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Abstract—Integer addition is a pervasive operation in FPGA
designs. The need for fast wide adders grows with the demand for
large precisions as, for example, required for the implementation
of IEEE-754 quadruple precision and eliptic-curve cryptography.
The FPGA realization of fast and compact binary adders relies on
hardware carry chains. These provide a natural implementation
environment for the ripple-carry addition (RCA) scheme. As its
latency grows linearly with the operand width, wide additions call
for acceleration, which is quite reasonably achieved by addition
schemes built from parallel RCA blocks. This study presents
FPGA-specific arithmetic optimizations for the mapping of carry-
select/increment adders targeting the hardware carry chains of
modern FPGAs. Different trade-offs between latency and area
are presented. The proposed architectures represent attractive
alternatives to deeply pipelined RCA schemes.

Keywords-FPGA; addition; carry-chain; carry-select; carry-
increment

I. INTRODUCTION

One of the most prevalent operations in digital arithmetic is

the addition. It is part of virtually all implementations of more

complex operators including the rather fundamental multipli-

cation, the computation of scalar products or the calculation

of vector magnitudes. It is present in unrolled formulations as

well as in many iterative computation approaches.

FloPoCo [1] is a tool that is capable of generating VHDL1

code for a wide variety of arithmetic operators. It provides

a vast library of builtin operators, which may be used by

themselves or may be combined to form complex custom

data flows. The generator is able to attune the constructed

implementation for a desired target operation frequency and

draws from a great pool of knowledge to optimize the pipeline

depth and the implementation size according to the user

specification.

This paper describes a new implementation option for wide

binary adders as implemented in FloPoCo. This implementa-

tion builds on the carry-select addition approach to accelerate

the addition in comparison to the ripple-carry implementation,

which is standard on FPGA devices. However, it features quite

a few measures that optimize the mapping of the carry-select

1Very-high-speed integrated circuit Hardware Description Language

addition onto contemporary FPGA devices. These include: (a)

an optimized computation of the inter-block carries, (b) the use

of shorter comparators to compute the speculative block carries

when the associated sum is not needed, and (c) the elimination

of the high-fanout signal controlling the multiplexer for the

final result selection.

After the description of the envisioned architectures, the

generator strategies for frequency-optimized block splitting

will be detailed. The resulting complexities in terms of

LUT counts and the achievable timings will be derived and

verified experimentally. The proposed architectures are also

faced against pipelined RCA schemes in terms of LUT-

count complexity. Pipelining options are discussed when high

frequencies, unreachable by the combinatorial versions, are

required. The final implementation of the generator will be

integrated in the open-source framework offered by FloPoCo.

A. Background

1) FPGA: Field Programmable Gate Arrays are circuits

that are designed to be reconfigured after manufacturing.

Generally, the device layout is composed of logic blocks that

can be configured to implement any logical-function (function

is tabulated into very small memories) and a reconfigurable

interconnect network that connects these logic blocks.

A simplified view of the logic blocks present in Xilinx

Virtex4 [2] and Virtex5 [3] FPGAs is presented in Figure 1.

Among other components, it contains:

• a function-generator (Look-Up Table):

On Virtex4 the LUT has a capacity of 16 bits, being

able to implement any 4-input logic function. The Virtex5

LUT with a capacity of 64 bits may either implement an

arbitrary 6-input function output on O6, or it may be

sliced into two 5-input functions sharing the same set of

inputs. Then both outputs O6 and O5 are used.

• the fast carry-chain logic:

FPGAs typically implement the binary word addition

as a ripple-carry adder (RCA) in a way that one logic

block assumes the operation of one full adder. The

carries between these full adders are forwarded across the

designated carry chains. The mapping of the full adder
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Fig. 1. The Basic Logic Blocks of Virtex4 and Virtex5

on the logic blocks is performed as follows:

s = a⊕ b⊕ c

= p⊕ cin – XORCY (1)

cout = ab+ (a⊕ b)cin

= a(a⊕ b) + (a⊕ b)cin

= pa+ pcin – MUXCY (2)

where p = a⊕ b – LUT (3)

The general routing between logic blocks (inputs on the left

and outputs on the right of Figure 1) is about 3 times slower

than a LUT delay. The carry-propagation chain (running

vertically from cin to cout in Figure 1) is much faster than

the general routing, typically 10-15 times faster. Therefore, it

is desirable to map computations to this carry-chain whenever

possible.

2) Classic Carry-Select Adder: The classic carry-select

adder [4] block consists of two ripple-carry adders and one

multiplexer. Each pair of adders computes the two possible

block results, one speculating on a carry-in of 0 and one on

a carry-in of 1. The carry-in then feeds the select line of the

multiplexer to choose the correct sub-sum and carry-out bit.

Large additions can be split into multiple carry-select adder

blocks. The sub-sums are computed all in parallel. The carry-

in ripples through the multiplexer network to propagate the

correct carry-outs. Figure 2 presents the architecture of such

an addition that is split into multiple carry-select blocks. For

clarity, the block carry-out multiplexers have been separated

from the block result multiplexers.

The multiplexer network is generally fast. However, if

greater performance is needed, a costly but faster carry look-

ahead structure can be used for carry-bit computation.

Unfortunately, the multiplexer network maps poorly on

FPGAs. This is because in FPGAs the routing delay between

the multiplexers(implemented in LUTs) exceeds by 3 to 4

times the LUT delay. Despite this major drawback, this naive

mapping manages to outperform the highly FPGA-optimized

RCA for large additions.

B. Related Work

An initial study evaluating the the performance of fast

addition schemes is presented in [5]. The study leads to

the conclusion that the only fast addition schemes mapping
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Fig. 2. Classic Carry-Select Architecture

relatively well to FPGAs are carry-skip and the carry-select,

the later providing the best performances. The optimizations

applied to the classical carry-select architectures are structural,

speculative carry-bit computations being addressed by carry-

skip structures. The carry-in computation for each carry-select

block is done using the classical multiplexer network, which

is slow in FPGAs.

A discussion on the synthesis of carry-select adder in

modern FPGAs is presented in [6]. The study proposes bitwise

computation of the speculative sums using XOR gates and an

inverters. The impact of these optimizations in modern FPGAs

is little, if any. Compared to our work, the circuit delay for

a 128-bit addition is 7.739ns (Altera StratixIII) whereas our

is 2.5ns for a 300-bit addition (Xilinx Virtex5), providing that

the performances of the two FPGAs are similar.

Another variation of the carry-select architecture is pre-

sented in [7]. It is based on the idea of time-multiplexing

the same adder resource for computing the two speculative

sums and carry-bits. The design manages to reduce the area at

the expense of latency. Its implementation requires low-level

directives for mapping the circuit to hardware, thus lacking

portability. The results are presented for a maximum addition

size of only 32bits which makes it impossible to compare

against.

A better mapping of the carry-select architecture to the

FPGA logic is presented in [8]. There, the k-level multiplexer

network is mapped to a 2k-bit RCA, significantly improving

the adder timings. Unfortunately, the 2k size of this network

affects the maximum number of carry-select blocks, reducing

the maximum adder size manageable by this architecture for

a fixed frequency.

The current study presents a novel mapping of the multi-

plexer network to the carry chain based on the work of Preußer

et al. [9] on mapping general prefix computations to the carry-

chain. The multiplexer network is mapped to one k-bit RCA

and a carry-recovery circuit which, most of the time may be

fused with other computations in modern FPGA. In addition,

this study also provides structural improvements of the carry-

select scheme based on specific FPGA feature of using the

the faster and smaller comparator structures for speculative

carry-bit computations instead of adders.



TABLE I
INTER-BLOCK CARRY PROPAGATION CASES

c0
k

c1
k

ck – Case

0 0 0 – Kill
0 1 ck−1 – Propagate
1 0 ∗ – Impossible

1 1 1 – Generate

II. FPGA-SPECIFIC MAPPING OF THE CARRY-SELECT

ADDER

A. Acceleration of Inter-Block Carries

The inter-block carries of the carry-select adder take a

shortcut through the multiplexer network skipping a complete

block with a single multiplexer stage. This advantage is mostly

given away if the multiplexers are implemented using standard

LUTs connected through the general-purpose routing network.

To compete with the fast carry propagation within a block, the

inter-block carry propagation must also exploit the available

carry-chain structures. This will be achieved by the technique

described by Preußer and Spallek [9].

As shown in Table I, the different cases of the propagation

of the inter-block carries can be easily distinguished by the

values of the speculative block carry outputs. As c0k implies

c1k, the line c0kc
1

k can be neglected in the truth table. All others

perfectly coincide with the carry propagation in a full adder

so that the plain binary word addition of the bit vectors (c0k)
and (c1k) produces the correct carry propagation.

Having an addition with the correct carries inside is of

limited value if these cannot be accessed. While a direct

tapping of the carry signals is, indeed, possible on the Virtex

architectures, such a solution is not portable and would require

the use of device-specific, low-level component primitives. A

better alternative is offered through Equation 1, which allows

to infer the incoming carry from the obtained sum bit sk so

that a standard addition operator suffices to implement the core

carry-chain implementation:

ck−1 = sk ⊕ pk

= sk ⊕ c0kc
1

k (4)

and hence (see also Table I):

ck = c0k + ck−1c
1

k | by Eq. 4

= c0k +
(

sk ⊕ c0kc
1

k

)

c1k

= c0k + s c1k (5)

The carry computation circuit with the resulting recovery of

the carries from the sum bits is depicted in Figure 3. Note that

the recovery computation can often be merged into the further

processing of the recovered carry signal.

B. The AAM Carry-Select Architecture

The Add-Add-Multiplex (AAM) architecture derives di-

rectly from the classic carry-select architecture. The mul-

tiplexer chain computing the carry bits is replaced with
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Fig. 3. Carry Computation Circuit with Carry Recovery
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Fig. 4. The AAM Carry-Select Architecture

the much faster carry-computation-circuit (CCC) and carry-

recovery (CR) circuit. Figure 4 highlights the three stages of

the AAM Carry-Select architecture:

1) For each block, two sums are computed, one for each

possible value of the block carry-in. Both of these

additions are extended to compute the block carry-out.

2) The two bit vectors formed by the block carries spec-

ulating on a carry-in of 0 and 1 are added in the CCC

using a fast short ripple-carry adder. The output sum bits

and their two respective speculative input carries are fed

to the CR circuit, which recovers the proper block carry

outputs.

3) The computed block carries are used to select the proper

speculative block sum for the adder output.

The AAM adder uses a multiplexer to select among the

two block sums. The multiplexer is a 3-input function, the

two sum-bits and the carry-bit generated by the CR. For

FPGAs with 5-input LUTs, the CR can be merged with

the multiplexing. This is the case for modern FPGAs like

Virtex5 and Virtex6 having 6-input LUTs. Having only 4-

input LUTs available such as on Virtex4 devices, the CR

introduces an extra LUT and a supplementary wire delay.

On these architectures, adders with a low block count and,

thus, a short CCC should prefer the carry-add-cell architecture

described by de Dinechin et al. [8]. It uses extra intermediate

propagating stages (p = 1), which provide direct access to the

inverted propagated carry through Equation 1. As soon as the

combined delay of these extra stages exceeds the delay of a

CR, the AAM will become the superior choice also on these

architectures.
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C. The CAI Carry-Increment Architecture

The Compare-Add-Increment (CAI) architecture adopts

some features from the carry-increment adder, a widely

adopted structural simplification of the carry-select scheme. In

particular, the CAI only uses the block sums produced for the

case of no incoming block carry. The final multiplexer stage

is replaced by another adder, which adds the actual incoming

carry and, thus, corrects the produced sum if necessary. Note

that the choice of this incrementer instead of a multiplexer

does not increase the number of occupied LUTs.

As the CAI does not need the sum speculating on an

incoming block carry, the corresponding adder only serves

the purpose of computing the associated carry-out of the

speculative block sum Xk + Yk + 1. This can, however, be

obtained by the simple comparison:

c1k <= ’1’ when Xk ≥ not(Yk) else ’0’; (6)

All in all, the CAI offers the following improvements:

1) The use of a comparator for the computation of c1i
is, at most, as complex as the replaced addition. On

Virtex5 and Virtex6 devices, the number of required

LUTs is even cut in half as every stage on the carry

chain processes two adjacent input positions rather than

just one. This is possible as the sum bits are not asked

for.

2) The number of registers required in a pipelined imple-

mentation is almost cut in half as only one of the two

speculative block sums must be stored.

3) The wide fanout of the computed block carries for the

control of the multiplexers is eliminated.

The resulting architecture is sketched in Figure 5. On

FPGAs with 5-input LUTs, the CR is merged into the LSB

computation of the final addition.

D. The CCA Carry-Select Architecture

The Compare-Compare-Add architecture takes the CAI ar-

chitecture one step further. It uses two comparators to generate

both c1i and c0i .

c0k <= ’1’ when Xk > not(Yk) else ’0’; (7)

The final step is turned from an incrementer into a complete

adder computing Xk + Yk + ck.
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Fig. 6. The CCA Carry-Select Architecture

The greatest benefit of this implementation is achieved

on FPGAs with 5-input LUTs. Not only can the CR be

merged into the LSB computation of the final addition but the

whole critical path is shortened as the computation of both

speculative block carries is only half as wide as a true adder.

The architectures is outlined in Figure 6.

III. FREQUENCY-DIRECTED ADDER DESIGN

Most FPGA designs have a clearly defined target operating

frequency f . Assembling basic operators conceived for the

same frequency ensures that: 1) the main design will run close

to this frequency2 and 2) the resource consumption will be

minimal3.

Our goal is to bring high performance adders to the open-

source FloPoCo project whose main feature is assembling

components built for the same target frequency. In order to

comply with this interface, we need to design our architectures

so that they are tuned for frequency f .

In an operator built for frequency f , all datapaths are smaller

than 1/f = T . For our architectures, the datapaths may contain

operations such as: additions, comparisons, multiplexations

and other general logic. Moreover, in the case of FPGAs one

also has to account for the delays of the wires connecting

these components (see Section I-A1 for a general information

on the ratio between wire delays and component delays).

Components such as logic functions of up to 4-inputs on

Virtex4 and up to 6-inputs on Virtex5 devices are implemented

in LUTs. They have a fixed delay that we generically denote

by δLUT . RCA and comparators (also implemented using the

dedicated carry-chain) allow variable delays for inputs bit

pairs, and have variable delays for their output bits.

In the RCA architecture the carry-bit ripples through, setting

the correct value for the sum-bit and the carry-out bit at every

step. It is natural that the result MSB is obtained later than the

LSB. The availability of the sum-bits is given by the following

equation:

δsj = δLUT + jδcarry + δxor (8)

2It is impossible to guarantee that the the top designs runs at frequency
f . As the main design gets more complex the pressure on the placement
tool increases and makes it more difficult to find good placements, therefore
introducing large net delays which impact the global frequency

3The design will not be over-pipelined, so no useless registers will be used



Moreover, we enforce that, for each bit j of the addition the

incoming carry be synchronized with the computation of the

propagate signal p (see Equation 1), which has a delay equal

to δLUT . The availability of the carry-in bit at the jth bit of

the result is given by the formula:

δcj = δLUT + jδcarry (9)

The full-adder inputs may then arrive as late as:

δxj
= jδcarry (10)

The comparator has just one output. The delay of the output

depends on the FPGA. On Virtex4 the delay of a k-bit the

comparator is equal to that of a k-bit RCA. On Virtex5 the

same comparator maps in half the LUTs. The delay is given

by the equation:

δcmp(k) = δLUT + ⌈(k/2)⌉δcarry + δxor (11)

The three proposed addition architectures follow the same

philosophy: parallel computations of speculative carry-bits,

fast-carry bit computation using the CCC and CR, final result

computation using the recovered carry-bits at the outputs of

CR. The data dependences between these stages together

with the RCA implementation of the CCC give different

computation scheduling strategies for the three architectures.

The computation scheduling can then be directly translated to

obtain the corresponding block sizes for a given frequency f .

A. Block-splitting strategies

We denote by L the addition size. Our objective is finding

a length k vector of block sizes denoted by (lk−1...l0), L =
∑k−1

0
li such that the circuit delay does not exceed the target

period T .

1) The AAM Carry-Select Architecture: Our objective is to

schedule the inner and outer the computations of the carry-

select blocks such that all computational datapaths are are

smaller than T . The constraints given by the timing model

will allow us to determine the block sizes. A visual indication

of a tight computation scheduling for the AAM architecture

is given in Figure 4.

Considering the imposed constraints, the CCC is a k−2-bit

RCA having a delay of the MSB sum bit δsk−2
(Eq. 8). The

sum-bit inputs the select line of the k− 1th block multiplexer

(Figure 4), having a delay δMUX .

On the other hand, as CCC is implemented as an RCA, it

allows the inputs to be delayed at most as specified in Equation

10. As the speculative carries (c1i and c0i ) are also computed

using RCAs, this allows the size of successive blocks to

increase by exactly one bit.

We therefore choose to fix the 1st block size, l1 = 1bit. For

a given frequency f , this sets the maximum value of k as:

δRCA(1) + δw + δRCA(k − 2) + δw + δMUX = T (12)
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Fig. 7. Computation scheduling for the AAM architecture
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As successive-block size increases by exactly one bit, the

size of block, lk−2 = k − 2. Blocks 1 to k − 2 total of (k −
2)(k − 1)/2 bits.

The lk−1 and l0 block sizes are the solutions of the equation:

δRCA(lk−1) = T − (δw + δMUX) (13)

δRCA(l0) = δRCA(l1) + δLUT (14)

The maximal addition size for frequency f is l0+(k−2)(k−
1)/2+ lk−1. Figure 7 presents the computation scheduling for

this architecture, together with the data dependences leading

to determining block sizes.

2) The CAI Carry-Increment Architecture: The CAI ar-

chitecture computes the speculative c1i bit using Equation 6.

On Virtex5 devices this comparison takes half the resources

needed to obtain c1i using a RCA. The latency improvement is

given by the difference between Equation 8 and 11. However,

this latency improvement is lost by using a RCA for computing

c0i .

The third stage of the CAI architecture is an incrementation

of the speculative sum for a 0 carry-in (S0

i ) with the carry-in

obtained by the CCC. The incrementation is implemented as

a RCA in FPGAs.

The output delays of the sum-bits of CCC are given in

Equation 8. The difference between successive sum bits is

δcarry . The sum-bits are used as carry-in bits for the final stage

adder. If we enforce that all the result bits be synchronized

(Figure 8) this leads to successive blocks having a size

decreased by 1-bit.
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We choose to fix the size of the k−1th block, lk−1 = 1 bit

which leads to l2 = k − 2. Moreover, the difference in input

delay between the speculative carry bits of l2 and of l1 for

CCC is δcarry . This leads to l1 = l2 − 1 = k − 3.

Given the constraint that the carry-out of block 0 is the

carry-in of CCC, the size of this block is the solution of the

equation:

δRCA(l0) = δRCA(l1) + δLUT (15)

The maximal adder size for this architecture for frequency

f is (k − 2)(k − 1)/2 + k − 3 + l0.

3) The CCA Carry-Select Architecture: The CCA archi-

tecture uses comparators for computing the two speculative

caries, c0i , c
1

i (Equations 7,6). When compared to the CAI

architecture, the latency of the first stage is reduced.

However, the block splitting strategy remains the same. The

size of the first chunk is now the solution of the equation:

δcmp(l1) + 2δw + δLUT + δXOR + δRCA(l2) = T (16)

where l2 = k − 2.

The number of blocks (k) is now the solution of the

equation:

δcmp(l2) + δw + δLUT + δXOR + δw + δRCA(l3) = T (17)

The size of block 0 is:

δRCA(l0) = δcmp(l1) + δLUT (18)

B. Area complexity of the designs

Once the block-splitting procedure is finished, we can

closely approximate the area of the circuit on the FPGA. The

value is further used in the FloPoCo addition generator to

choose among the proposed architectures and the pipelined ar-

chitectures presented in [8]. The design taking fewer resources

is chosen for implementation.

In this section we present the LUT-count formulas for the

proposed architectures on a Virtex5. The same formals also

hold for the new Virtex6 FPGA. Similar formulas can be

derived for Virtex4 devices. These formulas are deduced based

on the resources occupied by the basic blocks:

• 2:1 n-bit multiplexer occupies n LUTs.

• n-bit RCA takes n LUTs

• n-bit comparator takes ⌈n/2⌉ LUTs on Virtex5/6 and n

LUTs on Virtex4.

1) The AAM Carry-Select Architecture:

LUTs =

k−1
∑

0

li +

k−1
∑

1

li + k − 2 +

k−1
∑

1

li

= 3L− 2l0 + (k − 2)

2) The CAI Carry-Increment Architecture:

LUTs =

k−2
∑

0

li +

k−2
∑

1

⌈

li
2

⌉

+ k − 2 +

k−1
∑

1

li

≈
5

2
L−

3

2
l0 −

3

2
lk−1 + (k − 2)

3) The CCA Carry-Select Architecture:

LUTs = l0 + 2
k−2
∑

1

⌈

li
2

⌉

+ k − 2 +

k−1
∑

1

li

≈ 2L− l0 − lk−1 + (k − 2)

Although the block sizes (lk−1, ..., l0) and the number of

blocks k are different in the above formulas, we can still

conclude on the order of magnitude of the implementations.

Where implementable, the CCA outperforms CAI in imple-

mentation size due to the less costly comparators in Virtex5/6

devices. The AAM falls behind due to the approximately 3L
area complexity caused by the RCAs.

Judging only on these results one could imagine that the

CCA is the best architecture. However, as shown in the

following, the range of L covered by AAM is much greater,

so different trade-offs depending on the value of L have to be

taken into account.

4) Comparison with pipelined-RCA schemes: The imme-

diate advantages of the proposed addition architectures when

compared to pipelined RCA architectures is the reduction of

pipeline stages of the design. We are interested in the area cost

we have to trade to get this advantage. Consequently, we have

compared the area magnitude of our architectures to that of

state-of-the-art pipelined RCA architectures presented in [8].

Table II synthesizes resource estimation formulas for Vir-

tex5 FPGAs. Please note that the values of k and (l0, ...., lk−1

might be different for all these architectures, only the addition

size L remains constant. The proposed addition architec-

tures represent very attractive alternatives to the pipelined

RCA schemes. For more than two pipeline levels the CCA

architecture takes approximately as many resources as the

pipelined schemes while at the same time reducing pipeline

depth. For larger number of pipeline depths, the proposed

architectures takes fewer resources, providing that it can match

the frequency.



TABLE II
RESOURCE ESTIMATION FORMULAS FOR THE PROPOSED ARCHITECTURES

AGAINST THOSE OF PIPELINED RCA SCHEMES PRESENTED IN [8]. THE

TARGET FPGA IS VIRTEX5 AND THE ADDITION SIZE IS L

Architecture LUT-FF pairs Pipeline Depth

AAM 3L− 2l0 + (k − 2)
0CAI 5

2
L−

3

2
l0 −

3

2
lk−1 + (k − 2)

CCA 2L− l0 − lk−1 + (k − 2)

Classical [8]
3L− l0 2
3L 3
3L+ l0 4

Alternative [8]
3L− 2l0 2
3L− l0 3
3L 4

5) Pipelining options: The architectures presented so far

are all combinatorial. They allow reducing the number of

pipeline stages by effectively replacing deeply pipelined RCA.

However, for very large values of L the architectures are

unable to reach the desired frequency. Pipelining them is a

solution for these contexts. Inserting a pipeline stage in our

architectures allows covering much larger addition sizes at the

expense of 1 pipeline depth.

The AAM architecture can be effectively pipelined by

inserting one register level after the speculative computations

of the first stage. The architecture will be divided in two,

having two critical paths: the block RCA addition on one side

and the CCC RCA addition and the multiplexer delay on the

other side. Inserting the register at this phase has no impact on

the size of the architecture. The registers are combined with

the LUTs (Figure 1) for free.

For the CAI architecture, the register level can be similarly

inserted after the first computations. Although several registers

are combined with LUTs, there is a small increase of 2lk−1

LUT Flip-Flop pairs for buffering the final block inputs.

One solution to decrease this to lk−1 would be to apply the

speculative sum computation for cin = 0 to it. Inserting the

register before the last computation phase requires in addition

buffering the CCC outputs, therefore yielding a less attractive

solution.

The CCA architecture can easily pipelined. The first two

levels are regrouped to balance the size of the adders at the last

level. Unfortunately, pipelining this architecture is expensive,

having to pay an extra 2L− l0 LUT Flip-Flops pairs for it.

One should only consider the pipelined implementations

when none of the combinatorial versions are capable of reach-

ing the requested frequency. When deciding what pipelined

architecture to use, one should first try the CAI architecture,

and, if this one also fails, one should go with the pipelined

AAM architecture.

IV. REALITY-CHECK

We have implemented a generic architectural generator for

the proposed architectures. It inputs the addition width, target

operating frequency and target FPGA (all Virtex FPGAs are

currently supported) and generates a hardware description of

the addition architecture in a portable, human-readable VHDL
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Fig. 10. Maximum addition sizes for the 3 architectures on a Virtex5 FPGA

file. The timing parameters of the Virtex FPGAs have been

obtained from the corresponding user manuals, and confirmed

by synthesis results.

We were first interested in finding the maximum adder

size or our proposed addition architectures for a fixed target

frequency f . We focused on frequencies in the 200-400 MHz

interval on a Xilinx Virtex5 FPGA. The maximal addition

sizes for the proposed architectures and that of the classical

RCA are presented in Figure 10. As expected, the latency

optimized architectures, AAM and CCA outperform the CAI

architecture.

The latency difference between the first stage of the CCA

and CAI architectures (comparator vs. adder) translate into

a maximum adder difference of more than 750-bits for f =
200MHz in favor of the CCA, more than 60% larger than the

adder size supported by the CAI architecture. As the frequency

increases, the block size decreases, minimizing the latency

difference between the two architectures. The two architectures

are unable to perform additions for f > 300MHz.

The AAM architecture is capable of managing much larger

additions than the CAI or the CCA architectures. This can

be explained by the relatively constant, and at the same time

short delay of the third stage multiplexers. The architecture

is capable of performing additions of over 8000 bits at a

frequency of 200 MHz and over 300 bits for a frequency of

400 MHz.

Next we decided to compare AAM against an optimized

pipelined implementation of the RCA (maximum unpipelined

RCA adder size is 80 bits for f = 400 MHz). For a 300-

bit adder implementation, the pipelined RCA implementation

takes 3 pipeline levels and consumes 940 LUT Flip-Flop pairs

against the AAM implementation that requires no pipeline

levels and 952 LUT Flip-Flop pairs. The AAM implementation

manages to reduce cycle count by 3 for a minor resource

increase.

This result validates the theoretical complexities discussed

in section III-B4, that in certain circumstances (large adder

size, high target frequency) the proposed architectures provide

real alternatives to the deeply pipelined RCA adders.

The area of an adder implementation plays an important role
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in the decision process of using it in a wider context. Addition

is a pervasive operation in FPGA designs, and therefore

choosing the smallest adder implementation is desired. Figure

11 presents the implementation cost of the three architectures

for adders ranging from 100 to 300 bits. The same figure also

presents the area of the pipelined RCA adder. Out of the three

proposed architecture, the CCA takes the smallest area, then

CAI and finally, the largest one is the AAM. Both the CCA

and CAI manage to obtain smaller implementations than the

optimally pipelined RCA adder for an addition width of 300

bits.

V. CONCLUSION

This paper presents three efficient mappings of the carry

select/increment adders on modern FPGAs. The core idea

behind these mappings is mapping the multiplexer network

computing the carry-bits on the dedicated fast-carry lines

present in current FPGAs.

The first proposed architecture, the AAM is derived directly

from the classic carry-select architecture. It benefits from the

short latency of the stage-3 multiplexers to implement very

large additions at high frequencies. The second architecture,

the CAI, is a variation of the classical carry-increment scheme.

It uses fewer resources than the AAM architecture due the

use of comparators for speculative carry-bit computation for

cin = 1. The third stage uses an incrementer to fix the spec-

ulative sums computed for a cin = 0. The third architecture,

CCA, reduces the critical delay of the first stage path by using

comparators for obtaining the speculative carries at the first

stage. It uses fewer resources than the CAI architecture and it

has as shorter critical path.

For these architectures, advanced block-splitting strategies

are presented based on internal timings of adders and compara-

tors, and accounting for the significant wire delays of FPGA

circuits. Resource estimation formulas are also provided for

Virtex5 devices in order to integrate the architectures in the

FloPoCo adder generator.

The presented architectures are capable of replacing large,

deeply pipelined RCAs. As large and as deeply pipelined the

RCA, as small becomes the cost penalty. The gain with respect

to the pipelined RCA is found in the severely reduced number

of pipeline stages. This reduction might reduce synchroniza-

tion cost between data-paths and therefore reduce the area of

the top design.

These architectures have been implemented and are avail-

able in the FloPoCo open-source framework.
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