i, �i, TIV, and f .
Solving this system gives the optimal slope1 and the
corresponding error:

sDi ðCiÞ ¼
fðx2Þ � fðx1Þ þ fðx4Þ � fðx3Þ

2�i
; ð7Þ

�Di ðCiÞ ¼
fðx2Þ � fðx1Þ � fðx4Þ þ fðx3Þ

4
; ð8Þ

where (using the notations of Section 2.1)
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1. Not surprisingly, the slope that minimizes the error is the average
value of the slopes on the borders of the interval. Previous authors
considered the slope at the midpoint of this interval.



�i ¼ ðb� aÞ2�wIþpið2�i � 1Þ; ð9Þ

x1 ¼ aþ ðb� aÞ2��iCi; ð10Þ

x2 ¼ x1 þ �i; ð11Þ

x3 ¼ x1 þ ðb� aÞð2��i � 2�wIþpiþ�iÞ; ð12Þ

x4 ¼ x3 þ �i: ð13Þ

Now, this error depends on Ci, that is, on the interval on
which the slope is considered constant. For the same
argument of convexity, it will be maximum either for Ci ¼ 0

or for Ci ¼ 2�i � 1. Finally, the maximum approximation
error due to TOi in the decomposition D is:

�Di ¼ maxðj�Di ð0Þj; j�Di ð2�i � 1ÞjÞ: ð14Þ

In practice, it is easy to compute this approximation error
by implementing (8) to (14). Altogether, it represents a few
floating-point operations per TOi.

4.4 Computing the Number of Guard Bits

The condition to ensure faithful rounding, �rnd m tables þ
�rnd final þ �Dapprox < �total is rewritten using (2), (3), (4), and (5)
as:

g > �wO � 1þ log2ððd� cÞmÞ
� log2ððd� cÞ2�wO�1 � �DapproxÞ:

If �Dapprox � ðd� cÞ2�wO�1, D is unable to provide the
required output accuracy. Otherwise, the previous inequal-
ity gives us the number g of extra bits that ensures faithful
rounding:

g ¼ �wO � 1þ log2
ðd� cÞm

ðd� cÞ2�wO�1 � �Dapprox

& ’
: ð15Þ

Our experiments show that it is very often possible to
decrease this value by one and still keep faithful rounding.
This is due to the actual worst-case rounding error in each
table being smaller than the one assumed above, thanks to

the small number of entries for each table. This question
will be discussed in Section 5.2.

4.5 The Sizes of the Tables

Evaluating precisely the size and speed of the implementa-
tion of a multipartite decomposition is rather technology
dependent and is out of the scope of the paper. We can,
however, compute exactly (as other authors) the number of
bits to store in each table.

The size in bits of the TIV is simply 2�ðwO þ gÞ. The TOis
have a smaller range than the TIV: Actually, the range of
TOiðCi; �Þ is exactly equal to jsiðCiÞ � �ij. Again, for
convexity reasons, this range is maximum either on Ci ¼ 0
or Ci ¼ 2�i � 1:

ri ¼ maxðjsið0Þ � �ij; jsið2�i � 1Þ � �ijÞ: ð16Þ

The number of output bits of TOi (without the guard
bits) is therefore

wi ¼ wO þ g� log2
d� c

ri

� �� �
: ð17Þ

In a symmetrical implementation of the TOi, the size in
bits of the corresponding table will be 2�iþ�i�1ðwi � 1Þ.

The actual costs (area and delay) of implementations of
these tables and of multioperand adders are technology
dependent. We present in Section 5.4 some results for
Virtex-II FPGAs, showing that the bit counts presented above
allow a predictive enough evaluation of the actual costs.

4.6 Filling the Tables

4.6.1 The Mathematical Values

An initial value TIVðAÞ provided by the TIV for an input
subword Awill be used on an interval ½xl; xr� defined (using
the notations of Sections 2.1 and 4.3) by:

xl ¼ aþ ðb� aÞ2��A; ð18Þ

xr ¼ xl þ
Xm�1

i¼0

�i: ð19Þ

On this interval, each TOi provides a constant slope, as
its Ci is a subword of A. The approximation error, which is
the sum of the �Di ðCiÞ defined by (8), will be maximal for xl

and xr (with opposite signs).
The TIV exact value that ensures that this error bound is

reached is therefore (before rounding):

gTIVTIVðAÞ ¼ fðxlÞ þ fðxrÞ
2

: ð20Þ

The TOi values before rounding are (see Fig. 3):

gTOTOiðCiBiÞ ¼ sðCiÞ � 2�wIþpiðb� aÞ Bi þ
1

2

� �
: ð21Þ

4.6.2 Rounding Considerations

This section reformulates the techniques employed by Stine
and Schulte in [4] and using an idea that seems to appear
first in the paper by Das Sarma and Matula [1].

The purpose is to fill our tables in such a way as to
ensure that their sum (which we compute on wO þ g bits)
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Fig. 8. Computing the approximation error.



always has an implicit 1 as its ðwO þ gþ 1Þth bit. This
reduces the final rounding error from �rnd final ¼ 2�wO�1 to
�rnd final ¼ 2�wO�1 � 2�wO�g�1.

To achieve this trick, remark that there are two ways to
round a real number to wO þ g bits with an error smaller
than �rnd table ¼ 2�wO�g�1. The natural way is to round the
number to the nearest ðwO þ gÞ-bit number. Another
method is to truncate the number to wO þ g bits and
assume an implicit 1 in the ðwO þ gþ 1Þth position.

To exploit the symmetry, we will need to compute the
opposite of the value given by a TOi. In two’s complement,
this opposite is the bitwise negation of the value, plus a 1 at
the LSB. This leads us to use the second rounding method
for the TOi. Knowing that its LSB is an implicit 1means that
its negation is a 0 and, therefore, that the LSB of the
opposite is also a 1. We therefore don’t have to add the sign
bit at the LSB. We store and bitwise negate the wi þ g� 1
bits of the TOi and assume in all cases an implicit 1 at the
ðwO þ gþ 1Þth position.

Now, in order to reach our goal of always having an
implicit 1 at the ðwO þ gþ 1Þth bit of the sum, we need to
consider the parity of m, the number of TOis. If m is odd,
the first rounding method is used for the TIV, if m is even,
the second method is used. This way we always have bm=2c
implicit ones, which we simply add to all the values of the
TIV to make them explicit.

Finally, after summing the TIV and the TOi, we need to
round the sum, on ðwO þ gÞ bits with an implicit 1 at the
ðwO þ gþ 1Þth bit, to the nearest number on wO bits. This
can be done by simply truncating the sum (at no hardware
cost), provided we have added half an LSB of the final
result to the TIV when filling it.

Summing it up, the integer values that should fill the
TOis are

TOiðCiBiÞ ¼
2wOþg

d� c
gTOTOiðCiBiÞ

� �
ð22Þ

and the values that should fill the TIV are, if m is odd:

TIVðAÞ ¼ 2wOþg �
gTIVTIVðAÞ � c

d� c
þm� 1

2
þ 2g�1

$ ’
ð23Þ

and, if m is even:

TIVðAÞ ¼ 2wOþg �
gTIVTIVðAÞ � c

d� c
þm

2
þ 2g�1

$ %
: ð24Þ

4.7 Implementation

The methodology presented above has been implemented
in a set of Java and C++ programs. These programs
enumerate the decompositions, choose the best one with
respect to accuracy and size, compute the actual values of
the tables, and, finally, generate synthesizable VHDL.

Our tools also perform various additional checks. Storing

the gTIVTIV and gTOTOi, they measure the actual value of �Dapprox.

We find that the predicted values are indeed accurate to

10�7. They similarly compute the maximal final error and

check that this error is really smaller than the expected

accuracy (see Fig. 9 for an example of output).

5 RESULTS

This section studies the size and area of operators obtained

using this methodology. The functions used are given in

Table 1 with their input and output intervals. Some of these

functions are identical to those in [4]. Notice that the bits

that are constant over the input or output interval are not

counted in wI or wO. Also notice that the output interval for

the sine function is not the image of the input interval

(which would be ½0; 1=
ffiffiffi
2

p
½), but, rather, a larger interval

which will allow easy argument reduction using trigono-

metric identities.2

5.1 Comparison with Previous Work

Tables 2 and 3 present the best decomposition obtained for

16-bit and some 24-bit operands for a few functions. In these

tables, we compare our results with the best-known results

from the work of Schulte and Stine [4]. We can notice a size

improvement up to 50 percent. The size for 1=x and m ¼ 1

is larger than the reference size. After investigation, this is

due to rounding errors compensating, in this specific case

leading to an overestimated g.

5.2 Further Manual Optimization

The results obtained by the automatic method presented

above can usually be slightly improved, up to 15 percent in

terms of table sizes. The reason is that the automatic

algorithm assumes that worst-case rounding will be

attained in filling the tables, which is not the case. As we

have many TOis with few entries (typically, 25 to 28 entries

for 16-bit operands in Table 2), there is statistically a good

chance that the sum of the table-filling rounding errors is

significantly smaller than predicted. This is a random effect

which can only be tested by an exhaustive check of the

architecture. However, in a final stage, it is worth trying

several slight variations of the parameters, which can be of

two types:

326 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005

2. The specification, in the two papers by Schulte and Stine [3], [4] of the
input and output intervals for the sine function is inconsistent. The input
interval should probably read ½0; �=4½ instead of ½0; 1½. The output mapping
is also unclear. Therefore, the comparisons concerning the sine function in
this paper may be misleading.

Fig. 9. Measured error (10-bit sine and m ¼ 2).

TABLE 1
The Functions Tested, with Actual Values of wI and wO

for 16-Bit Precision



. g may be decremented (as this is a variation of one
parameter, it should actually be automatically
performed).

. Some of the �i can be decremented (meaning less
accurate slope). Remark that this negative effect on
the mathematical error may be compensated by the
halving of the number of values in the correspond-
ing TOi, which doubles the expected distance to the
worst-case rounding.

Table 4 gives the example of a lucky case, with

11.5 percent improvement in size. These values of the �i
even produce a method error of more than 0:5 ulp, which

the lucky rounding compensates.

Such a size improvement is reflected in the FPGA

implementation: See Table 8 in Section 5.4.

5.3 Multipartite Are Close to Optimal among
Order-One Methods

We remark in Table 2 and Table 3 that, for large values ofm,

the parameter � is close to wI=2. Consider the family of

linear (order-one) approximation schemes using some � bits

of the input to address a TIV. There is an intrinsic lower

bound on � for this family and it is the � for which the

(mathematical) approximation error prevents faithful

rounding. Generally speaking, this bound is about wI=2,

as given by the Taylor formula (and wI=3 for order-two

methods, etc.). This bound can be computed for each

function exactly and we find that the best multipartite

decomposition almost always exhibits the smallest �

compatible with a faithful approximation.
Combined with the observation that the main contribu-

tion to the total size is always the TIV, this allows us to claim

that our best multipartite approximations are close to the

global optimal in the family of linear approximation

schemes. More accurately, even the availability of a costless
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TABLE 2
Best Decomposition Characteristics and Table Sizes for 16-Bit Operands

TABLE 3
Best Decomposition Characteristics and Table Sizes for 24-Bit Operands

TABLE 4
Effect of Manual Optimization of the Parameters

(Sine, 16 Bits, m ¼ 4)



perfect multiplier to implement a linear scheme will remove

only theTOis, which accounts for less than half the total size.

5.4 FPGA Implementation Results

In this section, the target architecture is a Virtex-II 1000

FPGA from Xilinx (XC2V1000-fg456-5). All the synthesis,

place, and route processes have been performed using the

Xilinx ISE XST 5.2.03i tools. The generated VHDL operators

have been optimized for area with a high effort (the results

are very close using a speed target). Area is measured in

number of slices (two LUTs with four address bits per slice

in Virtex-II devices), there are 5,120 available slices in a

XC2V1000. The delay is expressed in nanoseconds. We also

report the delay of the operator and its complete synthesis

time (including place and route optimizations) Tsynth. The

compression factor CF is the ratio number of bits/number

of LUTs; it measures the additional compression capabil-

ities of the logical optimizer. In the target FPGAs, look-up

tables may hold 16 bits, so a CF larger than 16 indicates

such a size improvement.
Table 5 presents some synthesis results for the functions

described in Table 1. The time required to compute the

optimal decomposition (using the algorithm presented in

Section 4.2) is always negligible compared to Tsynth.
Table 6 details the evolution of area and delay with

respect to input size for the sine function. Note that, in the

Xilinx standard sine/cosine core [18], which uses a simple

tabulation, the input size is limited to 10 bits, meaning an

8-bit table after quadrant reduction.3

Some results for 24-bit are also given in Table 7, showing

that 24-bit precision is the practical limit of multipartite

methods on such an FPGA. The economical limit, of course,

is probably less than 20 bits, as suggested by Table 6.
These results show that, when the number of TOis m

increases, the operator size (the number of LUTs) decreases.

The size gain is significant when we use a tripartite method

(m ¼ 2) instead of a bipartite one (m ¼ 1). For larger values

of m, this decrease is less important. Sometimes, a slight

increase is possible for even larger values of m (e.g., m ¼ 3

to m ¼ 4 for the sine and 2x function). This is due to the

extra cost of the adder with an additional input, the XOR

gates, and the sign extension mechanism that is not

compensated by the tables size reduction. This is also
reflected in the operator delay.

The compression factor CF is more or less constant (just
a slight decrease with m). This fact can be used to predict
the size after synthesis on the FPGA from the table size in
bits. As each LUT in a Virtex FPGA can only store 16 bits of
memory, we can deduce from these tables that the
synthesizer performs some logic optimization inside each
table. The compression factor decreases when m increases
because the minimization potential is smaller on small
tables than on larger ones. The synthesis time also decreases
when m increases.

We investigated in [19] the use of ad hoc table-
compression techniques. For this, we used JBits, a low-level
hardware description language developed by Xilinx. Com-
pression factors of up to 19 could be obtained for 16-bit and
20-bit sines at the expense of two months of development.

An important remark is that smaller operators turn out
to be faster on FPGAs: Using a multipartite compression
improves both speed and area.

5.5 Comparisons with Higher-Order Methods

Results for 24-bit operands should also be compared to the
ATA architecture published by Wong and Goto for this
specific case [15]. They use six tables for a total of 868,352
bits and, altogether, nine additions. Our results are thus
both smaller and faster. However, it should be noted that
five of the six tables in their architecture have the same
content, which means that a sequential access version to a
unique table should be possible (provided the issue of
rounding is studied carefully). This sequential architecture
would involve only about 16Kbits of tables, but it would be
five times slower.

The remainder of this section compares with recently
published methods involving multipliers. Such methods
have to be used for wI > 24 bits: If we consider that the
maximum admissible table size is 212 entries, this limit is
reached by the multipartite approach for wI ¼ 24. Our aim
here is to give a more quantitative idea of the domains of
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3. Using on-chip RAM blocks, the simple table approach allows up to
16 bits, meaning wI ¼ 14 after quadrant reduction.

TABLE 5
Virtex-II FPGA Implementation for Some Functions (16-Bit)

TABLE 6
Virtex_II FPGA Implementation of the Sine Function

for Various Sizes

TABLE 7
Virtex_II FPGA Implementation of the Sine Function (24-Bit)



relevance of the various methods. Of course, this will
depend on the function and on the target hardware.

The method published recently by Defour et al. uses two
small multipliers in addition to tables and adders [16]. Note
that recent FPGAs include small 18� 18 ! 35-bit multi-
pliers which can be used for Defour et al.’s architecture.
This method has several restrictions: It is more rigid than
the multipartite approach as it uses a decomposition of the
input word into five subwords of the same size. As a
consequence, for some functions, it is unable to provide
enough precision for faithful rounding when wO ¼ wI .
Table 9 gives some comparisons of this method with the
multipartite approach. We chose m ¼ 4 so that the number
of additions is the same in both approaches. According to
this table, a multipartite approach will be preferred for
precisions smaller than 15 bits and Defour et al.’s approach
will be preferred for precisions greater than 20 bits, as far as
size only is considered. For wI ¼ 15, Defour et al.’s tables
are still smaller, but the size of the multipliers will
compensate, so multipartite should be both smaller and
faster. If speed is an issue, the delay of the multipliers will
play in favor of multipartite tables.

The architecture by Piñeiro et al. [17] involves a squarer
and a multiplier and 12,544 bits of tables for 24-bit 1=x. An
FPGA implementation sums up to 565 slices, which is only
slightly more than our 16-bit implementation at 474 slices.
This again suggests that multipartite methods are not
relevant for more than 16 bits of precision, as far as size
only is concerned.

Finally, we have recently compared a second-order
approach using two multipliers and the multipartite
approach on the specific case of addition/subtraction in
the logarithm number system. The functions involved are
then log2ð1þ 2xÞ and log2ð1� 2xÞ and a restricted form of
faithful rounding is used. In this case, we have only one
point of comparison, corresponding to about 12 bits of
precision. The multipartite approach is better both in terms
of speed and area in this case [8].

In all these cases, it should be noted that the simplicity and
generality of the multipartite approach may be a strong
argument. Implementing a new function is a matter of
minutes from the start down to VHDL code. This code is then
efficiently synthesized, at least on FPGAs, because it only
contains additions. Comparatively, approaches relying on
multiplications need much more back-end work, typically
requiring to design custom operators as Piñeiro et al. does.

5.6 Limits of the Method

5.6.1 Nonmonitonicities

Ourapproachmaximizes theapproximationerror (within the
bounds of faithful rounding) to minimize the hardware cost.
Thishas thedrawbackof entailingnonmonotonicities at some
of the borders between intervals: See, for instance, Fig. 8

around x ¼ x3. These nonmonotonicities are never bigger
than one ulp thanks to faithful rounding. It is a problem of all
the faithful approximation schemes, but the multipartite
method as presented makes it happen quite often.

The subject of monotonicity in the context of bipartite
tables has been studied by Iordache and Matula [7]. They
reverse-engineered the AMD K6-2 implementation of fast
reciprocal and reciprocal square root instructions, part of
the 3D-Now instruction set extensions. They found that
bipartite approximations were used, that the reciprocal was
monotonic, and that the reciprocal square root was not.
They also showed that the latter could be tuned to become
monotonic, at the expense of a larger table size (7.25 KB
instead of 5.5). This tuning involves increasing the output
size of the TIV and an exhaustive exploration of what value
these extra bits should take.

In general, if monotonicity is an important property, it can
be enforced simply in a multipartite approximation by using
appropriate slopes and TIV values. For instance, monotoni-
cally increasing functions with decreasing derivatives (as on
our figures) may use the slope on the right of the interval
instead of the middle, ensuring that the approximation is
monotonic. This means a larger maximum approximation
error, however. Rounding errors can then be kept within
bounds that ensuremonotonicity by increasing g as in [7]. All
this entails increased hardware cost. A general and systema-
tic study of this question remains to be done.

5.6.2 Infinite Derivative

There are also functions for which this methodology will
not work. The square root function on ½0; 1½, for example,
although it may perfectly be stored in a single table, has an
infinite derivative in 0 which breaks multipartite methods.
We have never seen any mention of this problem in the
literature, either. One solution in such cases is to split the
input interval into two intervals ½0; 2�� ½ (on which the
function is tabulated in a single table) and ½2�� ; 1½, where the
multipartite method is used. The optimal � can probably be
determined by enumeration.

6 CONCLUSION

We have presented several contributions to table-lookup-
and-additions methods. The first one is to unify and
generalize two complimentary approaches to multipartite
tables by Stine and Schulte and by Muller. The second one
is to give a method for optimizing such bipartite or
multipartite tables which is more accurate than what could
be previously found in the literature. Both these improve-
ments have been implemented in general tools that can
generate optimal multipartite tables from a wide range of
specifications (input and output accuracy, delay, area).
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TABLE 8
Effect of Fine-Tuning on Virtex-II Implementation

TABLE 9
Comparison with Defour et al.’s Approach



These tools output VHDL which has been synthesized for

Virtex FPGAs. Our method provides up to 50 percent

smaller solutions than ones of the best literature results.

This paper also discusses the limits of this approach. By

comparing with higher-order methods, we conclude that

multipartite methods provide the best area/speed tradeoff

for precisions from 8 to 16 bits.
With the observation that multipartite methods are

optimal among first-order methods, this paper leaves little

room for improvement in suchmethods. Futurework should

nowaimat providingmethods for exploring thedesign space

of higher-order approximations with the same ease as

multipartite methods allow for first-order approximations.
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Lyon, France. He teaches computer architecture
and VLSI design at the �EEcole Normale Supér-
ieure de Lyon, France. His research interests

include computer arithmetic, computer architecture, and VLSI design.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

330 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005


