
Augmented precision square roots, 2-D norms, and
discussion on correctly rounding

√
x2 + y2

Nicolas Brisebarre, Mioara Joldeş,
Érik Martin-Dorel, Jean-Michel Muller

Laboratoire LIP
CNRS, ENS Lyon, INRIA, Univ. Claude Bernard Lyon 1

Lyon France
Email: first-name.Last-name@ens-lyon.fr

Peter Kornerup
Dept. of Mathematics and Computer Science

University of Southern Denmark
Odense, Denmark

Email: kornerup@imada.sdu.dk

Abstract—Define an “augmented precision” algorithm as an
algorithm that returns, in precision-p floating-point arithmetic,
its result as the unevaluated sum of two floating-point numbers,
with a relative error of the order of 2−2p. Assuming an FMA
instruction is available, we perform a tight error analysis of
an augmented precision algorithm for the square root, and
introduce two slightly different augmented precision algorithms
for the 2D-norm

p
x2 + y2. Then we give tight lower bounds

on the minimum distance (in ulps) between
p

x2 + y2 and a
midpoint when

p
x2 + y2 is not itself a midpoint. This allows

us to determine cases when our algorithms make it possible to
return correctly-rounded 2D-norms.

Index Terms—Floating-point arithmetic; compensated algo-
rithms; square-root; Correct rounding; 2D-norms; accurate com-
putations.

I. INTRODUCTION

In some applications, just returning a floating-point approx-
imation yh to the exact result y of a function or arithmetic
operation may not suffice. It may be useful to also return an
estimate y` of the error (i.e., y ≈ yh+ y`). For simple enough
functions (e.g., addition or multiplication), it is even possible
to have y = yh + y` exactly. Having an estimate of the error
makes it possible to re-use it later on in a numerical algorithm,
in order to at least partially compensate for that error. Such
compensated algorithms have been suggested in the literature
for summation of many floating-point numbers [1]–[6], com-
putation of dot products [7], and evaluation of polynomials [8].

We will call augmented-precision algorithm an algorithm
that returns, in radix-β, precision-p floating-point arithmetic,
an approximation yh + y` (i.e., an unevaluated sum of two
floating-point numbers) to an exact result y = f(x) (or
f(x1, x2)) such that

• y` ≤ 1
2 ulp(yh);

• there exists a small constant C (say, C � βp) such that

|y − (yh + y`)| < C · β−2p · y.

This work is partially supported by the CIBLE programme of Région
Rhône-Alpes, France.

This work is partially supported by the TaMaDi project of the french Agence
Nationale de la Recherche.

When y = yh+y` exactly, the transformation that generates
yh and y` from the inputs of f is called an error-free transform
in the literature.

The unevaluated sum yh+y` is called an expansion. Several
algorithms have been suggested for performing arithmetic on
such expansions [3], [9]–[11].

In the first part of this paper, we briefly recall two well-
known error-free transforms used later on in the paper. Then,
we analyze an augmented-precision algorithm for the square-
root. In the third part, we use that algorithm for design-
ing augmented-precision algorithms for computing

√
x2 + y2,

where x and y are floating-point numbers. Such a calculation
appears in many domains of scientific computing. It is also
an important step when computing complex square roots.
The naive method—i.e., straightforward implementation of
the formula

√
x2 + y2—may lead to spurious overflows or

underflows. When there are no overflows/underflows, it is quite
accurate (an elementary calculation shows that on a radix-2,
precision-p floating-point system, the relative error is bounded
by 2−p+1 + 2−2p).

Friedland [12] avoids spurious overflows by computing√
x2 + y2 as |x| ·

√
1 + (y/x)2 if |x| ≥ |y|, and |y| ·√

1 + (x/y)2 otherwise.
Kahan1, and Midy and Yakovlev [13] normalize the com-

putation using a power of the radix of the computer system:
in radix 2, if |x| ≥ |y|, let bx be the largest power of
2 less than or equal to x, what they actually compute is
bx ·

√
(x/bx)2 + (y/bx)2. Their solution is less portable (and

possibly on some systems, less fast) than Friedland’s solution,
yet it will be in general slightly more accurate, since division
and multiplication by bx is exact. Our augmented-precision
algorithms will derive from this one. As noticed by Kahan, the
IEEE 754 Standard for Floating-Point Arithmetic [14] defines
functions scaleB and logB that make this scaling of x and
y easier to implement.

Hull et al. [15] use the naive method along with the
exception-handling possibilities specified by the IEEE 754-
1985 Standard to recover a correct result when the naive
method fails.

1Unpublished lecture notes



In the fourth part, we investigate the possibility of cor-
rectly rounding

√
x2 + y2 (assuming round-to-nearest). This

requires solving the table maker’s dilemma for that function,
i.e., finding a lower bound on the smallest possible nonzero
distance (in ulps, or in terms of relative distance) between√
x2 + y2 and a midpoint, where a midpoint is the exact

middle of two consecutive floating-point numbers.

II. TWO WELL-KNOWN ERROR-FREE TRANSFORMS

A. The Fast2Sum algorithm

The Fast2Sum algorithm was first introduced by
Dekker [16], but the three operations of this algorithm
already appeared in 1965 as a part of a summation algorithm,
called “Compensated sum method,” due to Kahan [1].
Under conditions spelled out by Theorem 1, it returns the
floating term s nearest to a sum a + b and the error term
t = (a + b) − s. Throughout the paper, RN(u) means “u
rounded to the nearest even” (see [19]).

Algorithm 1. Fast2Sum
s← RN(a+ b)
z ← RN(s− a)
t← RN(b− z)
return (s, t)

The following theorem is due to Dekker.

Theorem 1 (Fast2Sum algorithm [16]). Assume the floating-
point system being used has radix β ≤ 3, subnormal numbers
available, and provides correct rounding to nearest.

Let a and b be floating-point numbers, and assume that
the exponent of a is larger than or equal to that of b (this
condition is satisfied if |a| ≥ |b|). Algorithm 1 computes two
floating-point numbers s and t that satisfy the following:

• s+ t = a+ b exactly;
• s is the floating-point number that is closest to a+ b.

B. The 2MultFMA algorithm

The FMA instruction makes it possible to evaluate ±ax±b,
where a, x, and b are floating-point numbers, with one final
rounding only. That instruction was introduced in 1990 on
the IBM RS/6000. It allows for faster and, in general, more
accurate dot products, matrix multiplications, and polynomial
evaluations. It also makes it possible to design fast algorithms
for correctly rounded division and square root [17].

The FMA instruction is included in the newly revised IEEE
754-2008 standard for floating-point arithmetic [14].

If an FMA instruction is available, then, to compute the
error of a floating-point multiplication x1 ·x2, one can design
a very simple algorithm, which only requires two consecutive
operations, and works for any radix and precision, provided
the product does not overflow and ex1 + ex2 ≥ emin + p− 1,
where ex1 and ex2 are the exponents of x1 and x2, and emin

is the minimum exponent of the floating-point system.

Algorithm 2 (2MultFMA(x1, x2)).

r1 ← RN(x1 · x2)
r2 ← RN(x1 · x2 − r1)
return (r1, r2)

III. AUGMENTED-PRECISION REAL SQUARE ROOT WITH
AN FMA

Let us now present an augmented-precision real square root
algorithm. That algorithm is straightforwardly derived from
the following theorem, given in [18] (see also [19]):

Theorem 2 (Computation of square root residuals using an
FMA [18]). Assume x is a precision-p, radix-β, positive
floating-point number. If σ is

√
x rounded to a nearest floating-

point number then
x− σ2

is exactly computed using one FMA instruction, with any
rounding mode, provided that

2eσ ≥ emin + p− 1, (1)

where eσ is the exponent of σ.

Algorithm 3 (Augmented computation of
√
x).

σ ← RN(
√
x)

t← x− σ2 (exact operation through an FMA)
r ← RN(t/(2σ))
return (σ, r)

Notice that similar approximations are used in [20] in a
different context (to return a correctly-rounded square root
from an accurate enough approximation), as well as in [10] for
manipulating floating-point expansions. This is not surprising,
since behind this approximation there is nothing but the Taylor
expansion of the square-root. What we do claim here, is
that we have been able to compute a very tight error bound
for Algorithm 3 (indeed, an asymptotically optimal one, as
we will see later on). That error bound is given by the
following theorem, which shows that the number r returned
by Algorithm 3 is a very sharp estimate of the error

√
x− σ.

Theorem 3. In radix-2, precision-p arithmetic, if the exponent
ex of the FP number x satisfies ex ≥ emin +p, then the output
(σ, r) of Algorithm 3 satisfies σ = RN(

√
x) and∣∣(σ + r)−

√
x
∣∣ < 2−p−1 ulp(σ),

and ∣∣(σ + r)−
√
x
∣∣ < 2−2p · σ.

Proof. First, if ex ≥ emin + p then x ≥ 2emin+p, so that
√
x ≥ 2

emin+p
2 ≥ 2b

emin+p
2 c,

which implies

σ = RN(
√
x) ≥ 2b

emin+p
2 c,

therefore,

eσ ≥
⌊
emin + p

2

⌋
,



so that we have,

2eσ ≥ emin + p− 1.

Therefore, Theorem 2 applies: t = x − σ2 is a floating-
point number, so that it is exactly computed using an FMA
instruction.

Now, since σ = RN(
√
x) and σ is a normal number (a

square root never underflows or overflows), and since the
square root of a floating-point number is never equal to a
midpoint [20], [21], we have

|σ −
√
x| < 2−p · 2eσ ,

which gives

|t| = |σ2−x| = |σ−
√
x| · |σ+

√
x| < 2−p+eσ · (2σ+2eσ−p).

Notice that 2σ is a floating-point number, and that ulp(2σ) =
2eσ−p+2. Therefore there is no floating-point number between
2σ and 2σ+2eσ−p. Hence, since |t|/2−p+eσ is a floating-point
number less than 2σ + 2eσ−p, we obtain

|t| ≤ 2−p+eσ+1 · σ,

implying ∣∣∣∣ t2σ
∣∣∣∣ ≤ 2−p+eσ .

Also, since 2−p+eσ is a floating-point number, the monotonic-
ity of the round-to-nearest function implies∣∣∣∣RN

(
t

2σ

)∣∣∣∣ ≤ 2−p+eσ .

From these two inequalities, we deduce∣∣∣∣RN
(
t

2σ

)
− t

2σ

∣∣∣∣ ≤ 2−2p−1+eσ . (2)

Notice (we will need that in Section IV) that∣∣∣∣RN
(
t

2σ

)∣∣∣∣ ≤ 2−p · σ. (3)

Now, define a variable ε as
√
x = σ +

t

2σ
+ ε,

where

ε =
√
x− σ − t

2σ

=
t√
x+ σ

− t

2σ

= t · 2σ − (
√
x− σ)

(
√
x+ σ) · 2σ

= − (σ −
√
x)2

2σ
,

from which we deduce

|ε| < 2−2p+2eσ

2σ
≤ 2−2p−1+eσ . (4)

By combining (2) and (4), we finally get∣∣∣∣(σ + RN
(
t

2σ

))
−
√
x

∣∣∣∣ < 2−2p+eσ .

This gives an error in ulps as well as a relative error: since
ulp(σ) = 2eσ−p+1 we obtain∣∣∣∣(σ + RN

(
t

2σ

))
−
√
x

∣∣∣∣ < 2−p−1 ulp(σ),

and ∣∣∣∣(σ + RN
(
t

2σ

))
−
√
x

∣∣∣∣ < 2−2p · σ.

Notice that the bound given by Theorem 3 is quite tight.
Consider as an example the case p = 24 (binary32 precision
of the IEEE 754-2008 Standard). Assume x is the floating-
point number

x = 8402801 · 2−23 = 1.00169193744659423828125,

then one easily gets

σ = 8395702 · 2−23 = 1.0008456707000732421875,

and

r = −16749427 · 2−48 ≈ −5.950591841497× 10−8,

which gives∣∣(σ + r)−
√
x
∣∣ = 0.9970011 · · · × 2−48 × σ,

to be compared to our bound 2−48 × σ.
Furthermore, the error bounds given by Theorem 3 are

asymptotically optimal, as we can exhibit a family (for p
multiple of 3) of input values parametrized by the precision
p, such that for these input values, |(σ + r)−

√
x| /σ is

asymptotically equivalent to 2−2p as p → ∞. Just consider,
for p being a multiple of 6, the input number

x = 2p + 2p/3+1 + 2,

and for p odd multiple of 3, the input number

x = 2p−1 + 2p/3 + 1.

If p is multiple of 6 (the case where p is an odd multiple of
3 is very similar), tedious yet not difficult calculations show
that
√
x = 2p/2 + 2−p/6 + 2−p/2 − 2−1−5p/6 − 2−7p/6

+3 · 2−1−11p/6 + · · · ,
σ = 2p/2 + 2−p/6,
t = 2− 2−p/3,
t/(2σ) = 2−p/2 ·

(
1− 2−p/3−1 − 2−2p/3 + 2−p−1

+3−4p/3 − · · ·
)
,

r = 2−p/2 ·
(
1− 2−p/3−1 − 2−2p/3 + 2−p

)
,

σ + r = 2p/2 + 2−p/6 + 2−p/2 − 2−1−5p/6 − 2−7p/6

+2−3p/2,

so that
√
x− (σ + r) ∼p→∞ 2−3p/2 ·

(
−1 + 3 · 2−1−p/3

)
,



from which we derive

|
√
x− (σ + r)| ∼p→∞ 2−p−1 ulp(σ),

and ∣∣∣∣√x− (σ + r)
σ

∣∣∣∣ ∼p→∞ 2−2p
(

1− 3 · 2−1−p/3
)
,

which shows the asymptotic optimality of the bounds given
by Theorem 3.

IV. AUGMENTED-PRECISION 2D NORMS

We suggest two very slightly different algorithms. Algo-
rithm 5 requires three more operations (a Fast2Sum) than
Algorithm 4, but it has a slightly better error bound. Again,
as for the square-root algorithm, these algorithms derive quite
naturally from the Taylor series for the square root: the novelty
we believe we bring here is that we provide proven and tight
error bounds.

Algorithm 4 (Augmented computation of
√
x2 + y2).

1: if |y| > |x| then
2: swap(x, y)
3: end if
4: bx ← largest power of 2 less than or equal to x
5: x̂← x/bx {exact operation}
6: ŷ ← y/bx {exact operation}
7: (sx, ρx)← 2MultFMA(x̂, x̂)
8: (sy, ρy)← 2MultFMA(ŷ, ŷ)
9: (sh, ρs)← Fast2Sum(sx, sy)

10: s` ← RN(ρs + RN(ρx + ρy))
11: r1 ← RN(

√
sh)

12: t← sh − r21 {exact operation through an FMA}
13: r2 ← RN(t/(2r1))
14: c← RN(s`/(2sh))
15: r3 ← RN(r2 + r1c)
16: r′1 ← r1 · bx {exact operation}
17: r′3 ← r3 · bx {exact operation}
18: (rh, r`)← Fast2Sum(r′1, r

′
3)

19: return (rh, r`)

Algorithm 5 (Slightly more accurate augmented-precision
computation of

√
x2 + y2).

1: if |y| > |x| then
2: swap(x, y)
3: end if
4: bx ← largest power of 2 less than or equal to x
5: x̂← x/bx {exact operation}
6: ŷ ← y/bx {exact operation}
7: (sx, ρx)← 2MultFMA(x̂, x̂)
8: (sy, ρy)← 2MultFMA(ŷ, ŷ)
9: (sh, ρs)← Fast2Sum(sx, sy)

10: s` ← RN(ρs + RN(ρx + ρy))
11: (s′h, s

′
`)← Fast2Sum(sh, s`)

12: r1 ← RN(
√
s′h)

13: t← s′h − r21 {exact operation through an FMA}
14: r2 ← RN(t/(2r1))

15: c← RN(s′`/(2s
′
h))

16: r3 ← RN(r2 + r1c)
17: r′1 ← r1 · bx {exact operation}
18: r′3 ← r3 · bx {exact operation}
19: (rh, r`)← Fast2Sum(r′1, r

′
3)

20: return (rh, r`)

Notice that if one is just interested in getting a very accurate
floating-point approximation to

√
x2 + y2 (that is, if one does

not want to compute the error term r`), then it suffices to re-
place the last Fast2Sum instruction by “rh ← RN(r′1 +r′3)” in
both algorithms. Also notice that if the functions scaleB and
logB defined by the IEEE 754-2008 Standard are available
and efficiently implemented, one can replace lines 4, 5 and 6
of both algorithms by
ex ← logB(x)
x̂← scaleB(x,−ex)
ŷ ← scaleB(y,−ex)

and lines 16 and 17 of Algorithm 4, or lines 17 and 18 of
Algorithm 5 by
r′1 ← scaleB(r1, ex)
r′3 ← scaleB(r3, ex).

We have the following result

Theorem 4 (Accuracy of algorithms 4 and 5). We assume that
a radix-2, precision-p (with p ≥ 8), floating-point arithmetic
is used and that there are no underflows or overflows.

The result (rh, r`) returned by Algorithm 4 satisfies

rh + r` =
√
x2 + y2 + ε,

with

|ε| <
(

15
2
· 2−2p + 30 · 2−3p

)
· rh,

and
r` ≤

1
2

ulp(rh).

The result (rh, r`) returned by Algorithm 5 satisfies

rh + r` =
√
x2 + y2 + ε′,

with

|ε′| <
(

47
8
· 2−2p + 26 · 2−3p

)
· rh,

and
r` ≤

1
2

ulp(rh).

Since the proofs are very similar for both algorithms, we
only give the proof for Algorithm 5.

Proof of the error bound for Algorithm 5.
The computations of bx, x̂, and ŷ are obviously errorless.

We have

x̂2 + ŷ2 = sx + sy + ρx + ρy
= sh + ρs + ρx + ρy,

with |ρx| ≤ 2−psx, |ρy| ≤ 2−psy , and |ρs| ≤ 2−psh.



We easily find

|ρx + ρy| ≤ 2−p(sx + sy) = 2−p(sh + ρs)

and define u = RN(ρx + ρy).
We have |u| ≤ RN (2−p(sx + sy)), so that

|u| ≤ 2−psh

and
|u− (ρx + ρy)| ≤ 2−2p · sh. (5)

We therefore get

|ρs + u| ≤ 2−p+1 · sh,

so that

s` ≤ 2−p+1 · sh

when p ≥ 2. Also,

|s` − (ρs + u)| ≤ 2−2p+1 · sh.

This, combined with (5), gives

|s` − (ρs + ρx + ρy)| ≤ 3 · 2−2p · sh,

implying that

x̂2 + ŷ2 = sh + s` + ε0, with |ε0| ≤ 3 · 2−2p · sh.

We also have, s′h + s′` = sh + s`, |s′`| ≤ 2−p · s′h, and
|s`| ≤ 2−p+1 · sh, so that

sh ≤
1 + 2−p

1− 2−p+1
· s′h ≤ (1 + 3 · 2−p + 7 · 2−2p) · s′h,

when p ≥ 4. Which gives

x̂2 + ŷ2 = s′h + s′` + ε0,
with |ε0| ≤ (3 · 2−2p + 10 · 2−3p) · s′h,

(6)

when p ≥ 5.
Now, √

x̂2 + ŷ2 =
√
s′h + s′` + ε0

=
√
s′h ·

(
1 + s′`+ε0

2s′h
+ ε1

)
,

with

|ε1| ≤
1
8

(s′` + ε0)2

(s′h)2
·

 1

1−
∣∣∣ s′`+ε0s′h

∣∣∣
 .

From the bounds on s′` and ε0 we get∣∣∣∣s′` + ε0
s′h

∣∣∣∣ ≤ 2−p + 3 · 2−2p + 10 · 2−3p,

which gives

|ε1| ≤
1
8
·
(
2−p + 3 · 2−2p + 10 · 2−3p

)2
1− (2−p + 3 · 2−2p + 10 · 2−3p)

< 2−2p−3 + 2−3p,

when p ≥ 6. Hence,√
x̂2 + ŷ2 =

√
s′h ·

(
1 +

s′`
2s′h

+ ε2

)
(7)

with

|ε2| ≤ |ε1|+
∣∣∣∣ ε02s′h

∣∣∣∣ < 13
8
· 2−2p + 6 · 2−3p.

In Eq. (7),
√
s′h is approximated by r1 + r2 using Algo-

rithm 3. Therefore, from Theorem 3, we have√
s′h = r1 + r2 + ε3,

with
|ε3| < 2−2p · r1.

Since |s′`/(2s′h)| ≤ 2−p−1, so that |c| ≤ 2−p−1 too, and∣∣∣∣c− s′`
2s′h

∣∣∣∣ ≤ 2−2p−2,

hence √
x̂2 + ŷ2 = (r1 + r2 + ε3) · (1 + c+ ε4),

with

|ε4| ≤
∣∣∣∣c− s′`

2s′h

∣∣∣∣+ |ε2| <
15
8
· 2−2p + 6 · 2−3p.

From the bound (3) obtained in the proof of Theorem 3, we
have |r2| ≤ 2−p · |r1|. All this gives√

x̂2 + ŷ2 = r1 + r2 + r1c+ ε6,

with

|ε6| ≤ |ε3|+ |r1ε4|+ |r2c|+ |r2ε4|+ |ε3| · |1 + c ε4|

≤ r1 ·
(

35
8
· 2−2p +

63
8
· 2−3p + 6 · 2−4p

+
15
16
· 2−5p + 3 · 2−6p

)
≤ r1 ·

(
35
8
· 2−2p + 8 · 2−3p

)
,

when p ≥ 6. From the previously obtained bounds on r2 and
c,

|r2 + r1c| ≤
3
2
· 2−p · r1

so that
r3 = r2 + r1c+ ε7,

with
|ε7| ≤

3
2
· 2−2p · r1,

and
|r3| ≤

3
2
· 2−p · (1 + 2−p) · r1.

We therefore conclude that

rh + r` = r1 + r3 =
√
x2 + y2 + ε8,



with

|ε8| ≤ |ε6|+ |ε7| ≤
(

47
8
· 2−2p + 8 · 2−3p

)
· r1.

From rh + r` = r1 + r3, |r`| ≤ 2−p|rh|, and |r3| ≤ 3
2 · 2

−p ·
(1 + 2−p) · r1, we get

|r1| <
1 + 2−p

1− 3
2 · 2−p · (1 + 2−p)

· |rh|

≤
(
1 + 5

2 · 2
−p + 11

2 · 2
−2p
)
· |rh|,

when p ≥ 6. From this we finally deduce that when p ≥ 8,

|ε8| ≤
(

47
8
· 2−2p + 23 · 2−3p

)
· |rh|.

V. CAN WE ROUND
√
x2 + y2 CORRECTLY?

In the following we call a midpoint a value exactly halfway
between consecutive floating-point numbers. In any radix,
there are many floating-point values x and y such that√
x2 + y2 is a midpoint [21]. A typical example, in the

“toy” binary floating-point system of precision p = 8 is
x = 25310 = 111111012, y = 20410 = 110011002, for which√
x2 + y2 = 32510 = 1010001012.
If the minimum nonzero distance (in terms of relative

distance, or in terms of ulps) between
√
x2 + y2 and a

midpoint is η, then correctly rounding
√
x2 + y2 can be done

as follows:
• approximate

√
x2 + y2 by some value s with error less

than η/2;
• if s is within η/2 from a midpoint m, then necessarily√

x2 + y2 is exactly equal to that midpoint: we should
return RN(m);

• otherwise, we can safely return RN(s).
Hence our purpose in this section is to find lower bounds on

the distance between
√
x2 + y2 and a midpoint. Notice that

in the special case where x and y have the same exponent,
Lang and Muller provide similar bounds in [22].

As previously, we assume a binary floating-point arithmetic
of precision p. Let x and y be floating-point numbers. Without
loss of generality, we assume 0 < y ≤ x. Let ex and ey be
the exponents of x and y. Define δ = ex − ey , so δ ≥ 0. We
will now consider two cases.

1. If δ is large
First, let us notice that if x is large enough compared to y,

our problem becomes very simple. More precisely, we have√
x2 + y2 = x ·

√
1 +

y2

x2

= x+
y2

2x
+ ε,

with

−1
8
y4

x3
< ε < 0.

When y ≤ 2−p/2x, we have

0 <
y2

2x
≤ 2−p−1x <

1
2

ulp(x),

so that ∣∣∣x−√x2 + y2
∣∣∣ =

y2

2x
+ ε <

1
2

ulp(x).

Hence when y ≤ 2−p/2x,
√
x2 + y2 is far from a

midpoint. Furthermore, in such a case, correctly rounding√
x2 + y2 is straightforward: it suffices to return x. Notice

that δ ≥ p/2 + 1 implies y ≤ 2−p/2x. So, let us now focus
on the case δ < p/2 + 1, i.e. δ ≤ b(p+ 1)/2c.

2. If δ is small
Since x and y are floating-point numbers, there exist inte-

gers Mx, My , ex, and ey such that{
x = Mx · 2ex−p+1

y = My · 2ey−p+1,

with 0 < Mx,My ≤ 2p − 1. Assume
√
x2 + y2 is within ε

ulps from a midpoint of the form (Ms + 1/2) · 2es−p+1 (with
|ε| nonzero and much less than 1/2). Notice that x ≤ s ≤
∆(x
√

2), where ∆(u) means u rounded up, so that es is ex
or ex + 1. We have,√

M2
x · 22ex +M2

y · 22ey =
(
Ms +

1
2

+ ε

)
· 2es ,

which gives

ε = 2−es
√
M2
x · 22ex +M2

y · 22ey −
(
Ms +

1
2

)
.

This implies

ε = 2−es ·
22ey

(
M2
x · 22δ +M2

y

)
− 22es

(
M2
s +Ms + 1

4

)
2ey
√
M2
x · 22δ +M2

y + 2es
(
Ms + 1

2

)
= 2−es

N

D
. (8)

Now since Ms ≤ 2p− 1, 2es ·
(
Ms + 1

2

)
is less than 2p+es

and |ε| < 1/2, then 2ey
√
M2
x · 22δ +M2

y is less than 2p+es

too, so that the term D in (8) is less than 2p+es+1.
Notice that if es = ex + 1 we can improve on that bound.

In that case,√
M2
x · 22ex +M2

y · 22ey <
√

22p + 22p−2δ · 2ex

= 1
2

√
1 + 2−2δ · 2p+es ,

so that, when es = ex + 1,

D <
(√

1 + 2−2δ · 2p + 1
)
· 2es .

(since |ε| < 1/2,
(
Ms + 1

2

)
is within 2es−1 from√

M2
x · 22ex +M2

y · 22ey ). Let us now focus on the term N

in (8). It is equal to

22ex−2δ

(
M2
x · 22δ +M2

y − 22(es−ex)+2δ

(
M2
s +Ms +

1
4

))
,



therefore
• if es = ex + 1 or δ > 0, then N is an integer multiple of

22es−2(es−ex)−2δ = 22es−2−2δ . Hence, if ε is nonzero,
its absolute value is at least

2−es · 22es−2−2δ(√
1 + 2−2δ · 2p + 1

)
· 2es

=
2−2−2δ

√
1 + 2−2δ · 2p + 1

;

• if es = ex and δ > 0, then again N is an integer multiple
of 22es−2(es−ex)−2δ . Hence, if ε is nonzero, its absolute
value is at least

2−es · 22es−2(es−ex)−2δ

2p+es+1
≥ 2−p−1−2δ.

• if es = ex and δ = 0 then

N = 22es

(
M2
x +M2

y −M2
s −Ms −

1
4

)
is a multiple of 22es/4, so that if ε is nonzero, its absolute
value is at least 2−p−3.

To summarize what we have obtained so far in the case “delta
is small”, whenever ε 6= 0, its absolute value is lower-bounded
by

2−p−3

in the case δ = 0; and

min
{

2−2−2δ

√
1 + 2−2δ · 2p + 1

; 2−p−1−2δ

}
=

2−2−2δ

√
1 + 2−2δ · 2p + 1

in the case δ > 0.
Now we can merge the various cases considered above and

deduce

Theorem 5. If x and y are radix-2, precision-p, floating-point
numbers, then either

√
x2 + y2 is a midpoint, or it is at a

distance of at least

2−2b(p+1)/2c−2

√
2 · 2p + 1

ulp
(√

x2 + y2
)

from a midpoint.

When x and y are close, we obtain a much sharper result.
For instance, when they are within a factor of 2, δ is equal to
0 or 1, which gives

Theorem 6. If x and y are radix-2, precision-p, floating-point
numbers such that |x/2| ≤ |y| ≤ 2 · |x|, then either

√
x2 + y2

is a midpoint, or it is at a distance at least

2−p−3

√
5 + 2−p+1

ulp
(√

x2 + y2
)

from a midpoint.

Tables I and II compare the actual minimum distance to
a midpoint (obtained through exhaustive computation) and
the bounds we have obtained in this section, in the case
of “toy” floating-point systems of precision p = 10 and 15
(an exhaustive search was not possible for significantly wider
formats). One can see on these tables that in the cases δ = 0

or δ = 1, our bounds are close to the minimum distance
(a consequence is that there is little hope of significantly
improving the bound given in Theorem 6), and that for larger
values of δ, our bounds remain of the same order of magnitude
as the minimum distance.2

δ
actual minimum distance

to a midpoint

our bound to

that distance

0 1.24× 10−4 ulp 1.22× 10−4 ulp

1 5.73× 10−5 ulp 5.45× 10−5 ulp

2 9.49× 10−5 ulp 1.48× 10−5 ulp

3 8.76× 10−6 ulp 3.78× 10−6 ulp

4 2.01× 10−6 ulp 9.51× 10−7 ulp

5 6.24× 10−7 ulp 2.38× 10−7 ulp

Table I
COMPARISON BETWEEN THE ACTUAL MINIMUM DISTANCE TO A

MIDPOINT (OBTAINED THROUGH EXHAUSTIVE COMPUTATION) AND THE
BOUNDS OBTAINED USING OUR METHOD, IN THE CASE OF A “TOY”

FLOATING-POINT SYSTEM OF PRECISION p = 10. WHEN δ ≥ 6,
p
x2 + y2

IS NECESSARILY FAR FROM A MIDPOINT.

δ
actual minimum distance

to a midpoint

our bound to

that distance

0 3.81× 10−6 ulp 3.81× 10−6 ulp

1 1.71× 10−6 ulp 1.70× 10−6 ulp

2 4.65× 10−7 ulp 4.62× 10−7 ulp

3 2.38× 10−7 ulp 1.18× 10−7 ulp

4 5.96× 10−8 ulp 2.97× 10−8 ulp

5 1.49× 10−8 ulp 7.44× 10−9 ulp

6 3.76× 10−9 ulp 1.86× 10−9 ulp

7 9.86× 10−10 ulp 4.56× 10−10 ulp

8 3.81× 10−5 ulp 1.16× 10−10 ulp

Table II
COMPARISON BETWEEN THE ACTUAL MINIMUM DISTANCE TO A

MIDPOINT (OBTAINED THROUGH EXHAUSTIVE COMPUTATION) AND THE
BOUNDS OBTAINED USING OUR METHOD, IN THE CASE OF A “TOY”

FLOATING-POINT SYSTEM OF PRECISION p = 15. WHEN δ ≥ 9,
p
x2 + y2

IS NECESSARILY FAR FROM A MIDPOINT.

VI. APPLICATION: CORRECT ROUNDING OF
√
x2 + y2

Various properties can be deduced from the analyses per-
formed in the paper. Examples are:

2Note that in the case p = 15, there is a large difference between the
actual minimum distance and our bound when δ = 8. This is due to the fact
that, when δ = 8, a very large part of the pairs (x, y) fall in the category
“y < 2−p/2x”, for which we have seen that

p
x2 + y2 is always far from

a midpoint.



• we can obtain
√
x2 + y2 correctly rounded in the bi-

nary32 format of the IEEE 754-2008 standard if Algo-
rithm 4 or Algorithm 5 is run in the binary64 format (or
a wider format);

• we can obtain
√
x2 + y2 correctly rounded in the bi-

nary64 format of the IEEE 754-2008 standard if Algo-
rithm 4 or Algorithm 5 is run in the binary128 format;

• if |x/2| ≤ |y| ≤ |2x|, we can obtain
√
x2 + y2 correctly

rounded in the binary64 format of the IEEE 754-2008
standard if Algorithm 4 or Algorithm 5 is run in the
INTEL binary80 format.

CONCLUSION

We have given a very tight error bound for a simple
augmented-precision algorithm for the square root. We have
also introduced two slightly different augmented-precision
algorithms for computing

√
x2 + y2. Then, we have given

bounds on the distance between
√
x2 + y2 and a midpoint,

where x and y are floating-point numbers and
√
x2 + y2 is

not a midpoint. These bounds can be used to provide correctly-
rounded 2D-norms (either using one of our algorithms, or
another one).

REFERENCES

[1] W. Kahan, “Pracniques: further remarks on reducing truncation errors,”
Commun. ACM, vol. 8, no. 1, p. 40, 1965.

[2] I. Babuška, “Numerical stability in mathematical analysis,” in Proceed-
ings of the 1968 IFIP Congress, vol. 1, 1969, pp. 11–23.

[3] D. M. Priest, “Algorithms for arbitrary precision floating point arith-
metic,” in Proceedings of the 10th IEEE Symposium on Computer
Arithmetic (Arith-10), P. Kornerup and D. W. Matula, Eds. IEEE
Computer Society Press, Los Alamitos, CA, Jun. 1991, pp. 132–144.

[4] ——, “On properties of floating-point arithmetics: Numerical stability
and the cost of accurate computations,” Ph.D. dissertation, University of
California at Berkeley, 1992.

[5] M. Pichat, “Correction d’une somme en arithmétique à virgule flottante,”
Numerische Mathematik, vol. 19, pp. 400–406, 1972, in French.

[6] S. M. Rump, T. Ogita, and S. Oishi, “Accurate floating-point
summation part I: Faithful rounding,” SIAM Journal on Scientific
Computing, vol. 31, no. 1, pp. 189–224, 2008. [Online]. Available:
http://link.aip.org/link/?SCE/31/189/1

[7] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot product,”
SIAM Journal on Scientific Computing, vol. 26, no. 6, pp. 1955–1988,
2005.

[8] S. Graillat, P. Langlois, and N. Louvet, “Algorithms for accurate,
validated and fast computations with polynomials,” Japan Journal of
Industrial and Applied Mathematics, vol. 26, no. 2, pp. 215–231, 2009.

[9] J. R. Shewchuk, “Adaptive precision floating-point arithmetic and
fast robust geometric predicates,” Discrete Computational Geometry,
vol. 18, pp. 305–363, 1997. [Online]. Available: http://link.springer.de/
link/service/journals/00454/papers97/18n3p305.pdf

[10] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double
precision floating-point arithmetic,” in Proceedings of the 15th IEEE
Symposium on Computer Arithmetic (ARITH-16), N. Burgess and L. Ci-
miniera, Eds., Vail, CO, Jun. 2001, pp. 155–162.

[11] K. Briggs, “The doubledouble library,” 1998, available at http://
www.boutell.com/fracster-src/doubledouble/doubledouble.html.

[12] P. Friedland, “Algorithm 312: Absolute value and square root of a
complex number,” Communications of the ACM, vol. 10, no. 10, p. 665,
Oct. 1967.

[13] P. Midy and Y. Yakovlev, “Computing some elementary functions of a
complex variable,” Mathematics and Computers in Simulation, vol. 33,
pp. 33–49, 1991.

[14] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, Aug. 2008, available at http://ieeexplore.ieee.
org/servlet/opac?punumber=4610933.

[15] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang, “Implementing complex
elementary functions using exception handling,” ACM Transactions on
Mathematical Software, vol. 20, no. 2, pp. 215–244, Jun. 1994.

[16] T. J. Dekker, “A floating-point technique for extending the available
precision,” Numerische Mathematik, vol. 18, no. 3, pp. 224–242, 1971.

[17] P. W. Markstein, “Computation of elementary functions on the IBM
RISC System/6000 processor,” IBM Journal of Research and Develop-
ment, vol. 34, no. 1, pp. 111–119, Jan. 1990.

[18] S. Boldo and M. Daumas, “Representable correcting terms for possibly
underflowing floating point operations,” in Proceedings of the 16th
Symposium on Computer Arithmetic, J.-C. Bajard and M. Schulte,
Eds. IEEE Computer Society Press, Los Alamitos, CA, 2003,
pp. 79–86. [Online]. Available: http://perso.ens-lyon.fr/marc.daumas/
SoftArith/BolDau03a.pdf

[19] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-
Point Arithmetic. Birkhäuser Boston, 2010, ACM G.1.0; G.1.2; G.4;
B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[20] P. Markstein, IA-64 and Elementary Functions: Speed and Precision,
ser. Hewlett-Packard Professional Books. Prentice-Hall, Englewood
Cliffs, NJ, 2000.

[21] C.-P. Jeannerod, N. Louvet, J.-M. Muller, and A. Panhaleux, “Midpoints
and exact points of some algebraic functions in floating-point arith-
metic,” IEEE Transactions on Computers, vol. 60, no. 2, Feb. 2011.

[22] T. Lang and J.-M. Muller, “Bound on run of zeros and ones for algebraic
functions,” in Proceedings of the 15th IEEE Symposium on Computer
Arithmetic (ARITH-16), N. Burgess and L. Ciminiera, Eds., Jun. 2001,
pp. 13–20.


