N

N

A Tool for Unbiased Comparison between Logarithmic
and Floating-point Arithmetic

Florent de Dinechin, Jérémie Detrey

» To cite this version:

Florent de Dinechin, Jérémie Detrey. A Tool for Unbiased Comparison between Logarithmic
and Floating-point Arithmetic. Journal of Signal Processing Systems, 2007, 49 (1), pp.161-175.
10.1007/s11265-007-0048-7 . ensl-00542212

HAL 1d: ensl-00542212
https://ens-lyon.hal.science/ensl-00542212
Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://ens-lyon.hal.science/ensl-00542212
https://hal.archives-ouvertes.fr

A tool for unbiased comparison between logarithmic and
floating-point arithmetic

Jérémie Detrey Florent de Dinechin

Laboratoire de I'Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
46, allée d'ltalie
F-69364 Lyon cedex 07

{ Jeremie.Detrey, Florent.de.Dinechin }@ens-lyon.fr

Abstract

For applications requiring a large dynamic, real numberg bearepresented either in floating-point, or in the log-
arithm number system (LNS). Which system is best for a giyaslieation is difficult to know in advance, because
the cost and performance of LNS operators depend on thet @cgaracy in a highly non linear way. Therefore,

a comparison of the pros and cons of both number systemsnistef cost, performance and overall accuracy is
only relevant on a per-application basis. To make such a aosgn possible, two concurrent libraries of parameter-
ized arithmetic operators, targeting recent field-prograinle gate arrays, are presented. They are unbiased in the
sense that they strive to reflect the state-of-the-art foin bamber systems. These libraries are freely available at
http://ww. ens-1yon.fr/LIP/Arenairel.

1 Introduction

1.1 Hardware representations of real numbers

Digital signal processing (DSP) relies mostly on fixed-parithmetic. However, some DSP applications such as
adaptive filters compute on numbers with a large dynamiceaii¢pe mainstream solution in this case is the use of
floating-point arithmetic, which is supported by recenthhénd DSP processors. Another recent contender on the
DSP market is the FPGA (fdfield Programmable Gate Arrgya programmable VLSI circuit which can be configured
at the bit-level to emulate any digital circuit. Initiallggentially used for the rapid prototyping of applicatigesific
integrated circuits (ASIC), FPGAs are increasingly beisgdias hardware accelerators for specific computations.
Here also, fixed-point is preferred when applicable, allrtigze as the fine-grained structure of FPGAs is optimized
for fixed-point. However, as the capacity of FPGAs increasesdoes the complexity of their applications: Many
floating-point applications were published in the last gd&r 10, 19, 22, 26, 16, 11, 24, 7, 12]. Some of these works
emulate the floating-point formats available in processbus the flexibility of FPGAs also allows to adapt these
formats to match the precision and dynamic requirementsgofem application.

Floating-point is not the only way to represent real numixetsardware circuits with a larger dynamic than fixed-
point: One can also uselagarithmic coding (or LNS forLogarithmic Number System A positive real number
is then represented by its logarithm (usually in radix 2)J &me hardware operators compute on these logarithms.
The main interest of this coding is that multiplicationsyisiions and square roots are trivial with logarithms. The
main drawback is, of course, that additions and subtrastoma much more complicated. Given this tradeoff, several
publications have shown applications for which this sysieas more efficient in terms of speed and area than floating-
point [5, 23].

1.2 Which arithmetic for which application?

Qualitatively, it is clear that LNS arithmetic can be conidet only if the application matches two conditions: There
has to be many easy operations, (/, z> et /z) and few additions, and the required precision has to be doi,

as the area of an LNS adder grows exponentially with pretiéee Section 2.3). Quantitatively, it is much more
difficult to have a precise answer. The best comparativeysttass that of Colemaret al. [5]: It considers several
representative algorithms in two precisions, and studis Accuracy and performance. It is however clear that the
authors took less care while designing floating-point dpesathan LNS ones, and the comparisons are biased. For
example, their floating-point square root is a Newton iferatwhich is quite inefficient in this context. Moreover,
they only target ASIC applications. For FPGASs, there is aepdyy MatouSelet al. [23], but the example algorithm
they study is a mere caricature: Its iteration only has owuktiad for two divisions, three multiplications, two sqear

and one square root. Such an uncommon algorithm will notinoewa designer to try LNS for more classical circuits.

Are there real applications for which LNS is better suiteathtlrP, and more generally, how can we help designers
evaluate the pros and cons of each arithmetics for theiiagifn? A problem is that the costs of some LNS operators
with respect to precision are highly non-linear. Thesesatto depend on the target technology, and a variety of
algorithms expose wide area/speed tradeoffs, as the sedLshow.

Another problem is the evaluation of the overall accuracyhef application (or its signal to noise ratio). On
one side, both systems, for the same number of bits, refraserbers with comparable range and precision. On
the other side, the rounding errors due to operations mayehedifferent. In FP, all the operations may involve a
rounding error. In LNS, multiplications and divisions aseet (as they are implemented as fixed-point addition and
subtraction) but addition and subtraction involve rougdénrors which may be larger than that of FP. The net effect
of combining these errors in one’s application is difficoliredict. If one of the number systems provides the same
overall accuracy for a smaller precision of the operatdris,ih turns has an impact on their respective costs, as will
be illustrated in Section 3.3.3.

The conclusion is that it is probably impossible in a pulilma to exhaustively cover the set of parameters
controlling the speed/area/precision tradeoffs for bditSland FP so that a designer can make an informed choice.
As an example, an attempt by Haselman et al [18] only coverstdmndard IEEE-754 single and double precision: it
will not help if the application can accomodate lower or intediate precisions, as is commonly the case for signal
processing.

Therefore, our goal in this paper is not to publish compassbut a generic comparison tool.

1.3 Atool for an unbiased comparison

This paper presents a library of operators, supporting Bo#ting-point and LNS formats. This library is freely
downloadable fronint t p: / / www. ens- | yon. fr/ LI P/ Arenai r e/ . It allows to choose the precision and the
dynamic of numbers, and the operators for the two numbeesyshare a common syntax and exceptional case
handling, easing the switch from one to the other. It pravidperators for addition, subtraction, multiplication,
division and square root, along with some useful convessioncombinatorial or pipelined flavor. It is written in
portable VHDL, and all the operators have been designedentlivalent optimization effort.

Our objective is dual: First, to allow a more accurate stutlyhe respective pros and cons of LNS and FP
than what current literature offers. Second, to providagiess with all the elements to experiment and choose
the number system that best suits a given application, wstbperations, its cost/performance constraints, and its
dynamic/precision constraints.

The first part of the article briefly describes the number fatisrand the architectures of the differents operators
of the library, with the purpose of showing that this libragflects the state-of-the-art in both systems. The second
part gives area and speed benchmarks of these operatordiagcm the different parameters, and examples of the
unbiased comparisons we hope this library allows.

2 Alibrary for real number arithmetic

2.1 Number representation

The representation of a real number in the library is pararnzetd by two integersy z which determines the dynamic
of the represented numbers, amg their precision. The ranges of representable values fovendw g, wr) are

not identical for both formats, but are as close as possilsEnghe intrinsic differences between these formats. It is
therefore possible to compare these two number systems&ma pair of parametefs ., wr), as the dynamic and

the precision of these arithmetics are equivalent. Moreirately, relative coding errors between those two formats
are within alog(2) ratio, as can be deduced from the following Equations (1)(@hd

2.1.1 Floating-point representation

For floating-point numbers, a format inspired by the IEEE-gt&andard [1] is adopted: A numbdr is represented
on3 + wg + wr bits by two bits for coding exceptional cases, followed byga dit Sx, an exponenE x biased

by Fo onwg bits, and the fractional pafx of the mantissa omr bits. The mantissa is normalized[ih 2[, so its

most significant bit is always and is implicit in the coding:

X = (=1)%% x 1.Fx x 2Fx~Fo, (1)

The two extra bits used by the internal format representmi@al cases such @s+oc or NaN (Not a Number,)
As the IEEE-754 standard codes these numbers by specifioexpealues, our library provides conversion operators
from one format to the other. It is also possible to retridwase bits for exception handling.

Our format diverges from the IEEE-754 standard becausees dot support subnormal numbers [17].

2.1.2 LNS representation

The LNS format or8 + wg + wpr bits is composed of the same two bits for exceptional casgignebitSx, and a
fixed-point 2's complement representation of the logarithgn = log, (X), coded withwg bits for its integer part
Er andwr bits for its fractional parf

X = (—1)% x 2Frx-Fix)

Exceptional cases are coded exactly as for floating-poimt@us. Exception handling is thus identical between
FP and LNS, and we shall not detail it any further.

2.2 Floating-point operators

This section does not intend to be a course about hardwatafegzoint operators: There are whole books discussing
this subject [15, 14]. The goal here is to convince the red#urour library is sufficiently optimized to allow an
unbiased comparison between LNS and floating-point.

2.2.1 Addition/subtraction

To compute a floating-point addition, one first has to alignrtiantissas, then add/subtract them and last renormalize
the result. But these steps are not always necessary: Wheasxgionents are closel¢se path the alignment of
the mantissas becomes simple whereas conversely, wherpbeents are farfér path, it is the final normalization
which becomes trivial.

The architecture of this operator, shown Figure 1, theeefmes two concurrent computational paths. Those two
paths allow to reduce the critical path at the expense oéaging slightly the area of the operator.

2.2.2 Multiplication

The multiplier architecture is simpler than the adder/gdier architecture: It only has to compute the product ef th
mantissas of the two operands, and the exponent is obtajneanming the two exponents minus the hias

The product of the mantissas is expressed asraVHDL. This ensures efficient portability: For example, on
Xilinx Virtex-11, the synthesis tools can use the embeddedis multipliers specific to this FPGA. It also ensures flex-
ibility, as synthesis tools may provide several multipliariants optimized for various area/speed tradeoff. Hanev
using a generic multiplier will generally be slightly suptmnal. If this is a concern, a designer can always provide
his own specific multiplier, such as those described in [4].

X Y

wg +wr + 5? ?u'g +wp +3

I swap/difference |

x| v Ex — By
wg +wrp +3 wp +wp+3 wg

+/-

shift/

final normalization
sign and exception handling

éll‘p) +wp +3

Z

Figure 1: Architecture of the floating-point adder/subteac

2.2.3 Division

The global architecture of the divider is shown in Figure 2.

The result mantissa is the quotient of the mantissas of th@perands, and the exponent is the difference between
the two exponents plus the bia%s. The quotient is computed using a radix 4 SRT algorithm [18hthe digit set
{-3,-2,—-1,0,+1, 42,43} which is maximally redundant. Radix 4 SRT was the best smiuimong the other
radices we tried (radix 2, radix 8 or radix 4 with another tigit). These findings are consistent with those of Lee
and Burgess [19]. As the quotient is computed in a redundaittet, a final addition is needed to switch back to
binary.

2.2.4 Square root

The square root operator follows the same principle: Theeapt is divided by two and corrected by adding half a
bias Ey /2, while the square root of the mantissa is computed by a radiRP (appearing to be better than radix 4)
[13].

2.3 LNS operators

2.3.1 Multiplication, division and sqaure root

The main advantage of LNS is the simplicity of these opesator

Lxxy = LX+LY7
Lx,v = Lx—Ly,
1
Lx = s3lx.

X Yy My My
ZL'E+H7F‘+3? wg +wp + 3
Ex[” By MY)My
Wg Wg wp + 2 wp 471
-1 L[] 2
wg + 1 wp +'3

wp + 1

wg +wp +2

final normalization ;j
sign and exception handling SRT4
611?5 +wp+3
wr +3
z U
M /M,

Figure 2: Architecture of the floating-point divider.

Multiplication, division and square root are therefore iempented respectively by addition, subtraction and right
shift of the logarithms of the operands. The following foesi®nly on the addition/subtraction.

2.3.2 General architecture of the addition/subtraction ogrator

Performing an addition or a subtraction in LNS is much monmmglicated than in floating-point, as it requires the
evaluation of two non-linear functiong; and fo defined as follows (hereX andY are both positive numbers such
thatX >Y):

Lxty = logy(2Lx 4 2v)
= Lx+fe(Ly — Lx), with fg(r)=logy(1+2"),
foy = 10g2(2LX — QLY)

Lx + fo(Ly — Lx), with fe(r) =logy(1—2").
The architecture of this operator is shown in Figure 3(a)e ™o main components evaluate approximations to
fo and fs (also represented in the figure) on the intefval co; 0).

2.3.3 Implementation of f¢, and fo

Given the intrisically non-linear nature gf; and fs, we have to use an approximation scheme for evaluating these
functions. The literature proposes many solutions thaecawvide tradeoff between speed and operator precision.
In [27], the functions are evaluated with only one table lgolon intervals finely tuned to minimize the table size
(order0). In [21], Lewis uses a first-order Taylor series that redube size of the tables while increasing the critical
path. Finally, in [5], the authors introduce a method usirdggree2 polynomial which greatly reduces the size of
the tables, but requires two table lookups, one multigliceand some additions in the critical path.

In the first release of our library, we limited ourselves towltiplier-less first-order approximation scheme, using
the multipartite table method [6]. This choice is widelyalissed in [8], but limits the achievable precision for this
operator towr < 13 bits.

We then studied other possible decompositions and singgiifics of these functions, focusing particularly on
the method presented in [25] and already used by [20]. Thihade whose architecture is depicted Figure 3(b),
relies on the evaluation of the functiofs, log,(x) andlog,(— 1;,21) which can be faithfully approximated by
second-order polynomials (here “faithfully” means that gror is smaller than the value of the least significant bit
of the result), something not possible ffis and fo. Nevertheless, the critical path is greatly increasech@2’t and
log, (x) functions have to be evaluated sequentially and also regaine range reduction mechanism. The evaluation

r

wg 4w + 3 wg + wp

wWg + W 2.v

exception and I swap/difference I
sign handling Ty — L Tx
wp +wp wg +wp

evaluation of
fo and fo

10&'2(95) log,(— .

wp + 2 0

WE + Wk

wp +wp +3 wg +wp + 2 wp + 2

wp+wp+ 1YLy

7 feys(r)
(a) Global architecture of the operator. (b) Detail: Computingfg and fo.

Figure 3: Architecture of the LNS adder/subtracter.

itself of those functions is achieved by using a secondfamiethod presented in [9], which allows precisions up to
wp = 23 bits.

To summarize, our library currently proposes two flavorstfar LNS adder, one based on the multipartite table
method, noted O1 (order 1), which is fast but bulky and liahite wr < 13 bits, and the other based on the
decomposition from [25], noted O2 (order 2), which is muchalien but also slower. These two implementations
reflect the state of the art.

3 Precision/performance tradeoff: Which number system forwhich
application?

As previously remarked, the characteristics (area anddsjeof the operators depend on the chosen number format
and range and precision parameters. If the applicatioatdisthe latter two, the designer still has to choose between
floating-point and LNS. Therefore, this section first préseompared benchmarks of the various operators, allowing
to compute a rough estimation the area and latency of a tifouithe two number systems. Then, with some
examples, a second section shows that a finer estimationecabthined by effective synthesis of the circuit. Three
complete examples illustrate this methodology.

In this section, all the estimations are given by the Xili®EI5.2 tool suite for a Virtex-11 XC2V1000-4 FPGA.

3.1 Comparison of isolated operators

The plots of Figure 4 give the area and latency for addersaitvilo number systems depending on the dynamig)(
and precisionr) parameters. Latencies are given mainly for comparativeqse, as the pipelined versions of
these operators are more likely to be used (however, laisrstil critical when dealing with loops in the circuit).

As expected, for floating-point addition/subtraction @ters, area and latency grows linearly with; andw .
However, for LNS operators, the area grows linearly with but exponentially withv », whereas the latency remains

area (slices) area (slices)

3000
2500
2000
1500
1000

500

(a) FP adder area

latency (ns)

34
32
30
28
26
24

(c) FP adder latency (d) LNS adder latency

Figure 4: Area/delay for floating-point (on the left) and LK the right) adders. Note the different scales.

linear forwgr andwr because the latency of table lookups is logarithmic in ressfeethe size of the tables.

For all operators, both in floating-point and LNS, area ameHey estimations depend essentially on the required
precisionwr and not on the dynamie . For the sake of readability, only the O1 method was showniguar€ 4 but
the same conclusion applies to the O2 method. Thereforiyréler comparisons will be presented here depending
only onwg.

The plots of Figure 5 present area and latency estimatedlfilvecoperators provided by the libraries. It can be
noted that the four floating-point operators have roughtyshme area, but if addition/subtraction and multipligatio
have relatively low latencies, the digit recurrence algonis of division and square root are significantly slowere Th
area/latency tradeoff also clearly appears for the LNS raddken applicable, the O1 multipartite method is faster
but bulkier than the O2 method.

These graphs can be used to quickly compute a very roughasiimof the area and latency of a given circuit
according to the dynamic, the precision and the number septation format. Examples are given in Table 1.

[datawidth(wp,wr) [A+B [AxB | AxB+C | JVAZ+BZ |
[10bits(3,6) FP [[111sl.-25ns] 46sl.-19ns| 157sl.- 44ns] 250sl.- 84ns]
| 10Dbits(3,6) LNS-O1 |[114sl.-2Ins| 9sl.- 5ns| 123sl- 26ns| 133sl.- 28ns|
[14bits(5, 8) FP [[148sl.-30ns] 68sl.-25ns| 216sl.- 55ns] 354 sl.-103 ns|
| 14Dbits(5,8) LNS-O1 |[269sl.-28ns| 11sl- 5ns| 280sl.- 33ns| 292sl.- 36ns|
[16 bits(5, 10) FP [[173sl.-33ns] 92sl.-26ns| 265sl.- 59ns] 442sl.-114ns]|
| 16 bits(5,10) LNS-O1 |[[627sl.-28ns| 12sl.- 5ns| 639sl.- 33ns| 652sl.- 35ns]|
[24 bits(7,16) FP [[260sl.-35ns] 191sl.-30ns| 451sl.- 65ns] 866 sl.- 153 ns|
| 24Dbits(7,16) LNS-O2 |[[930sl.-76ns| 16sl.- 6ns| 946sl.- 82ns| 1877sl.- 84ns]|
[32bits(8,23) FP [[351sl.-34ns] 351sl.-31ns| 702sl.- 65ns] 1310sl.- 183 ns]
|

32 bits(8,23) LNS-O2 |[3904sl.-97ns| 20sl.- 7ns| 3924 sl.-104 ns| 7829 sl. - 106 ns|

Table 1: Area (slices) and latency (ns) comparison of sonaengkes for various parameter combinations. The esti-
mations for the compound operators are obtained by addegatues for the simple operators.

All the previous estimations are given only for combinadbiperators. These operators are also available in
pipelined version, designed to runid0 MHz. As shown by Figure 6, the caracteristics of the pipalinperators
roughly follow those of their combinatorial counterpatieir area is slightly higher but remains proportional to the
combinatorial area, and the pipeline depth is also promuatito the combinatorial delay.

area (slices)
700

600 [~

+
X
501 7.

area
4000

3500

3000

(slices)

~e multipartite method

Voo (order 1)

2500

400 -
2000

300 [~

1500 [~ order 2 method

200 [1000 F

100 500

.
0 L L L n L L L n L) 0)

(a) FP operators area (b) LNS operators area

latency (ns)

latency (ns
y (ns) 100

+_.

wor o _,
e 9 R
P
ol _ 8o F R
Ve 0] VA
100 s
60
e ol
80| g
s w0r
o e
60 s 2 ,//_/a
e 20F
w0F -
s 0}
N ST S S SR s R J 5 ety o s e st g i et R
6 8 10 12 14 16 18 20 22 24 6 8 10 12 14 16 18 20 22 24
Wwr wr

(c) FP operators latency (d) LNS operators latency

Figure 5: Benchmarks for floating-point (on the left) and L{¢& the right) operators. Note the different scales.

3.2 Comparing operators in context

The estimates presented in the previous section give a rideghbut the goal of our library is to allow accurate esti-
mations for each particular circuit. The simplicity of steliomparison is shown for a toy example, the computation
of a normv/ A2 + B2. The architecture of this operator is shown in Figure 7(i)e Two squarings are performed
in parallel by multipliers, as our librairies do not yet pide dedicated squaring operators, followed by addition and
square root.

The corresponding VHDL code is given in Figure 7(a). As it isti&n here, it handles floating-point data, with
a dynamic ofwr = 6 bits, and a precision abr = 13 bits. Those three parameters are represented in the code by
the constants “fmt”, “wE” and “wF” respectively (defined ¢ 13, 14 et 15), which are passed to each operator and
define the bit width of the signals.

Therefore, to change the number representation formatigéejust has to change the value of “fmt” from “FP”
(for floating-point) to “LNS” (for logarithmic representan). The same principle applies farz andwr, that can
be modified by changing the value of “WE” or “wF”, and of coues#justing the value of the width of the component
ports (lines 7, 8 et 9).

For pipelined operators, the method is sensibly more camplethe pipeline depth of the operators varies with
the number representation and the precision. Schedulsgphbrations depends on these parameters. A reasonable
approach is therefore to study the various parameter choicex combinatorial circuit (while reserving area for the
pipeline overhead), and then benchmark the pipelinedami@ily for the most interesting parameter sets.

3.3 Comparison examples
3.3.1 Norm+/ A2 + B2

Figure 8 compares the area and latency of the norm operatfiofting-point and LNS. If the general aspect of the
plots roughly matches the estimations from Table 1, aredatrdcy values are lower than expected, especially for
the LNS operator. This is because the VHDL synthesizerzeslihat botd? and B? are non-negative, and thus the
subtraction part of the adder/subtracter operator is siselehis simplification is quite important in the case of LNS,

area (slices) latency (ns) pipeline depth
1100 - combinatorial

e 140 - combinatorial S L6
1000 |- pipelined _ .. _ A 130 /
900 - ,‘l Y 120 -
800 / 110 |
700 | , 100 -
600 |-

pipelined _ _, _ dis

14

13

90 - 12

500 - 80 - it
00 0
w0

300 60 -

200
100
4

50 -

L) 40
6 8 10 12 14 16 18 20 22 24 4
WE wg

(a) Area (b) Latency/pipeline depth

ot
oo
—
S
—
IS
—
IS
—
&
-
&
)
S
)
N
o
R

Figure 6: Benchmarks for combinatorial and pipelined flogipoint dividers.

as the subtraction tables contribute to a large part of tha af the operator. This effect, unsuspected when looking
at the operators in isolation, illustrates the usefulnéssammparison in context.

In this example, the designer will conclude that LNS is iesing for precisions up te» = 16 bits, but floating-
point has to be used for higher precisions.

3.3.2 Dot product

As previously, a three-dimensional dot product operataquise easy to implement using our operators. The naive
architecture of this operator is shown in Figure 9.

The area and delay estimations are shown in Figure 10, whe8dperators appear to be too large very soon,
for precision fromwr = 9 or 10 bits. Indeed, as the number of adders increases in thissasegs the area of LNS
operators. However, these operators are still faster tiafidating-point ones.

3.3.3 3D transformation pipeline

As last example, we choose to study a full scale applicat©@uarrent 3D engines generate an image from a scene
described as a list of vertices, a list of triangles and trsitjpm of the camera. The transormation stage transforms th
vertices from the scene coordinates to the camera’s viefmiistrum coordinates, including perpective computations
From an algorithmic point of view, this stage can be triyiglarallelized, and only requires a dimension 4 matrix-
vector product and two divisions as shown in Figure 11. Tlaigesis sensitive, as it determines the on-screen position
of the triangles, and therefore requires some precisionondistort the objects.

The circuit has been fully implemented and tested on a Xiliitiex-E XCV2000E-6 based Celoxica RC1000-
PP board. The complete application is also freely availadieng with the library. Some screenshots are given in
Figures 12 and Figure 13. Even at low precisions, as can lrefsa®a Figure 12, the general aspect of the objects
remains correct, but as one zooms into the picture, morespoads required, as illustrated by Figure 13.

Back to the comparison between FP and LNS, these screemgv®i new information: For the same precision,
FP gives images which provide slightly better visual qyalitan LNS. The rule of thumb here is that BPwr)
provides a visual quality better than LNSwr) but worse than LN&, wr + 1). For this specific application,
cost/performance should be compared accordingly. Thesenw@asy way to get an intuition of this beforehand, and
it should’t be generalised: For some applications, LNS piitivide better overall accuracy or signal-to-noise ratio
than FP. As LNS multiplications and divisions are withoubes, this will indeed probably happen to applications for
which LNS is also more efficient.

Table 2 gives a few results obtained for various precisi@nge to on-board memory bandwith limitations, along
with the PCI bus limitations, the circuit can only procesg eertex each 50MHz cycle, and therefore parallelizing
the design by replicating the operator is useless, alth@wgiuld have been interesting as some designs occupy less
than a quarter of the available FPGA area.

This example is still a toy example, as there is no hope th&R@A will match the cost/preformance ratio of
current graphics cards. Itillustrates how the library carubed to evaluate in situation the performance and accuracy
of a whole application.

library ieee;

use ieee.std_logic_1164all;
library fplib;

use fplib.pkg_fplib.all;

entity Norm is
port (A : in std_logic_vector(6+13+2downto 0);
B : in std_logic_vector(6+13+2downto 0);
R : out std_logic_vector(6+13+2downto 0)); A B
end entity;

P
PO ©®~NO® AN R

architecture arch of Norm is

.
N

13 constant fmt : format = FP;
14 constant w : positive := 6;
15 constant wF : positive := 13;

=
=Y

signal A2 : std_logic_vector (wE+wF+2downto 0);
signal B2 : std_logic_vector (wE+wF+2downto 0);
signal R2 : std_logic_vector (WE+twF+2Zdownto 0);
begin
mul_a_a : Mul
generic map (fmt, wg, wF)
port map (A, A, A2);

NN N BB R
N P O © ® ~

NN
a 8w

U
mul_b_b : Mul
generic map (fmt, wE, wF) R=VA2+B?

26
27 port map (B, B, B2); (b) Architecture

NN
© ©

add_a2_b2 : Add
generic map (fmt, wg, wF)
port map (A2, B2, R2);

W oW oW w
@ N P O

sqrt_r2 : Sqrt
generic map (fmt, wg, wF)
port map (R2, R);

36 end architecture;

W W
o B

(a) VHDL code

Figure 7: VHDL code and architecture of the norm operdtos /A% + B2.

4 Conclusion and future work

We hope to show with this work that, in order to discuss thepamd pros and cons of floating-point and logarithmic
number systems, it is much more profitable to publicly redemdibrary of finely crafted operators instead of pub-
lishing application-specific comparisons. Moreover, a neglectable side-effect to this work is the existence & thi
library, which we will carry on extending and developing.

Improving the floating-point operators is probably diffic@onsidering the convergence between our library and
that of Lee [19], developed independently. Our current $oisuon developing parameterized elementary functions
(exp, log, trigonometric) for this library.

The LNS addition, however, can be improved further by prompsarious implementation methods in order to
allow a designer to choose between several solutions, demgean his precision, area and latency requirements. For
instance, future versions of FPLibrary will include LNS ogters using the co-transformation approach by Arretld
al. [2], which should be smaller and more accurate but slower. drrent first-order and second-order approaches
to LNS addition will not allow to go much further than singleepision (we share this concern with Haselman et al,
whose double-precision LNS adder [18] does not even fit irreX4ll 2000 FPGA, one of the largest available today).
Reaching double-precision will require either a highetesrmethod, or an improvement in the range reduction.

Another direction for future work is to offer the same comgan tools when targetting application-specific inte-
grated circuits (ASICs): If the FPGA is used for rapid prgfohg, the cost/performance tradeoffs obtained on FPGA
are probably of little significance to an ASIC imIplementatiof the same application, because the metrics are very
different. For example, the tables used in the LNS additidhbe implemented as ROMs in an ASIC. On one hand,
their area (relative to the area of the adders) will be muchllemthan a LUT-based implementation on FGPAs. On
the other hand, the synthesis tools are able to optimize thelased implementation, but not the block ROM. The
combined effect of this is difficult to predict, all the morg iadepends on the table values. Another example is the
synthesis of the adder trees: Where the fast carry propegiagic of modern FPGAs means that the simplest adder
tree is optimal, we should use in an ASIC a carry-save adderfallowed by some sort of fast adder.

10

area (slices) latency (ns)
3500 FP 180 - FP _.

LNS - . - K LNS - . -
3000 [~ v 160

K 140

2500 - /
K 120

2000 [e 100

1500 | 80 SR
60 PO

1000
wf
500

20"

P ke e) 0)
6 8 10 12 14 16 18 20 22 24 6 8 10 12 14 16 18 20 22 24
wp wp

(a) Area (b) Latency

Figure 8: Benchmarks for the norm operafoe= A2 + B2,

A, B, A, B A. B,
| |

R=A,B, +A,B, +A.B.

Figure 9: Architecture of the dimensigmndot product operator.

These differences have influenced the achitectural chom@ete in our library: Although our portable VHDL
can be compiled for ASIC, the result would be far from optinmaihis case. However, our main claim is that only
concurrent, high-quality operator libraries will allow anlightened and unbiased choice between LNS and FP on a
per-application basis. This claim also holds when tanggtiSICs.

Acknowledgements

The authors would like to thank Sylvain Collange for the wehk spent debugging the Celoxica board so that the
3D transformation pipeline would run correctly.

Special thanks also go to Arnaud Tisserand for many integesiscussions on this topic, and also for adminis-
trating the CAD tool server on which all the synthesis préseim this paper were performed.

References

[1] ANSV/IEEE. Standard 754-1985 for Binary Floating-Point Arithmetidg@a IEC 60559) 1985.

[2] M. Arnold, T. Bailey, J. Cowles, and M. Winkel. Arithmetco-transformations in the real and complex loga-
rithmic number systemdEEE Transactions on Computer7(7):777-786, July 1998.

[3] P. Belanove and M. Leeser. A library of parameterized floating-pointdules and their use. IRield Pro-
grammable Logic and Applicationsolume 2438 o NCS pages 657-666. Springer, Sept. 2002.

[4] J.-L. Beuchat and A. Tisserand. Small multiplier-basedltiplication and division operators for Virtex-Il de-
vices. InField-Programmable Logic and Applicationglume 2438 of.NCS Springer, Sept. 2002.

11

area (slices) latency (ns)

8000 FP , 200 FP
, .
7000 NS - - ¢ wof NS--- o
; .
6000 [/ 160 | I
/ e
/ ——
5000 [’ K 140 |- e
’ ’ -
4000 - / o 120 F .
ll /(
3000 / . 100 F
// /'—
2000 ; , B . 80 ;/4___)_7/_—'_**—_/
1000 e i 60 F T
e
0 L J 40 r 1 1 1 1 1 1 1 1 J
24 6 8 10 12 14 16 18 20 22 24
wp
(a) Area (b) Latency

Figure 10: Benchmarks for the dimensiddot product operator.

MgV, Mya Vy Mys V. My Moy Myy Mz Moy Msy Mza Msg My My, My, Mgz My
0

Figure 11: Architecture of the 3D transformation operator.

[5] J. N. Coleman and E. I. Chester. Arithmetic on the Europegarithmic microprocessotEEE Transactions
on Computers49(7):702—715, July 2000.

[6] F. de Dinechin and A. Tisserand. Some improvements ortipautite table methods. In N. Burgess and L. Ci-
miniera, editors15th IEEE Symposium on Computer Arithmgpiages 128-135, June 2001. Updated version
of LIP research report 2000-38.

[7] M. deLorimier and A. DeHon. Floating-point sparse meatvector multiply for FPGAs. I'ACM/SIGDA Field-
Programmable Gate Arraypages 75-85. ACM Press, 2005.

[8] J. Detrey and F. de Dinechin. A VHDL library of LNS operego In 37th Asilomar Conference on Signals,
Systems and Computef3ct. 2003.

[9] J. Detrey and F. de Dinechin. Second order function appration using a single multiplication on FPGAs. In
14th Intl Conference on Field-Programmable Logic and Agatiions (LNCS 3203)pages 221-230. Springer,
Aug. 2004.

[10] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savaaiad D. Poirier. A flexible floating-point format for
optimizing data-paths and operators in FPGA based DSPACM/SIGDA Field-Programmable Gate Arrays
pages 50-55, Feb. 2002.

[11] C. Doss and R. Riley. FPGA-based implementation of aisbbEEE-754 exponential unit. IRPGAs for
Custom Computing MachineeEE, 2004.

[12] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydiadj 64-bit floating-point FPGA matrix multiplica-
tion. In ACM/SIGDA Field-Programmable Gate ArraysCM Press, 2005.

[13] M. D. Ercegovac and T. LandDivision and Square Root: Digit-Recurrence Algorithms amgblementations
Kluwer Academic Publishers, Boston, 1994.

[14] M. D. Ercegovac and T. Lan@igital Arithmetic Morgan Kaufmann, 2003.

12

W FPLIb3D [_]

(x, v, 2) = (0.00, 0.00, 0.00) {theta, phi) = (0, 90} Mode: FPEA [LMS (5,5]] 9,73 msec (3.40M vertices/sec)

Figure 12: 3D image, using method LNS-O1 and precisiop, wr) = (5, 8).

| (we,wr) I area | pipeline depth| throughput (vertices/s)
FP,(5,8) 4446 slices (23%) 25 3.3M
LNS-01,(5,8) 5497 slices (28%) 14 3.3M
FP,(5,9) 4802 slices (25%) 25 3.3M
LNS-01,(5,9) 7415 slices (38%) 14 3.3M
FP, (5, 10) 5246 slices (27%) 26 3.3M
LNS-01,(5, 10) 9701 slices (50%) 14 3.3M
| FP,(6,14) | 7408 slices (38%) 28 | 3.3M |
| software, IEEE-754 single precisiof — | — | 1.2M |

Table 2: Area (slices and FPGA area percentage), latenpgl{pé depth) and throughput benchmarks of the 3D
transformation pipeline for various parameter combinatio

[15] M. J. Flynn and S. F. Obermaidvanced Computer Arithmetic Desigwiley-Interscience, 2001.

[16] A. A. Gaffar, W. Luk, P. Y. K. Cheung, N. Shirazi, and J. Hmg. Automating customisation of floating-point
designs. IrField Programmable Logic and Applicationgolume 2438 o£ NCS pages 523-533. Springer, Sept.
2002.

[17] D. Goldberg. What every computer scientist should kradyeut floating-point arithmeticACM Computing
Surveys23(1):5-47, Mar. 1991.

[18] M. Haselman, M. Beauchamp, K. Underwood, and K. S. Hemm& comparison of floating-point and loga-
rithmic number systems for FPGAs. FPGAs for Custom Computing Machine905.

[19] B. Lee and N. Burgess. Parameterisable floating-pgietrators on FPGAs. 186th Asilomar Conference on
Signals, Systems, and Computgrages 1064-1068, 2002.

[20] B. Lee and N. Burgess. A dual-path logarithmic numbesteymn addition/subtraction scheme for FPGA. In
Field-Programmable Logic and Applicationisisbon, Sept. 2003.

[21] D. M. Lewis. An architecture for addition and subtractiof long word length numbers in the logarithmic
number systemlEEE Transactions on Computer39(11), Nov. 1990.

[22] G. Lienhart, A. Kugel, and R. Manner. Using floating+4piaarithmetic on FPGAS to accelerate scientific N-body
simulations. INFPGAs for Custom Computing MachinéSEE, 2002.

13

[23] R. MatouSek, M. Tichy, Z. Pohl, J. Kadlec, C. SoftleydaN. Coleman. Logarithmic number system and
floating-point arithmetics on FPGA. Field-Programmable Logic and Applicationsages 627—636, Montpel-
lier, Sept. 2002.

[24] F. Ortiz, J. Humphrey, J. Durbano, and D. Prather. Agtoml the design of floating-point functions in FPGAs.
In Field Programmable Logic and Applicationglume 2778 o NCS pages 1131-1135. Springer, Sept. 2003.

[25] V. Paliouras and T. Stouraitis. A novel algorithm forcacate logarithmic number system subtraction. In
International Symposium on Circuits and Systewetume 4, pages 268-271. IEEE, May 1996.

[26] E.Roesler and B. Nelson. Novel optimizations for haads\floating-point units in a modern FPGA architecture.
In Field Programmable Logic and Applicationgolume 2438 of. NCS pages 637-646. Springer, Sept. 2002.

[27] F. J. Taylor, R. Gill, J. Joseph, and J. Radke. A 20 biatiiymic number system processtiEEE Transactions
on Computers37(2), Feb. 1988.

Biography

Jérémie Detreyreceived his DEA from th&cole Normale Supérieure de Ly(BNS-Lyon) in 2003, and is now
completing a PhD in théaboratoire de I'lnformatique du Parallélism@IP) at ENS-Lyon, under the direction of
Florent de Dinechin and Jean-Michel Muller. His researctocsised on designing operators for real arithmetic on
FPGAs.

Florent de Dinechinreceived his DEA from th&cole Normale Supérieure de Ly¢BNS-Lyon) in 1993, and
his PhD from Université de Rennes 1 in 1997. After a postdatiosition at Imperial College, London, he is now
a permanent lecturer at ENS-Lyon in thaboratoire de I'lnformatique du Parallélism@&IP). His research interests
include computer arithmetic, software and hardware et@oiaf functions, computer architecture and FPGAs.

14

i L]

%00’ 00

(x,v,2) = (8.52,0.30, 13.22) | (theta, phi) = (84, 90) | Made: FPGA [FP (5,8)] 10,16 msex (3.25M verticessec) (x,v,2)=(68.52,0.30,13.22) | (theta, phi) = (84, 90) | Made: FPGA [LNS (5,51 10,16 msec (3.25M verticesjsec)

() FP(wg,wr) = (5,8) (b) LNS-O1,(wg, wr) = (5,8)

i L]

(x,v,2) = (8.52,0.30, 13.22) | (theta, phi) = (84, 90) | Made: FPGA [FP (5,9)] 10,16 msex (3.25M verticessec) (x,v,2)=(68.52,0.30,13.22) | (theta, phi) = (84, 90) | Made: FPGA [LNS (5,91 10,18 msec (3.25M verticesjsec)

(¢) FRP(wg,wr) = (5,9) (d) LNS-O1,(wg,wr) = (5,9)

[FPLib3D [[FPLib3D
(v, 9= (852, 0.30, 13.22) _|theta, ph) = (84, 90) _|Mode: FPGA[FP (5,101] | 10.15 msec (3.261 vertcesfsec) G v, 2)=(6.52,0.30, 13.22) | thets, ph) = (6%, 50) | Mode: FPGA IS (S,10)] | 10,17 msec (3,250 vertcesfsec)

(e) FP(wg, wr) = (5,10) (f) LNS-O1, (wg, wr) = (5,10)

Figure 13: 3D images for various precisions.

[meezo ——— HEEH| [FeLibaD

(x,v,2) = (8.52,0.30, 13.22) | (theta, phi) = (84, 90) | Made: FPGA [FP (5,14)] 10,13 msex (3.26M verticesfsec) (x,v,2)=(6.52,0.30,13.22) | (theta, phi)=(84, %0) | Made: saftware [IEEE double] | 29.04 msec (1.14M vertices/sec)

(@) FP(wg,wr) = (6,14) (b) Software, IEEE-754 double precision

Figure 14: 3D images for reference precisions.

