
HAL Id: ensl-00542950
https://ens-lyon.hal.science/ensl-00542950

Submitted on 4 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A 128-Tap Complex FIR Filter Processing 20
Giga-Samples/s in a Single FPGA

Florent de Dinechin, Honoré Takeugming, Jean-Marc Tanguy

To cite this version:
Florent de Dinechin, Honoré Takeugming, Jean-Marc Tanguy. A 128-Tap Complex FIR Filter Pro-
cessing 20 Giga-Samples/s in a Single FPGA. 44th Conference on signals, systems and computers,
United States. �ensl-00542950�

https://ens-lyon.hal.science/ensl-00542950
https://hal.archives-ouvertes.fr


A 128-Tap Complex FIR Filter

Processing 20 Giga-Samples/s

in a Single FPGA

LIP research report RR-2010-36

Florent de Dinechin, Honoré Takeugming

LIP (CNRS/INRIA/ENS-Lyon/UCBL)

Université de Lyon

Email: florent.de.dinechin@ens-lyon.fr

Jean-Marc Tanguy

Alcatel-Lucent France

Email:jean-marc.tanguy@alcatel-lucent.com

Abstract—To enable 40Gb/s data transmission over optical
fibres using QPSK modulation, the first step of the receiver
signal-processing pipeline is a 128-tap FIR filter that compensates
the chromatic dispersion due to the medium. We present an
implementation of this FIR filter in the largest Stratix-IV GX
device that is able to process 20 giga-samples per second, where
each sample is a complex number with 5+5 bits resolution. This
FFT-based architecture processes 128 complex samples per cycles
at a frequency of 156MHz. The FFT and inverse FFT pipelines
use ad-hoc memory-based constant multipliers well suited to the
FPGA features, while the multiplications in the Fourier domain
use the FPGA embedded DSP blocks. This FPGA is thus able to
perform more than 2 tera-operations per second. The precision
of the intermediate signals is chosen to ensure that the error of
the output signal with respect to the Matlab reference is never
more than one least significant bit.

I. INTRODUCTION

The TCHATER project aims at demonstrating a coherent

terminal operating at 40Gb/s using real-time digital signal

processing (DSP) and efficient polarization division multi-

plexing [1]. The terminal will benefit to next-generation high

information- spectral density optical networks, while offering

straightforward compatibility with current 10Gbit/s networks.

Fig. 2 describes the main tasks to perform, and the board-

level architecture under design. This article surveys the first

DSP step of this terminal, a large and high-bandwidth finite

impulse response (FIR) filter whose task is to compensate the

chromatic dispersion (CD) of the fiber for one polarization.

This is the box labelled Chromatic dispersion compensation

on Fig. 2.

Without detailing the application at large, the constraints

for this step to enable 40Gb/s transmission are as follows. For

each of the two polarizations, the optical signal is sampled at

20GHz with a resolution of 5 bits for each of the imaginary

and real parts (there is a factor 2 oversampling here). The

input bandwidth to each of the two first parallel FPGAs must

therefore be (5+5) bits at 20 GHz, or 200 Gb/s. The analog-

to-digital converters (ADC) demultiplex this bandwidth by a

factor four, enabling data transmission over high-speed serial

links operating at 5GHz. We therefore need 40 such links

on each FPGA, which maps the capability of commercially

available high-end FPGAs. Two parallel FPGAs consume this

data, and produces an equivalent output bandwidth, which is

sent through standard I/O pins to a third FPGA performing

the rest of the DSP pipeline.

The main application constraints are actually on the in-

put/output. FPGAs providing enough I/O bandwidth also pro-

vide massive amounts of processing power, which is exploited

in this paper to implement the main DSP task of each of these

input FPGAs, a Finite Impulse Response (FIR) filter of at least

100 taps.

To our knowledge, none of the commercially available FIR

implementations offers the required performance, even one

fifth of it. Fortunately, we need very low resolution since the

signals are sampled on 5 bits. Still, we shall need more than

5-bit accuracy in intermediate computations to ensure that the

output signal is not turned into noise due to the accumulation

of tens of rounding errors in the processing.

FPGAs may only compute at a frequency much lower than

the 5GHz of data input: we aim at 5GHz/32=156.25MHz.

Therefore, the first task of the FPGA is to demultiplex the data

to this lower frequency. This is achieved using a combination

of hardwired SerDes (serializer-deserializer) blocks and soft

logic. At this point, we have at each 156MHz cycle a vector

of 128 complex samples.

II. AN FFT-BASED FIR

As we now have at each cycle a vector of consecutive

samples that arrives in parallel, it is natural to use the FFT

to perform the FIR in the frequency domain, with a pipeline

depicted by Fig. 1.

A. Arithmetic matching

An FFT-based FIR also happens to perfectly match the

resources available in the FPGA, summed up in Table I.

Specifically, the application requires that the coefficients of

the FIR may be changed, typically to adapt to commutations



2
0

b
it
s
 @

 5
G

H
z

2
0

2
0

2
0

3
2

0
b

it
s
 @

 6
2

5
M

H
z

3
2

0

Stratix4GX

Stratix4GX
Stratix4

VCO

D
e
c
is

io
n

D
e
c
is

io
n

c
o

m
p

e
n

s
a
ti

o
n

d
is

p
e
rs

io
n

C
h

ro
m

a
ti

c

c
o

m
p

e
n

s
a
ti

o
n

d
is

p
e
rs

io
n

C
h

ro
m

a
ti

c

A
D

C
A

D
C

A
D

C
A

D
C

 

S
o
u
rc

e
 s

e
p
a
ra

ti
o
n
 (

IC
A

)

Re

Im

Re

Im

Polar. 1

Polar. 2

F
re

q
u
e
n
c
y
 E

s
ti
m

a
ti
o
n

F
re

q
u
e
n
c
y
 E

s
ti
m

a
ti
o
n

C
a
rr

ie
r 

P
h
a
s
e
 E

s
ti
m

a
ti
o
n

C
a
rr

ie
r 

P
h
a
s
e
 E

s
ti
m

a
ti
o
n

E
q
u
a
liz

a
ti
o
n
 (

C
M

A
)

Fig. 2: TCHATER pipeline overview

Coeffs

1
2
8
 c

o
m

p
le

x
 in

p
u

ts

1
2
8
 c

o
m

p
le

x
 o

u
tp

u
ts

iFFT
256mult

cplx

256

FFT
256

Fig. 1: FFT-based FIR implementation

TABLE I: Features of the Stratix IV EP4SGX530 relevant to

this project [2]

high-speed serial links 40
standard IO ports 904

Arithmetic/Logic Modules 212480
6-input LUTs 414960
1-bit registers 414960

DSP blocks 1024 9x9,
or 256 complex 18x18 multipliers

M9k blocks (9 Kbits) 1,280
M144k blocks (144 Kbits) 64

of optical fibers. For a 128-tap FIR, we therefore need 256

complex multipliers, by filter coefficients which will be held

in registers. This perfectly matches the hardwired DSP blocks

in the largest StratixIV GX.

All the other multiplications, in an FFT-based FIR, are

multiplications by constant values (the roots of unity), and

we now describe possible implementations of these, using

the remaining FPGA resources: arithmetic and logic modules

(ALMs), and embedded memories (M9K for 9Kbit memories).

B. Defining the precisions used along the datapath

The pipeline inputs and outputs samples with a resolution

of 5 bits, and performs tens of operations on them. Obviously,

we need to use an intermediate precision larger than 5 bits if

we want any accuracy in the results. This section discusses

this issue.

First consider the FFT. A 256-point FFT is needed for a 128-

tap FIR filter. We chose a radix-4 FFT consisting of 4 butterfly

stages, each stage composed of a row of complex multipliers

by some e
2πkj

2n , and two rows of complex additions. The first

row of constant multipliers actually only multiply by 1 or -1.

The following rows multiply by e
2πkj

16 then e
2πkj

64 then e
2πkj

256 .

We have to ensure that every computation is meaningful, in

particular that we take into account even the results of the

multiplications by the smallest constants (e.g. sin(π/256) ≈
/0.0245).

As we start with 5-bit signals and end with 18-bit hard

multipliers, a solution that minimizes both rounding errors

and resource consumption is to let the datapath width grow,

avoiding in particular any rounding in addition. Fig. 3 shows

the sizes in bits of the intermediate signals in this case. The

notation p.q describes a fixed-point format with p bits in the

integer part and q bits in the fraction part. The following details

how we came to the formats on this figure.

Let us first consider the range of the data (which defines

the number p of integer bits in the fixed-point format).

• Each constant multipliers produces a result of the same

order of magnitude as its input, in other words p is the

same before and after a multiplier. Although there is

a scalar addition in the implementation of a complex

multiplier, this addition should never overflows in the

case of multiplications by roots of unity, since they do

not increase the module. Actually, this assertion may be

false in the rare case of extremal values combined with

roundoff errors away from zero. However, this situation



± ±± ± ×c ×c±± ×c ± ±×c

c = sin/cos(2πk
256

)c = sin/cos(2πk
64
)c = sin/cos(2πk

16
)c = sin/cos(2πk

4
)

4.
9

1.
4

2.
4

3.
4

3.
9

4.
9

5.
9

6.
9

7.
9

7.
9

8.
9

9.
9

= ±1

1.
4

Fig. 3: Fixed-point precisions in the FFT. All the operations shown are complex operations.

is avoided a-priori in our application, by setting the ADC

gains so that extremal values are not used. Another option

would have been to use saturated arithmetic, but at a

much higher cost.

• However, we have to keep the overflow bit of each

complex addition, wich means that p grows.

We arrive at p = 9 at the end of the FFT. As this data

is input to DSP-based complex multipliers that have 18-bit

resolution, we must have q ≤ 9 so that p+ q ≤ 18. The next

design choice is to try q = 9, then retrofit this q = 9 to all

the FFT datapath: this will entail that all the additions are

exact, thus minimizing rounding error. The two last constant

multiplications have identical input and output format. The

first multiplication also, as it is exact (multiplications by

1, j,−1 or −j). The precision q = 9 is actually introduced

by the second constant multiplication.

Combined with the ad-hoc constant multiplication tech-

niques of next section, this design choice ensures very high

accuracy while keeping resource consumption within the range

of the FPGA.

After multiplication by the filter coefficient using DSP

blocs, we have to compute an iFFT that will ultimately output

the data with 5-bit resolution. In this iFFT, we currently use

constant k-bit precision for all the operations. Only the final

result is rounded back to 1.4 format. The value of k is the

largest possible such that the design fits the target FPGA and

runs at the target frequency of 156MHz. Currently, k = 14.

As Fig. 4, right shows, for this value of k, the accuracy of the

whole pipelined, measured by simulation, is very good (error

always smaller than one unit in the last place, or 1/32). A

value of k = 18 would provide perfect accuracy (Fig. 4, left).

This better design actually fits the FPGA, but we were so far

unable to have it run at the target frequency.

As the application is latency-insensitive, the design is

pipelined with two pipeline levels per constant multiplication

and one per addition, for a total of 20 cycles for the FFT or

iFFT.

Let us now review the implementation of the constant

multipliers used in the FFT and iFFT pipelines.

III. AD-HOC CONSTANT MULTIPLIER DESIGN

The multiplication of a complex constant a + ib by a

complex number x+ iy is equal to (ax+by)+ i(bx−ay). We

use, for different sizes, four variations on the idea of tabulating

constant multiplication. In all this section, we focus on the four

products ax, by, bx and ay. The two additions of a complex

product are implemented the standard way.

×a

×b
6

6

6

6

6

6

×a

×b

x

y

ax

bx

ay

by

ALM

ALM

Fig. 5: Tabulating a complex constant multiplication in ALM

18

18
9

9

9

99

9

ax

bx

ay

by

y

x

M9K

Fig. 6: Tabulating a complex constant multiplication in M9K

A. Simple tables

For 6-bit (or less) products, we can use 64-entry tables

adressed by input data on 6 bits, well matched to the Stratix

ALM structure [2, Fig. 2.7] used as dual 6-input look-up table

(see Fig. 5). In this case, we need two ALMs per output bit.

Another option is to use M9K memories configured as dual-

port 29 × 18 (see Fig. 6). Here, each 18-bit table entry holds

the concatenation of ax (on 9 bits) and bx (on 9 bits), x being

the address.

In each case, the data from each table is used twice, so

these solutions are quite resource efficient: one could claim,

for instance, that one M9K of Fig. 6 computes 4 9-bit products

at 300MHz, so the correponding cumulated peak performance

for the whole FPGA is 1280×4×300M = 1.5 TOp/s, where

the Op is a 9-bit multiplication with a real constant.

One strength of this approach is that the accuracy is better

than using a multiplier, since the result stored in the table

is the correct rounding of the product by the real number

sin( 2πk
2s

j). Using a multiplier, we would have to first round the

real constant to some finite precision value, then to round the

product, leading to a combination of two rounding errors.This

good accuracy is all the more important as these techniques

are used for small precisions.



(a) Inverse FFT computed on 18 bits (b) Inverse FFT computed on 14 bits

Fig. 4: Plots of the result computed by our implementation (darker dots with 5-bits resolution), against the results computed

in double-precision by Matlab (lighter dots). The dark square in the center is the plot of the difference between the two.

In both cases this design is always last-bit accurate with respect to the Matlab result. On this limited simulation, the 18-bit

implementation is always as accurate as rounding the Matlab result to 5 bits.

B. Variations on the KCM algorithm

The two other multiplier techniques used are variations

of the KCM idea [3], [4] adapted to fixed-point product.

For instance, a 18-bit x input is decomposed into two 9-

bit numbers x1 + 2−9x0, and the product ax is equal to

ax1 + 2−9ax0, tabulated in two tables, ax1 and ax0. For an

output precision of 18 bits, we tabulate ax1 on 18 bits (this

consumes two M9K), but we need only tabulate ax0 on 9

bits (one M9K) since it is scaled down by 2−9 with respect

to ax1. If both tables contain correctly rounded product, the

sum is computed with a accuracy of 1 unit in the last place,

which is still good (and equivalent to the truncation of an exact

multiplication). Remark that this decomposition is compatible

with Fig. 6, so one 18-bit constant complex multiplication

consumes three M9K used as per Fig. 6.

The 1280 M9K of the target FPGA (see Table I) allow

us to implement 426 such multiplications. They are used for

almost two multiplier columns of the inverse FFT. The other

x0x1x =

Fig. 7: Splitting a 2k-bit number in two k − bit chunks

cx0
2kcx1

cx

+

=

Fig. 8: KCM-like multiplication of a fixed-point number x by

a real constant

multiplications of the iFFT use the same idea, but splitting the

input x into 3 6-bit chunks that are tabulated in ALMs. The

multiplications of the FFT also all use ALMs.

IV. RESULTS AND FUTURE WORK

This design, along with the deserialisation logic and a

smaller 4-tap interpolation filter compensating the difference

in optical delays in the incoming fibers, consumes 100% of

the DSP resources, 100% of the M9K resources, and 92%

of the logic resources. The pipeline depth of the FIR is

20+3+20 cycles, and it runs at slightly more than 156MHz. It

is last-bit accurate with respect to a double-precision Matlab

computation, as Fig. 4 shows.

The main issue with this design is that its natural floorplan

(Fig. 1) poorly matches the physical structure of the target

FPGAs. For instance, data is input on both sides of the chips,

and the physical DSP blocks are grouped in several columns

spread over the chip. This leads to long wires and makes the

placement and routing difficult for the tools – synthesis takes

several days. Logic partitionning helps a little, but we couldn’t

find a sensible partitionning of the logical design that could

match a partition of the phyical chip.

Current work mostly consists in building the experimen-

tation board for the TCHATER project, and completing the

programming of the remaining FPGA (on the right of Fig-

ure 2).

In the longer term, we hope to build on this experience to in-

vestigate a more automated approach to the design of this type

of pipelined FFT operators, possibly in the FloPoCo project

(www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/). FloPoCo al-



ready incorporates multipliers of a real constant by a fixed-

point number.

REFERENCES

[1] J. Renaudier, “Coherent-based systems for high capacity wdm transmis-
sions,” in Optical Fiber communication/National Fiber Optic Engineers

Conference, 2008.
[2] Stratix-IV Device Handbook, Altera Corporation, 2008.
[3] K. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993 design

idea winner),” EDN magazine, May 1994.
[4] Implementing Multipliers in FPGA Devices, Altera Corporation, 2004.


