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Abstract

Magical supergravities are a very special class of supergravity theories whose symmetries

and matter content in various dimensions correspond to symmetries and underlying alge-

braic structures of the remarkable geometries of the Magic Square of Freudenthal, Rozenfeld

and Tits. These symmetry groups include the exceptional groups and some of their special

subgroups. In this paper, we study the general gaugings of these theories in six dimensions

which lead to new couplings between vector and tensor fields. We show that in the absence

of hypermultiplet couplings the gauge group is uniquely determined by a maximal set of

commuting translations within the isometry group SO(nT , 1) of the tensor multiplet sector.

Moreover, we find that in general the gauge algebra allows for central charges that may have

nontrivial action on the hypermultiplet scalars. We determine the new minimal couplings,

Yukawa couplings and the scalar potential.

http://arxiv.org/abs/1012.1818v1
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1 Introduction

There exists a remarkable class of supergravity theories in D = 3, 4, 5, 6, known as
magical supergravities, whose geometries and symmetries correspond to those the
Magic Square of Freudenthal, Rozenfeld and Tits [1, 2]. In five dimensions these
theories describe the coupling of N = 2 supergravity to 5, 8 , 14 and 26 vector
multiplets, respectively, and are the unique unified Maxwell-Einstein supergravity
theories with symmetric target spaces. In D = 6 they describe the coupling of a fixed
number of vector multiplets as well as tensor multiplets to supergravity [3]. The scalar
fields of these theories parametrize certain symmetric spaces in D = 3, 4, 5 [1] that
were later referred to as very special quaternionic Kähler, very special Kähler and very
special real, respectively. See [4] for a review of these geometries and their relation
to 6D theories. The magical theories in D = 6 are parent theories from which all the
magical supergravities in D = 3, 4, 5 can be obtained by dimensional reduction. The
scalar coset spaces in all magical supergravities are collected in table 1. Stringy origins
and constructions of some of the magical supergravity theories in various dimensions,
with or without additional hypermultiplet couplings, are known [5, 6, 7, 8, 9, 10].

D = 6 D = 5 D = 4 D = 3

SO(9,1)
SO(9)

−→
E6(−26)

F4
−→

E7(−25)

E6×SO(2)
−→

E8(−24)

E7×SU(2)

SO(5,1)
SO(5)

−→ SU∗(6)
USp(6)

−→ SO∗(12)
U(6)

−→
E7(−5)

SO(12)×SU(2)

SO(3,1)
SO(3)

−→ SL(3,C)
SO(3)

−→ SU(3,3)
SU(3)×SU(3)×U(1)

−→
E6(+2)

SU(6)×SU(2)

SO(2,1)
SO(2)

−→ SL(3,R)
SO(3)

−→ Sp(6,R)
U(3)

−→
F4(+4)

USp(6)×USp(2)

Table 1: Scalar target spaces of magical supergravities in 6, 5, 4 and 3 dimensions.

Gaugings of magical supergravities have been investigated in D = 5 [11, 12, 13] as
well as in 4 and 3 dimensions [14, 15, 16, 17, 18]. However, the gaugings associated
with the isometries of the scalar cosets in D = 6 listed above have not been studied
so far. In this paper, we aim to close this gap. The gauging phenomenon is especially
interesting in this case since it involves tensor as well as vector multiplets such that
the corresponding tensor and vector fields transform in the vector and spinor rep-
resentations of the isometry group SO(nT , 1), respectively. Furthermore, the vector
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multiplets do not contain any scalar fields. Including the coupling of hypermulti-
plet couplings introduces additional subtleties with regard to the nature of full gauge
group that are allowed by supersymmetry.

We determine the general gauging of magical supergravities in six dimensions
and show that in the absence of hypermultiplet couplings the gauge group is uniquely
determined by the maximal set of (nT−1) commuting translations within the isometry
group SO(nT , 1). In addition, a linear combination of these generators may act on
the fermion fields as a U(1)R generator of the R-symmetry group Sp(1)R. In the
general case, the gauge algebra allows for central charges that may have nontrivial
action on the hypermultiplet scalars. We show that the emergence of central charges
can be explained by the fact that the gauge group is a diagonal subgroup of (nT − 1)
translational isometries and (nT − 1) Abelian gauge symmetries of the vector fields.

The plan of the paper is as follows. In the next section, we give a review of the
magical supergravity theories in six dimensions. In section 3 we determine the possible
gauge groups and non-abelian tensor gauge transformations using the embedding
tensor formalism and show that they are characterized by the choice of a constant
spinor of SO(nT , 1). We also give a study of the relevant spinor orbits. In section 4,
we elaborate on the structure of the gauge group by embedding the symmetries of the
6D magical theories in the corresponding 5D magical supergravities. We then choose
a particular basis and evaluate the gauge group generators in the vector/tensor- and
hypersector. We then work out the Yukawa couplings and the scalar potential induced
by the gauging. We conclude with comments on salient features of our results and
open problems as well as a discussion of the stringy origins of magical supergravity
theories in section 5.

2 Ungauged 6D Magical Supergravity Theories

2.1 Field Content of 6D Magical Supergravity Theories

We consider the minimal chiral N = (1, 0) supergravity in 6D coupled to nT tensor
multiplets, nV vector multiplets and nH hypermultiplets [19, 20, 21, 22]. We shall
group together the single 2-form potential of pure supergravity that has self-dual field
strength, with nT 2-form potentials of the tensor multiplets that have anti-selfdual
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field strengths, and label them collectively as BI
µν . Thus, the field content is

supergravity and tensor multiplets : {emµ , ψ
i
µ, B

I
µν , χ

ai, LI} ,

vector multiplets : {AA
µ , λ

Ai} ,

hypermultiplets : {φX , ψr} , (2.1)

with

I = 0, 1, . . . , nT ,

a = 1, . . . , nT ,

A = 1, . . . , nV ,

X = 1, . . . , 4nH ,

r = 1, . . . , 2nH .

(2.2)

The gravitino, tensorino and gaugino in addition carry the doublet index of the R-
symmetry group Sp(1)R labeled by i = 1, 2. All fermions are symplectic Majorana-
Weyl, where (ψi

µ, λ
Ai) have positive chirality and (χai, ψr) have negative chirality. LI

denotes a representative of the coset space MT = SO(nT , 1)/SO(nT ) parametrized
by nT real scalars. It has the tangent space group SO(nT ) with respect to which the
tensorinos transform as a vector. The scalars φX parametrize a general quaternionic
manifold MQ. We will discuss the structure of the scalar target spaces in the next
two subsections.

Magical supergravities exist for the particular values nT = 2, 3, 5, 9 with the vec-
tors transforming in the spinor representation of SO(nT , 1), see table 2 for details and
their explicit reality properties. A defining property of these theories is the existence
of an SO(nT , 1) invariant tensor ΓI

AB (the Dirac Γ-matrices for nT = 2, 3, and Van
der Waerden symbols for nT = 5, 9, respectively), giving rise to non-trivial couplings
between vector and tensor fields, and satisfying the well-known identity

ΓI (ABΓ
I
C)D = 0 . (2.3)

These are the Fierz identities of supersymmetric Yang-Mills theories in the critical
dimensions.

2.2 The Tensor Multiplet Scalars

The nT scalars in the model parametrize the coset M = SO(nT , 1)/SO(nT ). It is
convenient to introduce the coset representatives in the nT + 1 dimensional repre-
sentation of the isometry group. We denote them by (LI , L

a
I ) and they obey the
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GT Rv AA
µ ΓI

AB Rten

SO(9, 1) 16c MW ΓI
AB 10

SO(5, 1)× USp(2) (4c, 2) SMW, A = (αr) ΓI
αr,βs = ΓI

αβǫrs (6, 1)

SO(3, 1)× U(1) (2, 1)+ + (1, 2)− W, A = {α, β̇}

(
0 ΓI

αβ̇

Γ̄I
α̇β 0

)
(2, 2)0

SO(2, 1) 2 M ΓI
AB 3

Table 2: The first column shows the full global symmetry groups of the magical super-

gravities, the second column gives the representation content of the vector fields under

these groups, whose reality properties are listed in the third column: Majorana (M), Weyl

(W), Majorana-Weyl (MW), symplectic Majorana-Weyl (SMW). The last column gives the

two-form representation content.

relations [3]

LILI = −1 , LI
aLIb = δab , LILIa = 0 ,

I = 0, 1, . . . , nT , a = 1, . . . , nT .
(2.4)

Raising and lowering of the SO(nT , 1) indices is done with the Lorentzian metric ηIJ ,
and for the SO(nT ) vector indices with δab. Equation (2.4) can be equivalently stated
as

−LILJ + La
IL

a
J = ηIJ , (2.5)

and the coset representative can be used to define the metric

gIJ = LILJ + La
IL

a
J , (2.6)

and the tensors

mAB ≡ LIΓ
I
AB , ma

AB ≡ La
IΓ

I
AB , (2.7)

with ΓI
AB from table 2, which will be used to parametrize the various couplings in the

action. Note that mAB ≡ −LIΓ
IAB is the inverse matrix of mAB . Next, we define

the scalar current and SO(nT ) composite connection as

LIa∂µLI = P a
µ , LI[a ∂µL

b]
I = Q ab

µ , (2.8)
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where the covariant derivative in DµP
a
ν involves the connection Qab

µ . Integrability
relations state that

D[µP
a
ν] = 0 , Q ab

µν ≡ 2∂[µQ
ab
ν] + 2Q ac

[µQ
cb
ν] = −2P a

[µP
b
ν] . (2.9)

It also follows from (2.8) that

∂µLI = P a
µL

a
I , DµL

a
I = P a

µLI . (2.10)

A parametrization of the coset representative which is convenient for the following
can be given according to the decomposition (3-grading)

so(nT , 1) −→ N−
(nT−1) ⊕ (so(nT − 1)⊕ so(1, 1))⊕N+

(nT−1) , (2.11)

where the ± superscript refers to the so(1, 1) charges. We choose

L = eϕ
α Nα eσ∆ , (2.12)

with the (nT − 1) nilpotent generators Nα ∈ N+
(nT−1), and the so(1, 1) generator ∆,

normalized such that [∆, Nα] = Nα . With this parametrization, we obtain

P α
µ = e−σ ∂µϕ

α , P 1
µ = ∂µσ , Q1α

µ = e−σ ∂µϕ
α , (2.13)

where the index a has been split into a→ {1, α} , with α = 2, . . . , nT .

2.3 Hypermultiplet scalars

Supersymmetry requires the hyperscalar manifoldMQ to be quaternionic Kähler [23].
Let us review the basic properties of quaternionic Kähler manifolds, following [24].
They have the tangent space group Sp(nH) × Sp(1)R, and one can introduce the
vielbeins V ri

X and their inverse V X
ri satisfying

gXY V
X
ri V

Y
sj = Ωrsǫij , V X

ri V
Y rj + (X ↔ Y ) = gXY δji , (2.14)

where gXY is the target space metric. An Sp(nH) × Sp(1)R valued connection is
defined through the vanishing torsion condition 1

∂XVY ri + AXr
sVY si + AXi

jVY rj − (X ↔ Y ) = 0 . (2.15)

1Sp(n) refers to the compact symplectic group of rank n which is denoted as USp(2n) in some
of the physics literature.
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From the fact that the vielbein V X
ri is covariantly constant, one derives that2

RXY ZTV
T
ri V

Z
sj = ǫij FXY rs + Ωrs FXY ij , (2.16)

where Fij and Frs are the curvature two-forms of the Sp(1)R and Sp(nH) connection,
respectively.

The manifold has a quaternionic Kähler structure characterized by three locally
defined (1, 1) tensors Jx

X
Y (x, y, z = 1, 2, 3) satisfying the quaternion algebra

Jx
X

Y Jy
Y
Z = −δxyδZX + ǫxyzJz

X
Z . (2.17)

In terms of the vielbein, these tensors can be expressed as

Jx
X

Y = −i(σx)i
j V ri

X V
Y
rj , (2.18)

with Pauli matrices σx . We can define a triplet of two-forms Jx
XY = Jx

X
ZgZY , and

these are covariantly constant as follows

∇XJ
x
Y Z + ǫxyzAy

XJ
z
Y Z = 0 , (2.19)

with Ax
X ≡ i

2
(σx)i

jAXj
i . For nH > 1, quaternionic Kähler manifolds are Einstein

spaces, i.e. RXY = λgXY . It follows, using (2.19), that [24]

F x
XY =

λ

nH + 1
Jx
XY . (2.20)

Local supersymmetry relates λ to the gravitational coupling constant (which we will
set to one), and in particular requires that λ < 0 [23], explicitly λ = −(nH + 1).
For nH = 1 all Riemannian 4-manifolds are quaternionic Kähler. Sometimes (2.20)
is used to extend the definition of quaternionic Kähler to 4D, which restricts the
manifold to be Einstein and self-dual [24].

Homogeneous quaternionic Kähler manifolds were classified by Wolf [25] and Alek-
seevski [26]. For λ > 0, they are the well known compact symmetric spaces, and for
λ < 0 they are noncompact analogs of these symmetric spaces, and non-symmetric
spaces found by Alekseevskii [26]. There exists an infinite family of homogeneous
quaternionic Kähler spaces that are not in Alekseevskii’s classification. As was shown
in [27] this infinite family of quaternionic Kähler spaces arises as the scalar man-
ifolds of 3D supergravity theories obtained by dimensionally reducing the generic
non-Jordan family of 5D , N = 2 Maxwell-Einstein supergravities discovered in [28].

2In our conventions, [∇X ,∇Y ]XZ = RXY Z
T XT .
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Choosing λ = −(nH + 1), and using Mi
j = −i(σx)i

jMx for any triplet Mx, we
have the relation

FXY i
j = −2V jr

[XVY ]ir . (2.21)

Substitution of this relation into (2.16) and use of curvature cyclic identity gives [23]

FXY rs = V pi
[XV

q
Y ]i (−2ΩprΩqs + Ωpqrs) , (2.22)

where Ωpqrs is a totally symmetric tensor defined by this equation.
For any isometry on the quaternionic Kähler manifold defined by a Killing vector

field KX , one can define the triplet of moment maps [29]

Cx ≡
1

4nH
Jx

Y
X∇XK

Y , (2.23)

satisfying

DXC
x ≡ ∂XC

x + ǫxyzAy
XC

z = Jx
XY K

Y , (2.24)

where in particular we have used (2.16). Using (2.18), we can write Ci
j = −i(σx)i

jCx

as

Ci
j = −

1

2nH
V X
ri V

rj
Y ∇XK

Y . (2.25)

As usual, these functions will later parametrize the Yukawa couplings and the scalar
potential of the gauged theory. For later use, let us also define the function

Cr
s ≡ −1

2
V X
ri V

si
Y ∇XK

Y , (2.26)

for a given Killing vector field KY , which satisfies ∇XCr
s = −FXY r

sKY , which may
be shown in analogy with (2.24).

We conclude this section by defining the notation

P ri
µ = ∂µφ

XV ri
X , Qij

µ = ∂µφ
XAij

X , Qrs
µ = ∂µφ

XArs
X , (2.27)

which will be used in the following sections together with the relations

D[µP
ri
ν] = 0 , Qµνi

j = 2P rj
[µ Pν]ri , Qµνrs = P pi

[µP
q
ν]i (−2ΩprΩqs + Ωpqrs) . (2.28)
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2.4 The Field Equation and Supersymmetry Transformations

The bosonic field equation of the full theory including the hypermultiplets are given
up to fermionic contributions by [20, 22]

0 = G+
µνρ , (2.29)

0 = Ga−
µνρ , (2.30)

0 = Rµν −
1

4
gIJGµρσ

IGν
ρσJ − P a

µPνa − 2P ri
µ Pνri

−2mAB

(
FA
µρFν

ρB −
1

8
gµνF

A
ρσF

ρσB

)
, (2.31)

0 = DµP
µa −

1

2
ma

ABF
A
µνF

µνB −
1

6
Ga

µνρG
µνρ , (2.32)

0 = DµP
µri , (2.33)

0 = Dν

(
mABF

µνB
)
+ (mABG

µνρ
− +ma

ABG
µνρ a
+ )FB

νρ , (2.34)

where we have defined the 3-form and 2-form field strengths

GI
µνρ = 3∂[µB

I
νρ] + 3ΓI

ABF
A
[µνA

B
ρ] ,

FA
µν = 2∂[µA

A
ν] .

(2.35)

and the projected field strengths

Gµνρ = GI
µνρLI , Ga

µνρ = GI
µνρL

a
I , (2.36)

and the superscripts ± in (2.29), (2.30) refer to the (anti-)selfdual part of the projected
field strengths. The covariant derivatives acting on objects carrying the tangent space
indices of the tensor and hyperscalar manifolds are defined as

DµX
a = ∂µX

a +Qab
µ Xb ,

DµX
ri = ∂µX

ri +Qrs
µ X

i
s +Qij

µX
r
j , (2.37)
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with the connections from (2.8), (2.27). The fermionic field equations, to linear order
in fermionic fields, take the form

0 = γµνρDνψ
i
ρ −

1

2
Gµνργνψ

i
ρ −

1

2
γνγµχaiP a

µ + γνγµψrP
ri
µ

+
1

2
mAB

(
γρσγµλAiFB

ρσ

)
+

1

4
Ha

µνργ
νρχai , (2.38)

0 = γµDµχ
a −

1

24
γµνρχaGµνρ −

1

2
ma

ABγ
µνλAFB

µν

+
1

4
Ga

µνργµνψρ −
1

2
γµγνψµP

a
ν , (2.39)

0 = γµDµψ
r +

1

24
γµνρψrGµνρ − γµγνψµiP

ri
µ , (2.40)

0 = mABγ
µDµλ

B +
1

4
maABγ

µνχaFB
µν +

1

24
maABγ

µνρλBGa
µνρ

+
1

2
maABγ

µλBP a
µ +

1

4
mABγ

µγνρψµF
B
νρ , (2.41)

where we have suppressed the Sp(1)R indices. The supersymmetry transformation
rules, up to cubic fermion terms, are

δemµ = ǭγmψµ ,

δψµ = Dµǫ+
1

48
γρστγµǫGρστ ,

δcov.Bµν
I = −2ǭγ[µψν] L

I + ǭγµνχ
a LI

a ,

δχa =
1

2
γµǫP a

µ −
1

24
γµνρǫGa

µνρ ,

δLI = ǭχaLa
I ,

δAA
µ = ǭγµλ

A ,

δλA = −
1

4
γµνǫFA

µν ,

δφX = V X
ri ǭ

iψr ,

δψr = P ri
µ γ

µǫi .

(2.42)
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The covariant derivative of the supersymmetry parameter carries the Lorentz algebra
valued spin connection and the Sp(1)R connection, and the covariant variation of the
2-form potential is defined as

δcov.B
I
µν = δBµν

I − 2ΓI
ABA

A
[µδA

B
ν] , (2.43)

such that we have the general variation formula

δGI
µνρ = 3∂[µδcov.B

I
νρ] + 6ΓI

ABF
A
[µνδA

B
ρ] . (2.44)

The field strengths are invariant under the gauge transformations

δAA
µ = ∂µΛ

A ,

δcov.B
I
µν = 2∂[µΛ

I
ν] − 2ΓI

ABΛ
AFB

µν . (2.45)

2.5 The Action

The field equations described above are derivable from the following action [21, 30] 3

e−1L = R −
1

12
gIJG

I
µνρG

µνρJ −
1

4
P a
µP

µa −
1

2
P ri
µ Pµri

−
1

4
mABF

A
µνF

µνB −
1

8
εµνρσλτΓIABB

I
µνF

A
ρσF

B
λτ

+
1

2
ψ̄µγ

µνρDνψρ −
1

2
χ̄aγµDµχ

a −
1

2
ψ̄rγµDµψr

−mABλ̄
AγµDµλ

B +
1

2
ψ̄µγνγ

µχaP ν
a − (ψ̄i

µγνγ
µψr)P ν

ri

+
1

48
Gµνρ

(
ψ̄λγ[λγ

µνργτ ]ψ
τ + χ̄aγµνρχa − ψ̄rγµνρψr

)

+
1

24
Ga

µνρ

(
ψ̄λγ

µνργλχa −maAB λ̄
AγµνρλB

)

−
1

2
FA
µν

(
mAB ψ̄λγ

µνγλλB −maAB χ̄
aγµνλB

)
,

(2.46)

3In our conventions, the Minkowski metric is given by ηmn = diag.(−,+,+,+,+,+), and the
Clifford algebra is generated by {γm, γn} = 2ηmn. The Ricci tensor is defined as Rµ

m = Rµν
mn eνn.

The Sp(1)R indices are raised and lowered as λi = ǫijλj , λj = λiǫij , with ǫijǫ
ik = δkj , and the

SO(nT ) indices are raised and lowered with δab. Often we will suppress the Sp(1)R indices, and use
the notation ψ̄χ = ψ̄iχi. The fermionic bilinears have the symmetry ψ̄γµ1....µn

χ = (−1)nχ̄γµn...µ1
ψ,

with the Sp(1)R index contraction suppressed.
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provided that the (anti-)selfduality conditions (2.29), (2.30) are imposed after the
variation of the action with respect to the 2-form potential. In particular, the 2-form
field equation, upon projections with LI and La

I yields

∇µG
µρσ + P a

µG
µρσ
a +

1

4
ερσλτµνmABF

A
λτF

B
µν = 0 ,

∇µG
µρσ a + P a

µG
µρσ −

1

4
ερσλτµνma

ABF
A
λτF

B
µν = 0 , (2.47)

up to fermionic contributions. These equations, in turn, agree with the results that
follow from taking the divergence of the (anti-)selfduality equations (2.29) and (2.30).

The presence of the B ∧F ∧F term in the action is noteworthy. Since the 3-form
field strength is Chern-Simons modified, normally it is not expected to arise in the
action because in this case the 2-form potential transforms under Yang-Mills gauge
transformations which typically do not leave invariant a term of the form B ∧ F ∧ F
in the action. However, this term is allowed in magical supergravities due to the
identity (2.3).

3 Gauging a Subgroup of the Global Symmetry

Group

We begin with the building blocks needed for the gauging of a subgroup G0 of the
global symmetry group of the Lagrangian that utilizes a suitable subset of the nV

vector fields that is dictated by the so called embedding tensor [31, 32, 33], which is
subject to certain constraints. The global symmetry group of the Lagrangian (2.46)
and hence the equations of motion that follow from it obviously contains the isometry
group SO(nT , 1) of the tensor scalars. For the magical theories with nT = 5 and
nT = 3 it comprises an additional factor USp(2) and U(1), respectively, exclusively
acting on the vector multiplets. In addition, all these theories have an Sp(1)R R-
symmetry group and U(1)nV Abelian symmetry groups.

Most of the formulas presented are very similar to the structures encountered in
the gauging of the maximal supergravity in six dimensions [34], we shall see however
that in contrast to the maximal case, the construction for the magical theories allows
only for a very limited choice of possible gauge groups.
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3.1 Embedding Tensor and the Tensor Hierarchy

The key ingredient in the construction is the general covariant derivative

Dµ = ∂µ − Aµ
AXA , (3.1)

where

XA = ΘA
IJ tIJ +ΘA

X tX +ΘA
AtA , (3.2)

showing that the gauge group is parametrized by the choice of the embedding tensors
ΘA

IJ , ΘA
X , and ΘA

A. Here, tIJ = t[IJ ] are the SO(nT , 1) generators satisfying the
algebra

[ tIJ , tKL] = 4 (ηI[K tL]J − ηJ [K tL]I) , (3.3)

while the generators tX span the additional symmetries USp(2) and U(1) for nT = 5
and nT = 3, respectively. The generators tA denote the isometries of the quaternionic
Kähler manifold parametrized by the hyperscalars, including the Sp(1)R R-symmetry.
We will denote the group with generators (tIJ , tχ) by GT (see Table 1) and the group
with generators tA by GH .

For transparency of the presentation we will first discuss the case of gauge groups
that do not involve the hyperscalars, i.e. set ΘA

A = 0, and extend the construction
to the general case with ΘA

A 6= 0 in section 4.2.
Closure of the gauge algebra imposes the conditions [33, 35]

[XA, XB ] = −X[AB]
C XC , X(AB)

CXC = 0 , (3.4)

where the “structure constants” XAB
C ≡ (XA)B

C are obtained from the generator
(3.2) evaluated in the representation Rv of the vector fields and are in general not
antisymmetric in A and B. The proper non-abelian field strength transforming co-
variantly under gauge transformations is given by the combination [32, 35]

GA
µν = FA

µν +X(BC)
ABBC

µν , (3.5)

where
FA

µν = 2∂[µA
A
ν] +X[BC]

AAB
µA

C
ν . (3.6)

The two-forms BAB
µν = B

(AB)
µν transform in the symmetric tensor product of two vector

representations (Rv ⊗Rv)sym, and the non-abelian gauge transformations are

δAA
µ = DµΛ

A −X(BC)
A Λ(BC)

µ ,

δBAB
µν = 2D[µΛ

AB
ν] − 2Λ(AGB)

µν + 2A
(A
[µ δA

B)
ν] . (3.7)
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Consistency of the construction imposes that the additional two-forms B
(AB)
µν required

in (3.5) for closure of the non-abelian gauge algebra on the vector fields form a subset
of the nT two-forms present in the theory. In other words, it is necessary that the
intertwining tensor X(BC)

A factors according to

X(BC)
A = ΓI

BC θ
A
I , (3.8)

with a constant tensor θAI such that with the identification BI
µν = ΓI

ABB
AB
µν the system

of gauge transformations (3.7) takes the form

δΛA
A
µ = DµΛ

A − θAI Λ
I
µ ,

δcov,ΛB
I
µν = 2D[µΛ

I
ν − 2ΓI

ABΛ
AGB

µν , (3.9)

with δcov defined in (2.43), and provides a proper covariantization of the Abelian sys-
tem (2.45). This shows how the gauging of the theory in general not only corresponds
to covariantizing the derivatives according to (3.1) but also induces a nontrivial de-
formation of the 2-form tensor gauge transformations. In particular, 2-forms start
to transform by (Stückelberg)-shift under the gauge transformations of the 1-forms.
Pushing the same reasoning to the three-form potential and the associated gauge
transformations, leads to the following set of covariant field strengths

GA
µν ≡ 2∂[µA

A
ν] +X[BC]

AAB
µA

C
ν +BI

µνθ
A
I ,

HI
µνρ ≡ 3D[µB

I
νρ] + 6ΓI

AB A[µ
A
(
∂νAρ]

B + 1
3
X[CD]

BAν
CAρ]

D
)
+ θIA CµνρA ,

Gµνρσ A ≡ 4D[µCνρσ]A − (ΓI)AB

(
6BI

µνG
B
ρσ + 6θBJBI

[µνBρσ]J

+ 8ΓI
CDA

B
[µA

C
ν ∂ρA

D
σ] + 2ΓI

CDXEF
DA[µ

BAν
CAρ

EAσ]
F
)
, (3.10)

with three-form fields CµνρA. While the construction so far is entirely off-shell, the
equations of motion will impose (anti-)self-duality of the dressed field strengths LIG

I
µνρ

and La
IG

I
µνρ, respectively, whereas the three-form fields CµνρA are on-shell dual to the

vector fields by means of a first order equation

e θAI G
µνρλ
A = −

1

2
ǫµνρλστ mAB GA

στ θ
B
I , (3.11)

with the metric mAB from (2.7). In particular, the three-form fields transform in the
contragredient representation under the global symmetry group. Similar to the above
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construction, their presence in the first equation of (3.10) is required for closure of the
algebra on the two-forms.4 The hierarchy of p-forms may be continued to four-forms
and five-forms which are on-shell dual to the scalar fields and the embedding tensor,
respectively, see [35, 36], but none of these fields will enter the covariantized action
and the tensor hierarchy can consistently be truncated to (3.10).

The field strengths (3.5) and (3.10) transform covariantly under the full set of
non-abelian gauge transformations

δΛA
A
µ = DµΛ

A − θAI Λ
I
µ ,

δcov,ΛB
I
µν = 2D[µΛ

I
ν − 2ΓI

ABΛ
(AGB)

µν − θAI Λµν A ,

δcov,ΛCµνρA = 3D[µΛνρ]A + 6ΓI
AB GB

[µν Λρ]I + 2ΓI
AB ΛB Hµνρ I , (3.12)

with gauge parameters ΛA, ΛI
µ, Λµν A, the covariant variation δcov.B

I
µν as defined in

(2.43), and

δcov.CµνρA ≡ δCµνρA − 6 ΓI
AB B[µν I δAρ]

B − 2ΓI
AB(ΓI)CD A

B
[µA

C
ν δA

D
ρ] . (3.13)

The modified Bianchi identities are given by

D[µG
A
νρ] = 1

3
θAI H

I
µνρ , (3.14)

D[µH
I
νρσ] = 3

2
ΓI
AB GA

[µνF
B
ρσ] +

1
4
θIAGµνρσ A . (3.15)

Just as consistency of the gauge algebra on the vector fields above gave rise to the
constraint (3.8), an analogous constraint follows from closure of the algebra on the
two-forms:

(XA)I
J = 2

(
θBI Γ

J
AB − θJB(ΓI)AB

)
. (3.16)

Otherwise a consistent gauge algebra would require the presence of more than the
(available) nV three-forms CµνρA. Recalling that the generator on the l.h.s. is defined
by (3.2), this constraint translates into the relation

ΘA
IJ = −Γ

[I
AB θ

J ]B
, (3.17)

4Strictly speaking, also the four-form field strength Fµνρσ A needs to be corrected by a Stückelberg
type term carrying explicit four forms that are on-shell duals to the scalar fields. For our present
purpose we will ignore these terms as they are projected out from all the relevant equations of
motion.
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between the various components of the embedding tensor. Putting this together
with (3.8) and the fact that ΓI

AB is an invariant tensor, one explicitly obtains the
magical Γ-matrix identity (2.3). This shows in particular, that for values of nT

different from 2, 3, 5, 9, the non-abelian gauge algebra does not close (in accordance
with the appearance of the classical gauge anomaly in the action).5 Furthermore, this
calculation gives rise to the linear relation

ΓI
DCX[AB]

D = 2ΓI
D[AΓ

J
B]Cθ

D
J − 4

3
(ΓJ)D[AΓ

J
B]Cθ

ID + ΓI
D[CXAB]

D . (3.18)

Using all the linear constraints (3.8), (3.16), (3.18), the quadratic constraint (3.4)
finally translates into the following set of relations

θIAηIJθ
JB = 0 , θIAΓ

[J
ABθ

K]B = 0 , X[AB]
CθIB = ΓJ

AD θ
C
J θ

ID ,

X[AB]
DX[CD]

E +X[CA]
DX[BD]

E +X[BC]
DX[AD]

E = ΓI
D[AXBC]

D θEI . (3.19)

The first two relations turn out to be very restrictive. In particular, the first equation
implies that θIA is a matrix of mutually orthogonal null vectors in (nT+1)-dimensional
Minkowski space, which requires that they are all proportional, i.e. θIA factorizes as

θIA = ζAξI , (3.20)

with an unconstrained (commuting) spinor ζA and ξIξI = 0 . The second equation of
(3.19) then has the unique solution (up to irrelevant normalization) ξI = ΓI

ABζ
AζB

which defines a null vector by virtue of the identity (2.3). The same identity implies
that the tensor θIA is Γ-traceless:

ΓI
ABθ

B
I = 0 . (3.21)

From these results one can already deduce some important facts on the structure of
the gauge group. Let us decompose the gauge group generators as

XA = X̂A + X̊A , (3.22)

according to (3.2) into the part acting within the isometry group SO(nT , 1) and the
contribution of generators tX , respectively. Using (3.2), (3.17) and (3.20) together
with the Γ-matrix algebra and the magical identity (2.3) we find

X̂(BC)
A = −ζDζEζF (ΓIJ)(B

AΓI
C)FΓ

J
DE

= 1
2
ζDζEζF (ΓJ)DE(Γ

IΓJ)F
A(ΓI)BC = ΓI

BCθ
IA . (3.23)

5Note that this argument singling out once more the magical cases does not even rely on the
existence of a supersymmetric action.
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Comparing this to the linear constraint (3.8) thus implies X̊(BC)
A = 0. Some closer

inspection then shows that this furthermore implies

X̊BC
A = 0 . (3.24)

Thus, within the vector/tensor sector, the gauge group entirely lives within the scalar
isometry group SO(nT , 1), even in the cases nT = 3 and nT = 5, where the full
global symmetry group of the action possesses additional factors. All other equations
of (3.19) can then be shown to be identically satisfied. Summarizing, the possible
gaugings of the magical theories are entirely determined by the choice of a constant
spinor ζA of the isometry group SO(nT , 1). In the following we will discuss the
possibility of inequivalent choices of ζA and subsequently study the structure of the
resulting gauge group.

3.2 Spinor orbits

With the gauging determined by the choice of a spinor, one may wonder whether there
are different orbits of the action of SO(nT , 1) on the spinorial representation which
would represent inequivalent gaugings. The orbits of spinors up to 12 dimensions
were studied long ago by Igusa [37]. More recently the spinors in critical dimensions
were studied by Bryant [38, 39], whose study uses heavily the connection between
spinors in critical dimensions and the four division algebras R,C,H and O.

Understanding of the structure of gauge groups we obtain as well as the connection
to the work of Bryant on orbits are best achieved by studying the embedding of the
symmetries of the 6D magical theories in the corresponding 5D supergravity theories
obtained by dimensional reduction. Hence we shall first review briefly the 5D magical
supergravity theories.

Ungauged magical supergravity theories in five dimensions are Maxwell-Einstein
supergravities that describe the coupling of pure N = 2 supergravity to 5, 8, 14 and
26 vector multiplets , respectively. They are uniquely defined by simple Euclidean
Jordan algebras , JA

3 , of degree three generated by 3 × 3 Hermitian matrices over
the four division algebras A = R, C, H(quaternions), O(octonions). The vector fields
in these theories , including the graviphoton, are in one-to-one correspondence with
the elements of the underlying simple Jordan algebras. Their scalar manifolds are
symmetric spaces of the form:

M5 =
Str0(A)

Aut(A)
(3.25)
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where Str0(A) and Aut(A) are the reduced structure group and the automorphism
group of J3(A), respectively,which we list below [1, 2]

M5 =
SL(3,R)

SO(3)

M5 =
SL(3,C)

SU(3)

M5 =
SU∗(6)

USp(6)

M5 =
E6(−26)

F4

(3.26)

They can be truncated to theories belonging to the so-called generic Jordan family
generated by reducible Jordan algebras ( R⊕ JA

2 ) where J
A
2 are the Jordan algebras

generated by 2 × 2 Hermitian matrices over A. The isometry groups of the scalar
manifolds of the 5D theories resulting from the truncation are as follows:

Str0[R⊕ JR

2 ] = SO(1, 1)× Spin (2, 1) ⊂ SL (3,R)

Str0[R⊕ JC

2 ] = SO(1, 1)× Spin (3, 1) ⊂ SL (3,C)

Str0[R⊕ JH

2 ] = SO(1, 1)× Spin (5, 1) ⊂ SU ∗ (6)

Str0[R⊕ JO

2 ] = SO(1, 1)× Spin (9, 1) ⊂ E6(−26)

(3.27)

These truncated theories descend from 6D supergravity theories with nT = 2, 3, 5 and
nT = 9 tensor multiplets and no vector multiplets. A general element of the Jordan
algebras JA

3 of degree three can be decomposed with respect to its Jordan subalgebra
JA

2 as

X =

(
JA

2 ψ(A)
ψ†(A) R

)
(3.28)

where ψ(A) is a two component spinor over A

ψ(A) =

(
q1
q2

)
(3.29)

and † represents transposition times conjugation in the underlying division algebra
A. Using this decomposition it was shown in [40] that the Fierz identities for super-
symmetric Yang-Mills theories in critical dimensions follow from the adjoint identities
satisfied by the elements of JA

3 that define the magical supergravity theories in five
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dimensions [1, 2]. In the 6D magical supergravity theories the tensor fields correspond
to the elements of JA

2 and the vector fields are represented by the elements6

(
0 ψ(A)

ψ†(A) 0

)
(3.30)

The isometry group of the scalar manifold of a 6D magical supergravity is given by
the reduced structure group Str0(J

A

2 ) of J
A

2 . They are well known to be isomorphic
to the linear fractional groups SL(2,A) for A = R,C,H :

Str0(J
R

2 ) = Spin(2, 1) = SL(2,R)

Str0(J
C

2 ) = Spin(3, 1) = SL(2,C)

Str0(J
H

2 ) = Spin(5, 1) = SL(2,H)

(3.31)

The isometry group Spin(9, 1) of the octonionic theory can be similarly interpreted
using the Jordan algebraic formulation

Str0(J
O

2 ) = Spin(9, 1) = SL(2,O) (3.32)

Orbits of the spinors appearing in Table 1 corresponding to the vector fields of
6D magical supergravity theories under the action of the isometry groups Str0(J

A

2 )
of their scalar manifolds were studied by Bryant using their realizations as two com-
ponent spinors ψ(A) over the underlying division algebras A. According to Bryant
the entire spinor space ψ(O) corresponding to a Majorana-Weyl spinor forms a single
orbit under the action of Spin(9, 1) with the isotropy group Spin(7)sT8 [38, 39]:

Orbit(ψ(O)) =
Spin(9, 1)

Spin(7)sT8
(3.33)

where T8 denotes the eight dimensional translations. Similarly, the quaternionic
spinor ψ(H) corresponding to a symplectic Majorana-Weyl spinor forms a single orbit
under the action of Spin(5, 1):

Orbit(ψ(H)) =
Spin(5, 1)

SU(2)sT4
(3.34)

6The singlet vector field of the 5D theory represented by R corresponds to the vector field that
comes from the 6D graviton. The bare graviphoton of the 5D Maxwell-Einstein supergravity is a
linear combination of this vector field and the vector field that descends from the gravitensor of the
6D theory corresponding to the identity element of the Jordan algebra of degree three.
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Complex two component spinor ψ(C) is a Weyl spinor and forms a single orbit of
SL(2,C) = Spin(3, 1)

Orbit(ψ(C)) =
SL(2,C)

T2
(3.35)

Restricting to real spinors one finds

Orbit(ψ(R)) =
SL(2,R)

T1
(3.36)

To summarize, in all cases there is a single spinor orbit, such that different choices
of the spinor ζA lead to equivalent gaugings.

4 Structure of the gauge group, new couplings and

anomalies

4.1 The gauge group in the vector/tensor sector

With the above results, the gauge group generators (3.2) in the vector/tensor sector
take the explicit form

(X̂A)B
C = (ζ̄ΓIζ)(ΓJζ)A(ΓIJ)B

C ,

(X̂A)
IJ = 4 (ζ̄Γ[Iζ)(ΓJ ]ζ)A , (4.1)

in terms of the spinor ζA. A simple calculation shows that

(X̂AX̂B)C
D = 0 ,

(X̂AX̂BX̂C)I
J = 0 , (4.2)

i.e. these generators span an (nT − 1)-dimensional nilpotent abelian algebra7 and
gauge (nT − 1) translations. Remarkably, this seems to be the only possible gauge
group. Furthermore these (nT −1) translations can not lie strictly within the isometry
group so(nT , 1), cf. (2.11) due to the appearance of central extensions of the gauge
algebra as we explain below.

Having seen above, that there is a single spinor orbit, all different choices of the
spinor ζA lead to equivalent gaugings and it will be useful to give a presentation of

7The cubic nilpotency of the generators in the vector representation can also be seen by identifying
this representation in the tensor product of two spinor representations.
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the generators (4.1) in an explicit basis. We will proceed with the analysis of the
maximal case nT = 9 from which all the lower magical theories can be obtained by
truncation. For SO(9, 1), according to (3.33) the compact part of the little group of
a spinor is an SO(7) under which the fundamental representations decompose as

ζA : 16c → 8+ + 7− + 1− , ξI : 10 → 80 + 1+2 + 1−2 ,

A → (α, t, 0) , I → (α,+,−) , (4.3)

with the subscripts referring to the SO(1, 1) charges in the decomposition (2.11). This
basis corresponds to the spinor ζA pointing in a given direction ζA = 1

2
(~0,~0, g1/3), such

that the gauge group generators (4.1) take the explicit form

in the 16 : (X̂α)β
t = gγtαβ , (X̂α)β

0 = gδαβ ,

in the 10 : (X̂α)β
− = −(X̂α)+

β = gδαβ , (4.4)

with (antisymmetric) SO(7) gamma matrices γtαβ ( t = 1, . . . , 7), and all other com-
ponents vanishing. We have introduced an explicit coupling constant g that carries
charge −3 under SO(1, 1) .

In this basis, the full non-semisimple (nilpotent) structure of the gauge algebra
(3.4) becomes explicitly:

[Xα, Xβ] = −gγtαβ Xt , [Xα, Xt] = 0 = [Xt, Xu] , X0 = 0 . (4.5)

The generators Xt thus act as central extensions of the algebra which vanish when
evaluated on vector or tensor fields: (Xt)I

J = 0 = (Xt)A
B, but which may have a

non-trivial action in the hypermultiplet sector, as we shall discuss in section 4.28.
The structure of the centrally extended Abelian nilpotent gauge group is best

understood by studying the embedding of the gauge group into the U-duality group
of the corresponding ungauged 5D Maxwell-Einstein supergravity. For the excep-
tional supergravity 5D U-duality group is E6(−26) whose Lie algebra has a 3-graded
decomposition with respect to the isometry group SO(9, 1) of 6D theory:

E6(−26) = K16c
⊕ SO(9, 1)× SO(1, 1)D ⊕ T16c

(4.6)

where T16c
denotes the 16 dimensional translational symmetries corresponding to

Abelian gauge symmetries of the vector fields of 6D theory. The generator ∆ that
determines the 3-grading of SO(9, 1) ( see (2.11) ) leads to a 5-grading of E6(−26)
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T8c T8s

Ñ8v −−−− (SO(8)× SO(1, 1)∆ × SO(1, 1)D) −−−− N8v

K8s K8c

Table 3: Above we give the 5 by 3 grading of E6(−26) with respect to the generators ∆
and D respectively. Eight dimensional representations that are in triality are denoted
as 8v, 8c and 8s.

so that D and ∆ determine a 5 by 3 grading of E6(−26) with respect to its SO(8)×
SO(1, 1)∆ × SO(1, 1)D subgroup as shown in Table 3.

Restricting to the Spin(7) subgroup such that SO(8) irreps decompose as

8v = 8 (4.7)

8s = 7+ 1

8c = 8

one finds that the 8 generators (Tα +Nα) , transforming in the spinor representation
of Spin(7), form a centrally extended nilpotent Abelian subalgebra with 7 generators
Tt acting as its central elements. They generate a nilpotent subgroup of F4(−20) which
is a subgroup of 5D U-duality group E6(−26). F4(−20) admits a 5-grading of the form:

F4(−20) = 7−2 ⊕ 8−1 ⊕ Spin(7)× SO(1, 1)⊕ 8+1 ⊕ 7+2 . (4.8)

Thus the generators that gauge the centrally extended Abelian subalgebra in the
embedding tensor formalism can be uniquely identified with the generators of this
nilpotent subalgebra of F4(−20)

Xα ≡ Tα +Nα , Xt ≡ Tt , (4.9)

where α = 1, 2, · · · , 8 and t = 1, 2, · · · , 7.
The quaternionic 6D magical supergravity has SU∗(6) as its 5D U-duality group

which has a 3-grading with respect to its SU∗(4)×SU(2) subgroup. The vector fields

8We should point out that a similar phenomenon of central extension of gauge groups arises also
in 4D supergravity theories obtained by dimensional reduction of 5D, N = 2 Yang-Mills -Einstein
supergravity theories coupled to tensor fields[15].
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of the 6D theory transform as a symplectic Majorana-Weyl spinor of SU∗(4)×SU(2).
The analog of F4(−20) is the USp(4, 2) subgroup of SU∗(6). The centrally extended
nilpotent Abelian translation gauge group sits inside USp(4, 2) which has the 5-graded
decomposition

USp(4, 2) = 3−2 ⊕ 4−1 ⊕ SU(2)× SO(1, 1)⊕ 4+1 ⊕ 3+2 . (4.10)

As for the complex magical theory the 5D U-duality group SL(3,C) has a 3-
grading with respect to its SL(2,C) × U(1) under which the vector fields of 6D
theory transform as a pair of complex Weyl spinors. The nilpotent gauge group sits
inside the SU(2, 1) subgroup of SL(3,C) and has the 5-grading

SU(2, 1) = 1−2 ⊕ 2−1 ⊕ U(1)× SO(1, 1)⊕ 2+1 ⊕ 1+2 . (4.11)

The simple groups in which the centrally extended Abelian gauge groups of octo-
nionic, quaternionic and complex magical theories can be minimally embedded satisfy
the following chain of inclusions

F4(−20) ⊃ USp(4, 2)× USp(2) ⊃ SU(2, 1)× U(1) (4.12)

The fact that the method of embedding tensor formalism leads to unique centrally
extended Abelian gauge groups for each of the magical supergravity theories is quite
remarkable. Even though the “central charges” act trivially on the vector and tensor
fields as must be evident from the above analysis they may have nontrivial action on
the hyperscalars as will be discussed in the next section.

4.2 The gauge group in the hypersector

We will now also allow for isometries of the quaternionic Kähler manifold to be
gauged, i.e. consider the full generator (3.2) with non-vanishing ΘA

A. The generators
tA denote the isometries on the quaternionic Kähler manifold acting by a Killing
vector field KX

A

tA · φX = KX
A (φ) , (4.13)

on the hyperscalars. It is straightforward to derive that under this transformation
the Sp(1)R × Sp(nH) connections transform as

tA ·Qµi
j = ∂µφ

XDX(SA)i
j , tA ·Qµr

s = ∂µφ
XDX(SA)r

s , (4.14)
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with

(SA)i
j ≡ KX

AAXi
j + CAi

j , (SA)r
s ≡ KX

AAXr
s + CAr

s , (4.15)

in terms of the functions CAi
j and CAr

s defined in (2.25), (2.26), respectively, for the
Killing vector field KA . From this, we conclude that the fermion fields transform as

tA · χa
i = −(SA)i

j χa
j , tA · ψr = − (SA)r

s ψs , etc. (4.16)

Upon gauging, the gauge covariant derivative of the hyperscalars is given by

Dµφ
X = ∂µφ

X − gAA
µK

X
A , KX

A ≡ ΘA
AKX

A , (4.17)

and the gauge covariant derivatives of the fermion fields by

Dµψ
i
ν = ∇µψ

i
ν +Qµ

ijψνj ,

Dµχ
ai = ∇µχ

ai +Qab
µ χ

i
b +Qµ

ijχa
j ,

Dµψ
r = ∇µψ

r +Qµ
rsψs ,

Dµλ
Ai = ∇µλ

Ai +Qµ
ijλAj − AC

µXCB
A λBi , (4.18)

with9

Qab
µ = LI[aDµL

b]
I , (4.19)

Qµ
ij = Dµφ

XAX
ij + AA

µSA
ij

= ∂µφ
XAX

ij + AA
µCA

ij , (4.20)

Qµ
rs = Dµφ

XAX
rs + AA

µSA
rs

= ∂µφ
XAX

rs + AA
µCA

rs , (4.21)

with the following definitions

SA
ij = KX

AAX
ij + CA

ij ,

CA
ij = −

1

2nH

V X
ri V

rj
Y ∇XK

Y
A ,

(4.22)

9See [41] for a description of the S-functions in the context of G/H coset sigma models in which
an arbitrary subgroup of G is gauged.
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and similarly

SA
rs = KX

AAX
rs + CA

rs ,

CA
rs = −1

2
V X
ri V

si
Y ∇XK

Y
A .

(4.23)

The constraint analysis in the vector/tensor sector remains unchanged in presence of
the tA, such that the gauge group in this sector still reduces to the set of (nT − 1)
Abelian translations as we have derived above. Gauge invariance of the new compo-
nents ΘA

A of the embedding tensor on the other hand implies that

[ΘA
AtA,ΘB

BtB] = −XAB
C ΘC

AtA , (4.24)

with the same structure constants XAB
C encountered in (3.4). It follows from (3.4)

that
θIAΘA

A = 0 . (4.25)

Furthermore, using the explicit form (4.5) of the structure constants XAB
C , we find

that Θ0
A = 0 and the gauging in the hypersector of the octonionic magical super-

gravity corresponds to selecting 8+7 Killing vector fields Kα ≡ Θα
AKA, Kt ≡ Θt

AKA

(not necessarily linearly independent), which satisfy the algebra

[Kα,Kβ] = −gγtαβ Kt , [Kα,Kt] = 0 = [Kt,Ku] . (4.26)

Thus, the generators associated with the full gauge group in the magical supergravi-
ties, including both the vector-tensor and hyper sectors, are

XA = {X̂α + Kα ,Kt} , (4.27)

The existence of a combination of Killing vectors that satisfy this algebra in its
maximal form, i.e. with none of the generators set to zero, is a nontrivial constraint,
since such an algebra does not necessarily lie in the isometry of the hyperscalar
manifold. A trivial solution to the constraints (4.26) is given by setting Kα = 0 = Kt

in which case the gauge group simply does not act in the hypersector, and has the
generators Xα. A less trivial option is the choice Kt = 0 in which case the gauge
algebra generators consist of X̂α+Kα, and Kα can be chosen to be any set of up to 8
commuting (compact, noncompact or nilpotent) isometries, which may in particular
include U(1)R subgroup of the Sp(1)R R-symmetry group.

In general, and in contrast to the vector/tensor sector, in the hypersector the
generators Kt may act as nontrivial central charges of the gauge algebra. We can solve
the constraints (4.26) by selecting an ideal I inside the algebra A defined by (4.26),
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representing all generators in I by zero, and embedding the quotient A/I into the
isometry algebra of the quaternionic manifold. (The solution considered above where
Kt is set to zero is a particular example of this procedure). In this case the generators
will be embedded among the positive root generators. For a coset manifold and its
representative in the corresponding triangular gauge, their action does not induce
a compensating transformation acting on the fermions, implying that the matrices
(SA)i

j , (SA)r
s of (4.15), (4.16) vanish.

As an illustration we give some examples of embeddings of the nilpotent gauge
groups with nontrivial central charges into simple quaternionic Lie groups

• As we discussed above, the nilpotent gauge algebra (4.26) of the octonionic
magical theory with all seven Kt non-vanishing can be embedded into the Lie
algebra of the group F4(−20) which admits a five grading according to (4.8)

7−2 ⊕ 8−1 ⊕ Spin(7)0 ⊕ SO(1, 1)0 ⊕ 8+1 ⊕ 7+2 , (4.28)

with the obvious embedding of (4.26) as the generators of positive grading.
The group F4(−20) may be embedded into the isometry group of the coset space
E6(−26)/F4 and via the chain along the first line of table 1 further into the
isometry group of the quaternionic Kähler manifold E8(−24)/(E7×SU(2)) . With
hyperscalars in this particular quaternionic Kähler manifold, the algebra (4.26)
can thus be realized. Interestingly, this manifold is precisely the moduli space
of this magical theory without hypers upon dimensional reduction to D = 3
dimensions, cf. table 1. The corresponding 6D theory is anomaly free as we
will discuss later and the scalar manifold of the resulting ungauged 3D theory
is doubly exceptional

M3 = [
E8(−24)

(E7 × SU(2))
]× [

E8(−24)

(E7 × SU(2))
] (4.29)

The quaternionic symmetric space of minimal dimension whose isometry group
has F4(−20) as a subgroup is

E7(−5)

SO(12)× SU(2)
(4.30)

However, E7(−5) does not have E6(−26) as a subgroup and the 6D octonionic mag-
ical theory coupled to hypermultiplets with this target manifold is not anomaly
free.
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• An example of a non-maximal realization of (4.26) for the octonionic magical
theory, is given by selecting one of the central charges, i.e. splitting {Kt} =
{K,Kt̃} and setting the ideal I spanned by the six Kt̃ to zero. According to
the structure of the SO(7) gamma matrix in the structure constants (upon
breaking SO(7) down to the SO(6) defined by K) the quotient A/I is given by
the algebra

[Ka,Kb] = 0 = [Ka,Kb] , [Ka,K
b] = gδbaK . (4.31)

This algebra can e.g. easily be embedded into the quaternionic Kähler manifold
SU(4, 2)/S(U(4)×U(2)), whose isometry group admits a five grading according
to

1−2 ⊕ (4+ 4̄)−1 ⊕ U(3, 1)0 ⊕ O(1, 1)0 ⊕ (4+ 4̄)+1 ⊕ 1+2 , (4.32)

with the obvious embedding of (4.31) as the generators of positive grading.

• According to (4.10) the nilpotent gauge algebra of the quaternionic magical
theory can be embedded into the Lie algebra of USp(4, 2) which is quaternionic
real. Therefore the quaternionic symmetric space of minimal dimension whose
isometry group includes the nilpotent gauge group with all three central charges
is

USp(4, 2)

USp(4)× USp(2)
(4.33)

If we require the isometry group of the hypermanifold to have the corresponding
5D isometry group SU∗(6) as a subgroup we can follow the chain along the
second line of table 1 further to the target manifold

E7(−5)

SO(12)× SU(2)
(4.34)

The scalar manifold of the ungauged quaternionic magical theory coupled to
this hypermatter has the double exceptional isometry group

E7(−5)

SO(12)× SU(2)
×

E7(−5)

SO(12)× SU(2)
(4.35)

in three dimensions.
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• For the complex magical theory according to (4.11) the nilpotent gauge group
embeds into SU(2, 1) which is quaternionic real. Thus the minimal hyperman-
ifold in this case is

SU(2, 1)

U(2)
(4.36)

Going along the third row of table 1 we can also couple the theory to hyper-
multiplets with the target manifold

E6(2)

SU(6)× SU(2)
(4.37)

Again the corresponding 3D target space with this hypersector is doubly ex-
ceptional.

4.3 Gauging of R-symmetry

In presence of hypermultiplets, the R-symmetry Sp(1)R is embedded into the isome-
tries on the quaternionic Kähler manifold and its gauging is a particular case of the
construction discussed in the previous section. In absence of hypermultiplets, the
R-symmetry acts exclusively on the fermions and may be included in the gauging by
extending the gauge group generators (3.2) to

XA = X̂A +ΘA
ijtij ≡ X̂A + ξA , (4.38)

with tij representing the Sp(1)R generators. In complete analogy to the calculation
leading to (4.24) one derives the conditions

[ξA, ξB] = −XAB
C ξC , (4.39)

from which we find that the most general gauging in absence of hypermultiplets is
given by

Xα = X̂α + ξαc
ijtij , Xt = 0 = X0 , (4.40)

with X̂α from (4.4) and constant ξα and cij selecting a U(1) generator within Sp(1)R .
All formulas of the previous section apply, in particular the connections on the fermion
fields are still given by (4.18), upon setting all hyperscalars to zero and with constant
Cαi

j ≡ ξαci
j . The gauge algebra is still of the form (4.5) but with Xt set to zero, i.e.

[Xα, Xβ] = 0, with Xα from (4.40).
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4.4 Gauged Magical Supergravities

Putting together the ingredients described in previous sections, and following the
standard Noether procedure, we find that the action for gauged magical supergravity,
up to quartic fermion terms, is given by

e−1L = R−
1

12
gIJH

I
µνρH

µνρJ −
1

4
Pa

µP
µa −

1

2
Pri

µ Pµri −
1

4
mABG

A
µνG

µνB

+
1

2
ψ̄µγ

µνρDνψρ −
1

2
χ̄aγµDµχ

a −
1

2
ψ̄rγµDµψr

−mABλ̄
AγµDµλ

B +
1

2
ψ̄µγνγ

µχaPν
a − (ψ̄i

µγνγ
µψr)Pν

ri

+
1

48
Hµνρ

(
ψ̄λγ[λγ

µνργτ ]ψ
τ + χ̄aγµνρχa − ψ̄rγµνρψr

)

+
1

24
Ha

µνρ

(
ψ̄λγ

µνργλχa −maABλ̄
AγµνρλB

)

−
1

2
GA
µν

(
mAB ψ̄λγ

µνγλλB −maAB χ̄
aγµνλB

)
+ Ltop + LYukawa + Lpot ,

(4.41)

where Ltop is the gauge invariant completion of the B ∧F ∧F term and its variation
is

δLtop = 1
6
ǫµνρσλτ ΓI

AB

(
Hµνρ IG

A
σλ δcovA

B
τ − 3

4
GA
µνG

B
ρσ δcovBλτ I

)

+ 1
48
ǫµνρσλτ θAI

(
Gµνρσ A δcovBλτ I −

4
3
HI

µνρ δcovCσλτ A

)
. (4.42)

and the Yukawa couplings and the scalar potential are given by10

e−1LYukawa = ψ̄i
µγ

µλAi θ
IBmABLI − ψ̄µiγ

µλAj Cij
A + χ̄aiλAi θ

IBLImaAB

− χ̄a
iλ

A
j maACm

CB Cij
B − 2ψ̄rλ

A
i V

ri
X KX

A , (4.43)

e−1Lpotential = −
1

4

(
θIAθJBmABgIJ + CAijC

ij
Bm

AB
)
. (4.44)

The functions gIJ , mAB and Cij
A are defined in (2.6), (2.7) and (4.22), respectively,

and the gauge covariant derivatives of the fermions in (4.18).

10For the nT = 5 theory and in absence of hypermultiplets these couplings have been obtained
in [42] by truncation from gaugings of the maximal theory [34].
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The local supersymmetry transformations of the gauged theory, up to cubic fermions
terms, are

δemµ = ǭγmψµ ,

δψµ = Dµǫ+
1

48
γρστγµǫHρστ ,

δcov.Bµν
I = −2ǭγ[µψν] L

I + ǭγµνχ
a LI

a ,

δcov.CµνρA = −ǭγµνρλA ,

δχa =
1

2
γµǫPa

µ −
1

24
γµνρǫGa

µνρ ,

δLI = ǭχaLa
I ,

δAA
µ = ǭγµλ

A ,

δλA = −
1

4
γµνǫGA

µν −
1
2
θIALI ǫi −

1
2
mABCBij ǫ

j ,

δφX = V X
ri ǭ

iψr ,

δψr = Pri
µ γ

µǫi .

(4.45)

In establishing the supersymmetry of the action, it is important to recall that the
(anti)self-duality equations H+

µνρ = 0 and Ha−
µνρ = 0 are to be used after the varying

the action. In carrying out the Noether procedure, it is also useful to note that the
gauge covariant scalar currents

Pa
µ = LIaDµLI , Pri

µ = Dµφ
XV ri

X , (4.46)

satisfy the relations

D[µP
a
ν] = −

1

2
FA

µνCA
a , CA

a = X̂IJ
A La

ILJ , (4.47)

D[µP
ri
ν] = −FA

µνC
ri
A , Cri

A = ΘA
AKX

A V
ri
X . (4.48)

Also encountered in the Noether procedure are the curvatures associated with the
connections defined in (4.19) and (4.20) which take the form

Qab
µν = −2Pa

[µP
b
ν] − FA

µνCA
ab , CA

ab = X̂IJ
A La

IL
b
J , (4.49)

Qµνi
j = 2Prj

[µPν]ri + FA
µνSAi

j , (4.50)

31



with SAi
j from (4.22). In the course of Noether procedure, it is also useful to note

that the curvature FA
µν occurring in equations (4.47)–(4.50) can be replaced by GA

µν ,
by exploiting the constraint (4.25).

As emphasized above, the (anti)self-duality equations on the projections of HI
µνρ

are to be imposed after the Euler-Lagrange variation of the action with respect to all
fields. Indeed, the field equation for CµνρA, which has no kinetic term and it appears
in the action only through Ltop and the GA

µν dependent terms, is identically satisfied
provided that the stated (anti)self-duality equations are used. Varying the action with
respect to BI

µν , on the other hand, again modulo the (anti)self-duality conditions and
their consequences, give precisely the duality equation (3.11). Another salient feature
of the action is that the scalar potential is a positive definite expression. Using the
explicit parametrization of SO(nT , 1) given in (2.12) and the basis (4.4), the scalar
potential takes the form

e−1Lpotential = − 1
16
g2e−3σ − 1

8
e−σ

(
Cij
α + γtαβϕ

βCij
t

)2
− 1

8
eσ Ct ijC

ij
t , (4.51)

with the functions Cij
α , C

ij
t from (2.25) defined for the Killing vector fields satisfying

the algebra (4.26). It follows immediately from the eσ powers, that for Cij
t = 0 this

potential does not admit extremal points.
We can gain more insight to the nature of the new couplings, by observing that in

the normalization of generators given in (4.5) the covariant field strengths (3.5) take
the explicit form

Gα
µν = 2∂[µA

α
ν] ,

Gt
µν = 2∂[µA

t
ν] + gγtαβ Aµ

αAν
β ,

G0
µν = 2∂[µA

0
ν] + gB+

µν , (4.52)

and the minimal couplings of vectors to tensors are explicitly given by

DµB
α
νρ = ∂µB

α
νρ + gAα

µB
+
νρ ,

DµB
−
νρ = ∂µB

−
νρ − gAα

µB
α
νρ ,

DµB
+
νρ = ∂µB

+
νρ . (4.53)

In the explicit parametrization (2.12) and in the basis defined by (4.4), the various
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components of the kinetic matrices gIJ and mAB take the explicit form

gαβ = δαβ + 2e−2σϕαϕβ , gα− = e−2σϕα , gα+ =
(
1 + e−2σϕβϕβ

)
ϕα ,

g+− = e−2σϕαϕα , g++ =
(
eσ + e−σϕαϕα

)2
, g−− = e−2σ ,

mαβ = 1
2
δαβ

(
eσ + e−σϕαϕα

)
, mtu = 1

2
e−σδtu , m00 = 1

2
e−σ ,

mtα = 1
2
γtαβ e

−σϕβ , m0α = 1
2
e−σϕα , (4.54)

respectively. The modified scalar currents (4.46) also take a simple form

Pα
µ = e−σ (∂µϕ

α − gAα
µ) = Q1α

µ , P1
µ = ∂µσ , (4.55)

and the modified integrability condition (4.47) and the curvature (4.49) read

D[µP
α
ν] = −1

2
ge−σGα

µν ,

Q1α
µν = 2Pα

[µ ∂ν]σ − ge−σGα
µν , (4.56)

The above formulae exhibit intricate couplings of vector and tensor fields, and the
nature of the shift symmetries that have been gauged.

5 Conclusions and discussion

In this paper we have determined the possible gaugings in magical supergravities in
6D, which are supergravities with 8 real supersymmetries coupled to a fixed number
of vector and tensor multiplets, and arbitrary number of hypermultiplets. We have
employed the embedding tensor formalism which determines in a systematic fashion
the appropriate combination of vector fields that participate in the gauging process.
It turns out that the allowed gauge group is uniquely determined in each case and
the underlying Lie algebra, displayed in (4.5), is nilpotent generated by (nT − 1)
Abelian translations with (nT − 2) central charges. Due to these central charges,
the translation generators can not lie strictly in the isometry group so(nT , 1) acting
on the scalar fields of the tensor multiplets. The central charges do not act on the
vector/tensor sector , but may act nontrivially in the hypersector. We analysed the
possible embeddings of the nilpotent gauge group into the isometry groups of the
quaternionic Kähler manifolds of the hyperscalars. Since R-symmetry Sp(1)R is part
of the isometry group of the hyperscalars, the embedding of the gauge group into the
isometries on the quaternionic Kähler manifold determines whether U(1)R subgroup
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of Sp(1)R can be gauged such that it acts nontrivially on the fermions. In absence
of hypermultiplets, the R-symmetry acts exclusively on the fermions and one can use
a linear combination of the Abelian gauge fields to gauge U(1)R such that it acts
nontrivially on the fermions.

Despite the simultaneous appearance of both Chern-Simons modified 3-form field
strengths as well as generalized Chern-Simons terms, the gauged magical supergrav-
ity theories we have presented are truly gauge invariant. While arbitrary number of
hypermultiplets are allowed, the special number of vector and tensor multiplets is
crucial for this invariance. Indeed, coupling of any additional vector (and/or tensor)
multiplets would impose stringent constraints on the Chern-Simons coupling of the
vectors to tensors. Existence and construction of theories satisfying these constraints
that can be interpreted as extensions of magical supergravities remains to be inves-
tigated. The failure to satisfy these constraints would give rise to classical anomalies
which then should satisfy the Wess-Zumino consistency conditions.

Turning to the magical gauged 6D supergravities we have constructed here, while
truly gauge invariant, they may still have gravitational, gauge and mixed anomalies
at the quantum level, owing to the presence of chiral fermions and self-dual 2-form
potentials. As is well known, the gravitational anomalies are encoded in an 8-form
anomaly polynomial which, in general, contains terms of the form (trR4) and (trR2)2.
The first kind of terms must necessarily be absent for anomaly freedom. In presence
of nV vector multiplets and nH hypermultiplets, it is well known that this imposes
the condition nH = 273 + nV − 29nT . From magical supergravities, this condition
is satisfied with multiplicities (nT , nV , nH) given by (9, 16, 28) , (5, 8, 136) , (3, 4, 190)
and (2, 2, 217), respectively. Once the condition for the absence of the (trR4) terms
is satisfied, the total gravitational anomaly polynomial (in conventions described in
[43]) becomes Ω8 = 1

128
(nT − 9) (trR2)

2
, with trR2 ≡ trR ∧ R. The full grav-

itational anomaly vanishes identically for the octonionic magical supergravity, with
(nT , nV , nH) multiplicities given by (9, 16, 28). However, in presence of gaugings, there
will still be gauge and mixed anomalies. In the gauged magical supergravities with
nT = 2, 3, 5, the purely gravitational anomaly will be present as well. The determina-
tion of the full set of anomalies and the possible elimination by suitable Green-Schwarz
type mechanisms in gauged magical supergravities is beyond the scope if this paper,
and will be treated elsewhere. A detailed analysis is expected to contain elements
similar to those encountered in [44] in their treatment of anomalies in gauged N = 1
supergravities in 4D in which the embedding tensor plays a key role as well.

Since their discovery higher dimensional and/or stringy origins of magical super-
gravity theories , which are invariant under 8 real supersymmetries, have been of great
interest. Largest magical supergravity defined by the exceptional Jordan algebra JO

3
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has groups of the E series as its U-duality group in 5, 4 and 3 dimensions just like
the maximal supergravity with 32 supersymmetries , but are of different real forms.
The maximal supergravity and the largest magical supergravity defined by the octo-
nionic Jordan algebra JO

3 have a common sector which is the magical supergravity
theory defined by the quaternionic Jordan algebra JH

3 . As was pointed out in [6, 10].
the low energy effective theory of one of the dual pairs of compactifications of IIB
superstring to 4D studied by Sen and Vafa [5] is precisely the magical N = 2, 4D
Maxwell-Einstein supergravity theory defined by the quaternionic Jordan algebra JH

3

without any hypermultiplets11. Since the construction of dual pairs in Sen and Vafa’s
work uses orbifolding on T 4×S1×S1, one can use their methods to construct the 6D
quaternionic magical theory from IIB superstring directly. Whether one can obtain
the gauged quaternionic magical theory constructed above by turning on fluxes is
an interesting open problem. The complex magical supergravity defined by JC

3 can
be obtained by truncation of the quaternionic theory to a subsector singlet under
a certain U(1) subgroup. In [7] some hypermultiplet-free N = 2, 4D string models
based on asymmetric orbifolds with world-sheet superconformal symmetry using 2D
fermionic construction were given. Two of these models correspond to the magical su-
pergravity theories in 4D defined by the complex Jordan algebra JC

3 with the moduli
space

M4 =
SU(3, 3)

SU(3)× SU(3)× U(1)
(5.1)

and the quaternionic JH

3 theory with the 4D moduli space

M4 =
SO∗(12)

U(6)
(5.2)

Direct orbifold construction of the exceptional supergravity theory from superstring
theory without hypermultiplets has so far proven elusive. In [6, 10] it was argued that
an exceptional self-mirror Calabi-Yau 3-fold must exist such that type II superstring
theory compactified on it leads to the exceptional supergravity coupled to hypermul-
tiplets parametrizing the quaternionic symmetric space E8(−24)/E7×SU(2). This was
based on the observation [45] that there exists a six dimensional (1, 0) supergravity
theory, which is free from gravitational anomalies, with 16 vector multiplets, 9 tensor
multiplets and 28 hypermultiplets, parametrizing the exceptional quaternionic sym-
metric space E8(−24)/E7 × SU(2), which reduces to the 4D supergravity with scalar

11This follows from the fact that the bosonic sector of the N = 2 supersymmetric compactification
, in question, coincides with that of N = 6 supergravity. Unique 4D Maxwell-Einstein supergravity
theory with that property is the quaternionic magical theory [1].
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manifold

MV ×MH =
E7(−25)

E6 × U(1)
×

E8(−24)

E7 × SU(2)
(5.3)

and the fact that the moduli space of the FHSV model [46] is a subspace of this
doubly exceptional moduli space. The authors of [8] reconsidered the string derivation
of FHSV model over the Enriques Calabi-Yau manifold, which corresponds to a 6D,
(1, 0) supergravity theory with nT = 9, nH = 12 and nV = 0, and argued that the
octonionic magical theory defined by JO

3 admits a string interpretation closely related
to the Enriques model and 16 Abelian vectors of the octonionic magical supergravity
theory in 6D is related to the rank of Type I and heterotic strings. In mathematics
literature, Todorov [9] gave a construction of a Calabi-Yau 3-fold such that Type
IIB superstring theory compactified over it leads to the magical 4D Maxwell-Einstein
supergravity theory defined by the complex Jordan algebra JC

3 coupled to (h(1,1)+1) =
30 hypermultiplets. Whether his construction can be extended to obtain a Calabi-Yau
3-fold that would lead to the 4D exceptional Maxwell-Einstein supergravity theory
defined by JO

3 coupled to hypermultiplets is an open problem. If such an exceptional
Calabi-Yau 3-fold exists and is elliptically fibered, then F-theory compactified over it
is expected to be described by the 6D octonionic magical supergravity theory coupled
to hypermultiplets.
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