
HAL Id: ensl-00542212
https://ens-lyon.hal.science/ensl-00542212v1

Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tool for Unbiased Comparison between Logarithmic
and Floating-point Arithmetic

Florent de Dinechin, Jérémie Detrey

To cite this version:
Florent de Dinechin, Jérémie Detrey. A Tool for Unbiased Comparison between Logarithmic
and Floating-point Arithmetic. Journal of Signal Processing Systems, 2007, 49 (1), pp.161-175.
�10.1007/s11265-007-0048-7�. �ensl-00542212�

https://ens-lyon.hal.science/ensl-00542212v1
https://hal.archives-ouvertes.fr

A tool for unbiased comparison between logarithmic and
floating-point arithmetic

Jérémie Detrey Florent de Dinechin

Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon

46, allée d’Italie
F-69364 Lyon cedex 07

{ Jeremie.Detrey, Florent.de.Dinechin }@ens-lyon.fr

Abstract

For applications requiring a large dynamic, real numbers may be represented either in floating-point, or in the log-
arithm number system (LNS). Which system is best for a given application is difficult to know in advance, because
the cost and performance of LNS operators depend on the target accuracy in a highly non linear way. Therefore,
a comparison of the pros and cons of both number systems in terms of cost, performance and overall accuracy is
only relevant on a per-application basis. To make such a comparison possible, two concurrent libraries of parameter-
ized arithmetic operators, targeting recent field-programmable gate arrays, are presented. They are unbiased in the
sense that they strive to reflect the state-of-the-art for both number systems. These libraries are freely available at
http://www.ens-lyon.fr/LIP/Arenaire/.

1 Introduction

1.1 Hardware representations of real numbers
Digital signal processing (DSP) relies mostly on fixed-point arithmetic. However, some DSP applications such as
adaptive filters compute on numbers with a large dynamic range. The mainstream solution in this case is the use of
floating-point arithmetic, which is supported by recent high-end DSP processors. Another recent contender on the
DSP market is the FPGA (forField Programmable Gate Array), a programmable VLSI circuit which can be configured
at the bit-level to emulate any digital circuit. Initially essentially used for the rapid prototyping of application-specific
integrated circuits (ASIC), FPGAs are increasingly being used as hardware accelerators for specific computations.
Here also, fixed-point is preferred when applicable, all themore as the fine-grained structure of FPGAs is optimized
for fixed-point. However, as the capacity of FPGAs increases, so does the complexity of their applications: Many
floating-point applications were published in the last years [3, 10, 19, 22, 26, 16, 11, 24, 7, 12]. Some of these works
emulate the floating-point formats available in processors, but the flexibility of FPGAs also allows to adapt these
formats to match the precision and dynamic requirements of agiven application.

Floating-point is not the only way to represent real numbersin hardware circuits with a larger dynamic than fixed-
point: One can also use alogarithmic coding (or LNS forLogarithmic Number System). A positive real number
is then represented by its logarithm (usually in radix 2), and the hardware operators compute on these logarithms.
The main interest of this coding is that multiplications, divisions and square roots are trivial with logarithms. The
main drawback is, of course, that additions and subtractions are much more complicated. Given this tradeoff, several
publications have shown applications for which this systemwas more efficient in terms of speed and area than floating-
point [5, 23].

1

1.2 Which arithmetic for which application?
Qualitatively, it is clear that LNS arithmetic can be competitive only if the application matches two conditions: There
has to be many easy operations (×, /, x2 et

√
x) and few additions, and the required precision has to be quite low,

as the area of an LNS adder grows exponentially with precision (see Section 2.3). Quantitatively, it is much more
difficult to have a precise answer. The best comparative study was that of Colemanet al. [5]: It considers several
representative algorithms in two precisions, and studies both accuracy and performance. It is however clear that the
authors took less care while designing floating-point operators than LNS ones, and the comparisons are biased. For
example, their floating-point square root is a Newton iteration, which is quite inefficient in this context. Moreover,
they only target ASIC applications. For FPGAs, there is a paper by Matoušeket al. [23], but the example algorithm
they study is a mere caricature: Its iteration only has one addition for two divisions, three multiplications, two squares
and one square root. Such an uncommon algorithm will not convince a designer to try LNS for more classical circuits.

Are there real applications for which LNS is better suited than FP, and more generally, how can we help designers
evaluate the pros and cons of each arithmetics for their application? A problem is that the costs of some LNS operators
with respect to precision are highly non-linear. These costs also depend on the target technology, and a variety of
algorithms expose wide area/speed tradeoffs, as the sequelwill show.

Another problem is the evaluation of the overall accuracy ofthe application (or its signal to noise ratio). On
one side, both systems, for the same number of bits, represent numbers with comparable range and precision. On
the other side, the rounding errors due to operations may be very different. In FP, all the operations may involve a
rounding error. In LNS, multiplications and divisions are exact (as they are implemented as fixed-point addition and
subtraction) but addition and subtraction involve rounding errors which may be larger than that of FP. The net effect
of combining these errors in one’s application is difficult to predict. If one of the number systems provides the same
overall accuracy for a smaller precision of the operators, this in turns has an impact on their respective costs, as will
be illustrated in Section 3.3.3.

The conclusion is that it is probably impossible in a publication to exhaustively cover the set of parameters
controlling the speed/area/precision tradeoffs for both LNS and FP so that a designer can make an informed choice.
As an example, an attempt by Haselman et al [18] only covers the standard IEEE-754 single and double precision: it
will not help if the application can accomodate lower or intermediate precisions, as is commonly the case for signal
processing.

Therefore, our goal in this paper is not to publish comparisons, but a generic comparison tool.

1.3 A tool for an unbiased comparison
This paper presents a library of operators, supporting bothfloating-point and LNS formats. This library is freely
downloadable fromhttp://www.ens-lyon.fr/LIP/Arenaire/. It allows to choose the precision and the
dynamic of numbers, and the operators for the two number system share a common syntax and exceptional case
handling, easing the switch from one to the other. It provides operators for addition, subtraction, multiplication,
division and square root, along with some useful conversions, in combinatorial or pipelined flavor. It is written in
portable VHDL, and all the operators have been designed withequivalent optimization effort.

Our objective is dual: First, to allow a more accurate study of the respective pros and cons of LNS and FP
than what current literature offers. Second, to provide designers with all the elements to experiment and choose
the number system that best suits a given application, with its operations, its cost/performance constraints, and its
dynamic/precision constraints.

The first part of the article briefly describes the number formats and the architectures of the differents operators
of the library, with the purpose of showing that this libraryreflects the state-of-the-art in both systems. The second
part gives area and speed benchmarks of these operators according to the different parameters, and examples of the
unbiased comparisons we hope this library allows.

2 A library for real number arithmetic

2.1 Number representation
The representation of a real number in the library is parameterized by two integers,wE which determines the dynamic
of the represented numbers, andwF their precision. The ranges of representable values for a given (wE, wF) are
not identical for both formats, but are as close as possible given the intrinsic differences between these formats. It is
therefore possible to compare these two number systems for asame pair of parameters(wE , wF), as the dynamic and

2

the precision of these arithmetics are equivalent. More accurately, relative coding errors between those two formats
are within alog(2) ratio, as can be deduced from the following Equations (1) and(2).

2.1.1 Floating-point representation

For floating-point numbers, a format inspired by the IEEE-754 standard [1] is adopted: A numberX is represented
on 3 + wE + wF bits by two bits for coding exceptional cases, followed by a sign bit SX , an exponentEX biased
by E0 onwE bits, and the fractional partFX of the mantissa onwF bits. The mantissa is normalized in[1; 2[, so its
most significant bit is always1 and is implicit in the coding:

X = (−1)SX × 1.FX × 2EX−E0 . (1)

The two extra bits used by the internal format represent exceptional cases such as0, ±∞ or NaN (Not a Number).
As the IEEE-754 standard codes these numbers by specific exponent values, our library provides conversion operators
from one format to the other. It is also possible to retrieve these bits for exception handling.

Our format diverges from the IEEE-754 standard because it does not support subnormal numbers [17].

2.1.2 LNS representation

The LNS format on3 + wE + wF bits is composed of the same two bits for exceptional cases, asign bitSX , and a
fixed-point 2’s complement representation of the logarithmLX = log2(X), coded withwE bits for its integer part
ELX

andwF bits for its fractional partFLX
:

X = (−1)SX × 2ELX
.FLX . (2)

Exceptional cases are coded exactly as for floating-point numbers. Exception handling is thus identical between
FP and LNS, and we shall not detail it any further.

2.2 Floating-point operators
This section does not intend to be a course about hardware floating-point operators: There are whole books discussing
this subject [15, 14]. The goal here is to convince the readerthat our library is sufficiently optimized to allow an
unbiased comparison between LNS and floating-point.

2.2.1 Addition/subtraction

To compute a floating-point addition, one first has to align the mantissas, then add/subtract them and last renormalize
the result. But these steps are not always necessary: When the exponents are close (close path), the alignment of
the mantissas becomes simple whereas conversely, when the exponents are far (far path), it is the final normalization
which becomes trivial.

The architecture of this operator, shown Figure 1, therefore uses two concurrent computational paths. Those two
paths allow to reduce the critical path at the expense of increasing slightly the area of the operator.

2.2.2 Multiplication

The multiplier architecture is simpler than the adder/subtracter architecture: It only has to compute the product of the
mantissas of the two operands, and the exponent is obtained by summing the two exponents minus the biasE0.

The product of the mantissas is expressed as a* in VHDL. This ensures efficient portability: For example, on
Xilinx Virtex-II, the synthesis tools can use the embedded small multipliers specific to this FPGA. It also ensures flex-
ibility, as synthesis tools may provide several multipliervariants optimized for various area/speed tradeoff. However,
using a generic multiplier will generally be slightly sub-optimal. If this is a concern, a designer can always provide
his own specific multiplier, such as those described in [4].

3

sign and exception handling

X

X Y EX − EY

Y

MY

MYMX

M ′
Z

EX

FZ

k

EZ

EX

FZ

M ′
Z

MX
M ′

Y

Z

wE + wF + 3 wE + wF + 3

wE + wF + 3 wE + wF + 3

wF + 1wF + 1wE

wF + 3

⌈log (wF + 3)⌉

wE + 1

wF + 1
wF + 1

wE

wF + 4

wF + 1

wF + 4

wF + 1

wE

wE + wF + 2

wE + wF + 3

close/far

+/–

final normalization

LZC

shift/round
round

shift

/

swap/difference

far path

close path

Figure 1: Architecture of the floating-point adder/subtracter.

2.2.3 Division

The global architecture of the divider is shown in Figure 2.
The result mantissa is the quotient of the mantissas of the two operands, and the exponent is the difference between

the two exponents plus the biasE0. The quotient is computed using a radix 4 SRT algorithm [13] with the digit set
{−3,−2,−1, 0, +1, +2, +3} which is maximally redundant. Radix 4 SRT was the best solution among the other
radices we tried (radix 2, radix 8 or radix 4 with another digit set). These findings are consistent with those of Lee
and Burgess [19]. As the quotient is computed in a redundant digit set, a final addition is needed to switch back to
binary.

2.2.4 Square root

The square root operator follows the same principle: The exponent is divided by two and corrected by adding half a
biasE0/2, while the square root of the mantissa is computed by a radix 2SRT (appearing to be better than radix 4)
[13].

2.3 LNS operators

2.3.1 Multiplication, division and sqaure root

The main advantage of LNS is the simplicity of these operators:

LX×Y = LX + LY ,
LX / Y = LX − LY ,

L√
X = 1

2
LX .

4

M ′
X/M ′

Y

wF + 3

wF + 2

6

4

wF + 2

2

wF + 2

wF + 1wF + 2

M ′
X M ′

YX Y

wE + wF + 3 wE + wF + 3

EX
wE wE wF + 2

M ′
XEY M ′

Y
wF + 1

wF + 3E0
wE + 1

wE

wF + 1

FZwE + 1

EZ

wE + wF + 2

wE + wF + 3

Z

final normalization
sign and exception handling

round

SRT4

SRT4

SRT4

SRT4

SRT4

Figure 2: Architecture of the floating-point divider.

Multiplication, division and square root are therefore implemented respectively by addition, subtraction and right
shift of the logarithms of the operands. The following focuses only on the addition/subtraction.

2.3.2 General architecture of the addition/subtraction operator

Performing an addition or a subtraction in LNS is much more complicated than in floating-point, as it requires the
evaluation of two non-linear functionsf⊕ andf⊖ defined as follows (here,X andY are both positive numbers such
thatX > Y) :

LX+Y = log2(2
LX + 2LY)

= LX + f⊕(LY − LX), with f⊕(r) = log2(1 + 2r),
LX−Y = log2(2

LX − 2LY)
= LX + f⊖(LY − LX), with f⊖(r) = log2(1 − 2r).

The architecture of this operator is shown in Figure 3(a). The two main components evaluate approximations to
f⊕ andf⊖ (also represented in the figure) on the interval] −∞; 0).

2.3.3 Implementation off⊕ and f⊖

Given the intrisically non-linear nature off⊕ andf⊖, we have to use an approximation scheme for evaluating these
functions. The literature proposes many solutions that cover a wide tradeoff between speed and operator precision.
In [27], the functions are evaluated with only one table lookup on intervals finely tuned to minimize the table size
(order0). In [21], Lewis uses a first-order Taylor series that reduces the size of the tables while increasing the critical
path. Finally, in [5], the authors introduce a method using adegree2 polynomial which greatly reduces the size of
the tables, but requires two table lookups, one multiplication and some additions in the critical path.

In the first release of our library, we limited ourselves to a multiplier-less first-order approximation scheme, using
the multipartite table method [6]. This choice is widely discussed in [8], but limits the achievable precision for this
operator towF ≤ 13 bits.

We then studied other possible decompositions and simplifications of these functions, focusing particularly on
the method presented in [25] and already used by [20]. This method, whose architecture is depicted Figure 3(b),
relies on the evaluation of the functions2x, log2(x) and log2(− 1−2

x

x
) which can be faithfully approximated by

second-order polynomials (here “faithfully” means that the error is smaller than the value of the least significant bit
of the result), something not possible forf⊕ andf⊖. Nevertheless, the critical path is greatly increased, as the2x and
log2(x) functions have to be evaluated sequentially and also require some range reduction mechanism. The evaluation

5

X Y

LY − LX LX

LZ

Z

wE + wF + 3 wE + wF + 3

wE + wF wE + wF3 3

wE + wF wE + wF

wE + wF

wE + wF + 3

wE + wF + 1

wE + wF + 3

wE + wF + 3

round

exception and
sign handling

swap/difference

f⊕ and f⊖
evaluation of

(a) Global architecture of the operator.

/

wE + wF

wE + wF + 2

wF + 2

wF + 4

wF + 3

wE + wF

1

r

log2(−1−2x

x)log2(x)

2x

f⊕/⊖(r)

round

wE + wF + 2

0

wF + 2

(b) Detail: Computingf⊕ andf⊖.

Figure 3: Architecture of the LNS adder/subtracter.

itself of those functions is achieved by using a second-order method presented in [9], which allows precisions up to
wF = 23 bits.

To summarize, our library currently proposes two flavors forthe LNS adder, one based on the multipartite table
method, noted O1 (order 1), which is fast but bulky and limited to wF ≤ 13 bits, and the other based on the
decomposition from [25], noted O2 (order 2), which is much smaller but also slower. These two implementations
reflect the state of the art.

3 Precision/performance tradeoff: Which number system forwhich
application?
As previously remarked, the characteristics (area and latency) of the operators depend on the chosen number format
and range and precision parameters. If the application dictates the latter two, the designer still has to choose between
floating-point and LNS. Therefore, this section first presents compared benchmarks of the various operators, allowing
to compute a rough estimation the area and latency of a circuit for the two number systems. Then, with some
examples, a second section shows that a finer estimation can be obtained by effective synthesis of the circuit. Three
complete examples illustrate this methodology.

In this section, all the estimations are given by the Xilinx ISE 5.2 tool suite for a Virtex-II XC2V1000-4 FPGA.

3.1 Comparison of isolated operators
The plots of Figure 4 give the area and latency for adders in the two number systems depending on the dynamic (wE)
and precision (wF) parameters. Latencies are given mainly for comparative purpose, as the pipelined versions of
these operators are more likely to be used (however, latencyis still critical when dealing with loops in the circuit).

As expected, for floating-point addition/subtraction operators, area and latency grows linearly withwE andwF .
However, for LNS operators, the area grows linearly withwE but exponentially withwF , whereas the latency remains

6

240

220

200

180

160

140

120

100

3

4

5

6

7

8 6
7

8
9

10
11

12
13

area (slices)

wE

wF

(a) FP adder area

3000

2500

2000

1500

1000

500

0

3

4

5

6

7

8 6
7

8
9

10
11

12
13

area (slices)

wE

wF

(b) LNS adder area

34

32

30

28

26

24

3

4

5

6

7

8 6
7

8
9

10
11

12
13

wE

wF

latency (ns)

(c) FP adder latency

latency (ns)

wE

wF

34

32

30

28

26

24

22

20

3

4

5

6

7

8 6
7

8
9

10
11

12
13

(d) LNS adder latency

Figure 4: Area/delay for floating-point (on the left) and LNS(on the right) adders. Note the different scales.

linear forwE andwF because the latency of table lookups is logarithmic in respect to the size of the tables.
For all operators, both in floating-point and LNS, area and latency estimations depend essentially on the required

precisionwF and not on the dynamicwE. For the sake of readability, only the O1 method was shown on Figure 4 but
the same conclusion applies to the O2 method. Therefore, allfurther comparisons will be presented here depending
only onwF .

The plots of Figure 5 present area and latency estimates for all the operators provided by the libraries. It can be
noted that the four floating-point operators have roughly the same area, but if addition/subtraction and multiplication
have relatively low latencies, the digit recurrence algorithms of division and square root are significantly slower. The
area/latency tradeoff also clearly appears for the LNS adder: when applicable, the O1 multipartite method is faster
but bulkier than the O2 method.

These graphs can be used to quickly compute a very rough estimation of the area and latency of a given circuit
according to the dynamic, the precision and the number representation format. Examples are given in Table 1.

data width(wE , wF) A + B A × B A × B + C
√

A2 + B2

10 bits(3, 6) FP 111 sl. - 25 ns 46 sl. - 19 ns 157 sl. - 44 ns 250 sl. - 84 ns
10 bits(3, 6) LNS-O1 114 sl. - 21 ns 9 sl. - 5 ns 123 sl. - 26 ns 133 sl. - 28 ns

14 bits(5, 8) FP 148 sl. - 30 ns 68 sl. - 25 ns 216 sl. - 55 ns 354 sl. - 103 ns
14 bits(5, 8) LNS-O1 269 sl. - 28 ns 11 sl. - 5 ns 280 sl. - 33 ns 292 sl. - 36 ns

16 bits(5, 10) FP 173 sl. - 33 ns 92 sl. - 26 ns 265 sl. - 59 ns 442 sl. - 114 ns
16 bits(5, 10) LNS-O1 627 sl. - 28 ns 12 sl. - 5 ns 639 sl. - 33 ns 652 sl. - 35 ns

24 bits(7, 16) FP 260 sl. - 35 ns 191 sl. - 30 ns 451 sl. - 65 ns 866 sl. - 153 ns
24 bits(7, 16) LNS-O2 930 sl. - 76 ns 16 sl. - 6 ns 946 sl. - 82 ns 1877 sl. - 84 ns

32 bits(8, 23) FP 351 sl. - 34 ns 351 sl. - 31 ns 702 sl. - 65 ns 1310 sl. - 183 ns
32 bits(8, 23) LNS-O2 3904 sl. - 97 ns 20 sl. - 7 ns 3924 sl. - 104 ns 7829 sl. - 106 ns

Table 1: Area (slices) and latency (ns) comparison of some examples for various parameter combinations. The esti-
mations for the compound operators are obtained by adding the values for the simple operators.

All the previous estimations are given only for combinatorial operators. These operators are also available in
pipelined version, designed to run at100 MHz. As shown by Figure 6, the caracteristics of the pipelined operators
roughly follow those of their combinatorial counterpart: their area is slightly higher but remains proportional to the
combinatorial area, and the pipeline depth is also proportional to the combinatorial delay.

7

±
×
÷

√

wF

700

600

500

400

300

200

100

0
4 6 8 10 12 14 16 18 20 22 24

area (slices)

(a) FP operators area

×

√

±

÷
3500

3000

2500

2000

1500

1000

500

area (slices)

order 2 method

4000

0
6 8 10 12 14 16 18 20 22 24

wF

multipartite method
(order 1)

(b) LNS operators area

±
×
÷

√

140

120

100

80

60

40

20
4

wF

6 108 12 14 16 18 20 22 24

latency (ns)

(c) FP operators latency

±
×
÷

√

6 8 10 12 14 16 18 20 22 24

10

0

20

30

40

50

60

70

80

90

100

wF

latency (ns)

(d) LNS operators latency

Figure 5: Benchmarks for floating-point (on the left) and LNS(on the right) operators. Note the different scales.

3.2 Comparing operators in context
The estimates presented in the previous section give a roughidea, but the goal of our library is to allow accurate esti-
mations for each particular circuit. The simplicity of sucha comparison is shown for a toy example, the computation
of a norm

√
A2 + B2. The architecture of this operator is shown in Figure 7(b). The two squarings are performed

in parallel by multipliers, as our librairies do not yet provide dedicated squaring operators, followed by addition and
square root.

The corresponding VHDL code is given in Figure 7(a). As it is written here, it handles floating-point data, with
a dynamic ofwE = 6 bits, and a precision ofwF = 13 bits. Those three parameters are represented in the code by
the constants “fmt”, “wE” and “wF” respectively (defined lines 13, 14 et 15), which are passed to each operator and
define the bit width of the signals.

Therefore, to change the number representation format, theuser just has to change the value of “fmt” from “FP”
(for floating-point) to “LNS” (for logarithmic representation). The same principle applies forwE andwF , that can
be modified by changing the value of “wE” or “wF”, and of courseadjusting the value of the width of the component
ports (lines 7, 8 et 9).

For pipelined operators, the method is sensibly more complex, as the pipeline depth of the operators varies with
the number representation and the precision. Scheduling the operations depends on these parameters. A reasonable
approach is therefore to study the various parameter choices on a combinatorial circuit (while reserving area for the
pipeline overhead), and then benchmark the pipelined version only for the most interesting parameter sets.

3.3 Comparison examples

3.3.1 Norm
√

A2 + B2

Figure 8 compares the area and latency of the norm operator for floating-point and LNS. If the general aspect of the
plots roughly matches the estimations from Table 1, area andlatency values are lower than expected, especially for
the LNS operator. This is because the VHDL synthesizer realizes that bothA2 andB2 are non-negative, and thus the
subtraction part of the adder/subtracter operator is useless. This simplification is quite important in the case of LNS,

8

combinatorial

pipelined

area (slices)

wF

1100

1000

900

800

700

600

500

400

300

200

100
4 64 8 10 12 14 16 18 20 22 24

(a) Area

combinatorial

pipelined

4 24
8

9

10

11

12

13

14

15

16140

130

120

110

100

90

80

60

70

50

40

latency (ns) pipeline depth

6 8 10 12 14 16 18 20 22

wF

(b) Latency/pipeline depth

Figure 6: Benchmarks for combinatorial and pipelined floating-point dividers.

as the subtraction tables contribute to a large part of the area of the operator. This effect, unsuspected when looking
at the operators in isolation, illustrates the usefulness of a comparison in context.

In this example, the designer will conclude that LNS is interesting for precisions up towF = 16 bits, but floating-
point has to be used for higher precisions.

3.3.2 Dot product

As previously, a three-dimensional dot product operator isquite easy to implement using our operators. The naive
architecture of this operator is shown in Figure 9.

The area and delay estimations are shown in Figure 10, where LNS operators appear to be too large very soon,
for precision fromwF = 9 or 10 bits. Indeed, as the number of adders increases in this case,so does the area of LNS
operators. However, these operators are still faster than the floating-point ones.

3.3.3 3D transformation pipeline

As last example, we choose to study a full scale application.Current 3D engines generate an image from a scene
described as a list of vertices, a list of triangles and the position of the camera. The transormation stage transforms the
vertices from the scene coordinates to the camera’s viewingfrustrum coordinates, including perpective computations.
From an algorithmic point of view, this stage can be trivially parallelized, and only requires a dimension 4 matrix-
vector product and two divisions as shown in Figure 11. This stage is sensitive, as it determines the on-screen position
of the triangles, and therefore requires some precision notto distort the objects.

The circuit has been fully implemented and tested on a XilinxVirtex-E XCV2000E-6 based Celoxica RC1000-
PP board. The complete application is also freely available, along with the library. Some screenshots are given in
Figures 12 and Figure 13. Even at low precisions, as can be seen from Figure 12, the general aspect of the objects
remains correct, but as one zooms into the picture, more precision is required, as illustrated by Figure 13.

Back to the comparison between FP and LNS, these screenshotsgive a new information: For the same precision,
FP gives images which provide slightly better visual quality than LNS. The rule of thumb here is that FP(5, wF)
provides a visual quality better than LNS(5, wF) but worse than LNS(5, wF + 1). For this specific application,
cost/performance should be compared accordingly. There was no easy way to get an intuition of this beforehand, and
it should’t be generalised: For some applications, LNS willprovide better overall accuracy or signal-to-noise ratio
than FP. As LNS multiplications and divisions are without errors, this will indeed probably happen to applications for
which LNS is also more efficient.

Table 2 gives a few results obtained for various precisions.Due to on-board memory bandwith limitations, along
with the PCI bus limitations, the circuit can only process one vertex each 50MHz cycle, and therefore parallelizing
the design by replicating the operator is useless, althoughit could have been interesting as some designs occupy less
than a quarter of the available FPGA area.

This example is still a toy example, as there is no hope that anFPGA will match the cost/preformance ratio of
current graphics cards. It illustrates how the library can be used to evaluate in situation the performance and accuracy
of a whole application.

9

1 l i b r a r y i e e e ;
2 use i e e e . s t d _ l o g i c _ 1 1 6 4 .a l l ;
3 l i b r a r y f p l i b ;
4 use f p l i b . p k g _ f p l i b . a l l ;
5

6 e n t i t y Norm i s
7 por t (A : i n s t d _ l o g i c _ v e c t o r (6+13+2downto 0) ;
8 B : i n s t d _ l o g i c _ v e c t o r (6+13+2downto 0) ;
9 R : out s t d _ l o g i c _ v e c t o r (6+13+2downto 0)) ;

10 end e n t i t y ;
11

12 a r c h i t e c t u r e a rc h of Norm i s
13 c ons tan t fmt : f o rma t := FP ;
14 c ons tan t wE : p o s i t i v e := 6 ;
15 c ons tan t wF : p o s i t i v e := 13 ;
16

17 s i g n a l A2 : s t d _ l o g i c _ v e c t o r (wE+wF+2downto 0) ;
18 s i g n a l B2 : s t d _ l o g i c _ v e c t o r (wE+wF+2downto 0) ;
19 s i g n a l R2 : s t d _ l o g i c _ v e c t o r (wE+wF+2downto 0) ;
20 begin
21 mul_a_a : Mul
22 ge ne r i c map (fmt , wE, wF)
23 por t map (A, A, A2) ;
24

25 mul_b_b : Mul
26 ge ne r i c map (fmt , wE, wF)
27 por t map (B , B , B2) ;
28

29 add_a2_b2 : Add
30 ge ne r i c map (fmt , wE, wF)
31 por t map (A2 , B2 , R2) ;
32

33 s q r t _ r 2 : S q r t
34 ge ne r i c map (fmt , wE, wF)
35 por t map (R2 , R) ;
36 end a r c h i t e c t u r e ;

(a) VHDL code

R =
√

A2 + B2

A B

(b) Architecture

Figure 7: VHDL code and architecture of the norm operatorR =
√

A2 + B2.

4 Conclusion and future work
We hope to show with this work that, in order to discuss the compared pros and cons of floating-point and logarithmic
number systems, it is much more profitable to publicly release a library of finely crafted operators instead of pub-
lishing application-specific comparisons. Moreover, a nonneglectable side-effect to this work is the existence of this
library, which we will carry on extending and developing.

Improving the floating-point operators is probably difficult, considering the convergence between our library and
that of Lee [19], developed independently. Our current focus is on developing parameterized elementary functions
(exp, log, trigonometric) for this library.

The LNS addition, however, can be improved further by proposing various implementation methods in order to
allow a designer to choose between several solutions, depending on his precision, area and latency requirements. For
instance, future versions of FPLibrary will include LNS operators using the co-transformation approach by Arnoldet
al. [2], which should be smaller and more accurate but slower. Our current first-order and second-order approaches
to LNS addition will not allow to go much further than single precision (we share this concern with Haselman et al,
whose double-precision LNS adder [18] does not even fit in a Virtex-II 2000 FPGA, one of the largest available today).
Reaching double-precision will require either a higher-order method, or an improvement in the range reduction.

Another direction for future work is to offer the same comparison tools when targetting application-specific inte-
grated circuits (ASICs): If the FPGA is used for rapid prototyping, the cost/performance tradeoffs obtained on FPGA
are probably of little significance to an ASIC imlplementation of the same application, because the metrics are very
different. For example, the tables used in the LNS addition will be implemented as ROMs in an ASIC. On one hand,
their area (relative to the area of the adders) will be much smaller than a LUT-based implementation on FGPAs. On
the other hand, the synthesis tools are able to optimize the LUT-based implementation, but not the block ROM. The
combined effect of this is difficult to predict, all the more as it depends on the table values. Another example is the
synthesis of the adder trees: Where the fast carry propagation logic of modern FPGAs means that the simplest adder
tree is optimal, we should use in an ASIC a carry-save adder tree followed by some sort of fast adder.

10

FP

LNS

wF

3500

3000

2500

2000

1500

1000

500

0
6 8 10 12 14 16 18 20 22 24

area (slices)

(a) Area

FP

LNS

246 8 10 12 14 16 18 20 22
0

20

40

80

60

100

120

140

160

180

wF

latency (ns)

(b) Latency

Figure 8: Benchmarks for the norm operatorR =
√

A2 + B2.

R = AxBx + AyBy + AzBz

BzAzByAyBxAx

Figure 9: Architecture of the dimension3 dot product operator.

These differences have influenced the achitectural choicesmade in our library: Although our portable VHDL
can be compiled for ASIC, the result would be far from optimalin this case. However, our main claim is that only
concurrent, high-quality operator libraries will allow anenlightened and unbiased choice between LNS and FP on a
per-application basis. This claim also holds when targetting ASICs.

Acknowledgements
The authors would like to thank Sylvain Collange for the weeks he spent debugging the Celoxica board so that the
3D transformation pipeline would run correctly.

Special thanks also go to Arnaud Tisserand for many interesting discussions on this topic, and also for adminis-
trating the CAD tool server on which all the synthesis presented in this paper were performed.

References
[1] ANSI/IEEE. Standard 754-1985 for Binary Floating-Point Arithmetic (also IEC 60559). 1985.

[2] M. Arnold, T. Bailey, J. Cowles, and M. Winkel. Arithmetic co-transformations in the real and complex loga-
rithmic number systems.IEEE Transactions on Computers, 47(7):777–786, July 1998.

[3] P. Belanovíc and M. Leeser. A library of parameterized floating-point modules and their use. InField Pro-
grammable Logic and Applications, volume 2438 ofLNCS, pages 657–666. Springer, Sept. 2002.

[4] J.-L. Beuchat and A. Tisserand. Small multiplier-basedmultiplication and division operators for Virtex-II de-
vices. InField-Programmable Logic and Applications, volume 2438 ofLNCS. Springer, Sept. 2002.

11

FP

LNS

wF

1000

2000

3000

4000

6000

7000

8000

5000

6 8 10 12 14 16 18 20 22 24
0

area (slices)

(a) Area

LNS

FP

wF

latency (ns)

100

120

140

160

180

200

40

60

80

246 8 10 12 14 16 18 20 22

(b) Latency

Figure 10: Benchmarks for the dimension3 dot product operator.

M1,1 Vx M1,2 Vy M1,4M1,3 Vz M2,3 M3,1 M3,2 M3,4M3,3 M4,3M2,1 M2,2 M2,4 M4,1 M4,2 M4,4

V ′
x V ′

y V ′
z

Figure 11: Architecture of the 3D transformation operator.

[5] J. N. Coleman and E. I. Chester. Arithmetic on the European logarithmic microprocessor.IEEE Transactions
on Computers, 49(7):702–715, July 2000.

[6] F. de Dinechin and A. Tisserand. Some improvements on multipartite table methods. In N. Burgess and L. Ci-
miniera, editors,15th IEEE Symposium on Computer Arithmetic, pages 128–135, June 2001. Updated version
of LIP research report 2000-38.

[7] M. deLorimier and A. DeHon. Floating-point sparse matrix-vector multiply for FPGAs. InACM/SIGDA Field-
Programmable Gate Arrays, pages 75–85. ACM Press, 2005.

[8] J. Detrey and F. de Dinechin. A VHDL library of LNS operators. In 37th Asilomar Conference on Signals,
Systems and Computers, Oct. 2003.

[9] J. Detrey and F. de Dinechin. Second order function approximation using a single multiplication on FPGAs. In
14th Intl Conference on Field-Programmable Logic and Applications (LNCS 3203), pages 221–230. Springer,
Aug. 2004.

[10] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savaria,and D. Poirier. A flexible floating-point format for
optimizing data-paths and operators in FPGA based DSPs. InACM/SIGDA Field-Programmable Gate Arrays,
pages 50–55, Feb. 2002.

[11] C. Doss and R. Riley. FPGA-based implementation of a robust IEEE-754 exponential unit. InFPGAs for
Custom Computing Machines. IEEE, 2004.

[12] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev. 64-bit floating-point FPGA matrix multiplica-
tion. In ACM/SIGDA Field-Programmable Gate Arrays. ACM Press, 2005.

[13] M. D. Ercegovac and T. Lang.Division and Square Root: Digit-Recurrence Algorithms andImplementations.
Kluwer Academic Publishers, Boston, 1994.

[14] M. D. Ercegovac and T. Lang.Digital Arithmetic. Morgan Kaufmann, 2003.

12

Figure 12: 3D image, using method LNS-O1 and precision(wE , wF) = (5, 8).

(wE, wF) area pipeline depth throughput (vertices/s)

FP,(5, 8) 4446 slices (23%) 25 3.3 M
LNS-O1,(5, 8) 5497 slices (28%) 14 3.3 M

FP,(5, 9) 4802 slices (25%) 25 3.3 M
LNS-O1,(5, 9) 7415 slices (38%) 14 3.3 M

FP,(5, 10) 5246 slices (27%) 26 3.3 M
LNS-O1,(5, 10) 9701 slices (50%) 14 3.3 M

FP,(6, 14) 7408 slices (38%) 28 3.3 M

software, IEEE-754 single precision — — 1.2 M

Table 2: Area (slices and FPGA area percentage), latency (pipeline depth) and throughput benchmarks of the 3D
transformation pipeline for various parameter combinations.

[15] M. J. Flynn and S. F. Oberman.Advanced Computer Arithmetic Design. Wiley-Interscience, 2001.

[16] A. A. Gaffar, W. Luk, P. Y. K. Cheung, N. Shirazi, and J. Hwang. Automating customisation of floating-point
designs. InField Programmable Logic and Applications, volume 2438 ofLNCS, pages 523–533. Springer, Sept.
2002.

[17] D. Goldberg. What every computer scientist should knowabout floating-point arithmetic.ACM Computing
Surveys, 23(1):5–47, Mar. 1991.

[18] M. Haselman, M. Beauchamp, K. Underwood, and K. S. Hemmert. A comparison of floating-point and loga-
rithmic number systems for FPGAs. InFPGAs for Custom Computing Machines, 2005.

[19] B. Lee and N. Burgess. Parameterisable floating-point operators on FPGAs. In36th Asilomar Conference on
Signals, Systems, and Computers, pages 1064–1068, 2002.

[20] B. Lee and N. Burgess. A dual-path logarithmic number system addition/subtraction scheme for FPGA. In
Field-Programmable Logic and Applications, Lisbon, Sept. 2003.

[21] D. M. Lewis. An architecture for addition and subtraction of long word length numbers in the logarithmic
number system.IEEE Transactions on Computers, 39(11), Nov. 1990.

[22] G. Lienhart, A. Kugel, and R. Männer. Using floating-point arithmetic on FPGAs to accelerate scientific N-body
simulations. InFPGAs for Custom Computing Machines. IEEE, 2002.

13

[23] R. Matoušek, M. Tichý, Z. Pohl, J. Kadlec, C. Softley, and N. Coleman. Logarithmic number system and
floating-point arithmetics on FPGA. InField-Programmable Logic and Applications, pages 627–636, Montpel-
lier, Sept. 2002.

[24] F. Ortiz, J. Humphrey, J. Durbano, and D. Prather. A study on the design of floating-point functions in FPGAs.
In Field Programmable Logic and Applications, volume 2778 ofLNCS, pages 1131–1135. Springer, Sept. 2003.

[25] V. Paliouras and T. Stouraitis. A novel algorithm for accurate logarithmic number system subtraction. In
International Symposium on Circuits and Systems, volume 4, pages 268–271. IEEE, May 1996.

[26] E. Roesler and B. Nelson. Novel optimizations for hardware floating-point units in a modern FPGA architecture.
In Field Programmable Logic and Applications, volume 2438 ofLNCS, pages 637–646. Springer, Sept. 2002.

[27] F. J. Taylor, R. Gill, J. Joseph, and J. Radke. A 20 bit logarithmic number system processor.IEEE Transactions
on Computers, 37(2), Feb. 1988.

Biography

Jérémie Detreyreceived his DEA from theÉcole Normale Supérieure de Lyon(ENS-Lyon) in 2003, and is now
completing a PhD in theLaboratoire de l’Informatique du Parallélisme(LIP) at ENS-Lyon, under the direction of
Florent de Dinechin and Jean-Michel Muller. His research isfocused on designing operators for real arithmetic on
FPGAs.

Florent de Dinechin received his DEA from theÉcole Normale Supérieure de Lyon(ENS-Lyon) in 1993, and
his PhD from Université de Rennes 1 in 1997. After a postdoctoral position at Imperial College, London, he is now
a permanent lecturer at ENS-Lyon in theLaboratoire de l’Informatique du Parallélisme(LIP). His research interests
include computer arithmetic, software and hardware evaluation of functions, computer architecture and FPGAs.

14

(a) FP,(wE , wF) = (5, 8) (b) LNS-O1,(wE , wF) = (5, 8)

(c) FP,(wE , wF) = (5, 9) (d) LNS-O1,(wE , wF) = (5, 9)

(e) FP,(wE , wF) = (5, 10) (f) LNS-O1,(wE , wF) = (5, 10)

Figure 13: 3D images for various precisions.

15

(a) FP,(wE , wF) = (6, 14) (b) Software, IEEE-754 double precision

Figure 14: 3D images for reference precisions.

16

