
HAL Id: ensl-00545591
https://ens-lyon.hal.science/ensl-00545591v1

Preprint submitted on 10 Dec 2010 (v1), last revised 14 Nov 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Augmented precision square roots, 2-D norms, and
discussion on correctly rounding

√
x2 + y2

Nicolas Brisebarre, Mioara Maria Joldes, Peter Kornerup, Erik Martin-Dorel,
Jean-Michel Muller

To cite this version:
Nicolas Brisebarre, Mioara Maria Joldes, Peter Kornerup, Erik Martin-Dorel, Jean-Michel Muller.
Augmented precision square roots, 2-D norms, and discussion on correctly rounding

√
x2 + y2. 2010.

�ensl-00545591v1�

https://ens-lyon.hal.science/ensl-00545591v1
https://hal.archives-ouvertes.fr

Augmented precision square roots, 2-D norms,

and discussion on correctly rounding
√

x2 + y2.

Nicolas Brisebarre, Mioara Joldeş, Peter Kornerup,

Érik Martin-Dorel, and Jean-Michel Muller

Abstract—Define an “augmented precision” algorithm as
an algorithm that returns, in precision-p floating-point arith-
metic, its result as the unevaluated sum of two floating-
point numbers, with a relative error of the order of 2

−2p.
Assuming an FMA instruction is available, we perform a
tight error analysis of an augmented precision algorithm
for the square root, and introduce two slightly different
augmented precision algorithms for the 2D-norm

p

x2 + y2.
Then we give tight lower bounds on the minimum distance
(in ulps) between

p

x2 + y2 and a midpoint when
p

x2 + y2

is not itself a midpoint. This allows us to determine cases
when our algorithms make it possible to return correctly-
rounded 2D-norms.

I. INTRODUCTION

In some applications, just returning a floating-point
approximation yh to the exact result y of a function or
arithmetic operation may not suffice. It may be useful to
also return an estimate yℓ of the error (i.e., y ≈ yh + yℓ).
For simple enough functions (e.g., addition or multipli-
cation), it is even possible to have y = yh + yℓ exactly.
Having an estimate of the error makes it possible to re-
use it later on in a numerical algorithm, in order to at
least partially compensate for that error. Such compen-
sated algorithms have been suggested in the literature
for summation of many floating-point numbers [1], [2],
[3], [4], [5], [6], computation of dot products [7], and
evaluation of polynomials [8].

We will call augmented-precision algorithm an algorithm
that returns, in radix-β, precision-p floating-point arith-
metic, an approximation yh + yℓ (i.e., an unevaluated
sum of two floating-point numbers) to an exact result
y = f(x) (or f(x1, x2)) such that

• yℓ ≤ 1
2 ulp(yh);

• there exists a small constant C such that

|y − (yh + yℓ)| < C · β−2p · y.

When y = yh + yℓ exactly, the transformation that
generates yh and yℓ from the inputs of f is called an
error-free transform in the literature.

The unevaluated sum yh + yℓ is called an expansion.
Several algorithms have been suggested for performing
arithmetic on such expansions [3], [9], [10], [11].

In the first part of this paper, we briefly recall two
well-known error-free transforms used later on in the
paper. Then, we analyze an augmented-precision algo-
rithm for the square-root. In the third part, we use that

algorithm for designing augmented-precision algorithms
for computing

√

x2 + y2, where x and y are floating-
point numbers. Such a calculation appears in many
domains of scientific computing. It is also an important
step when computing complex square roots. The naive
method—i.e., straightforward implementation of the for-
mula

√

x2 + y2—may lead to spurious overflows or
underflows. When there are no overflows/underflows,
it is quite accurate (an elementary calculation shows
that on a radix-2, precision-p floating-point system, the
relative error is bounded by 2−p+1 + 2−2p).

Friedland [12] avoids spurious overflows by com-
puting

√

x2 + y2 as |x| ·
√

1 + (y/x)2 if |x| ≥ |y|, and
|y| ·

√

1 + (x/y)2 otherwise.
Kahan1, and Midy and Yakovlev [13] normalize the

computation using a power of the radix of the computer
system: in radix 2, if |x| ≤ |y|, let bx be the largest power
of 2 less than or equal to x, what they actually compute
is bx ·

√

(x/bx)2 + (y/bx)2. Their solution is less portable
(and possibly on some systems, less fast) than Fried-
land’s solution, yet it will be in general slightly more
accurate, since division and multiplication by bx is exact.
Our augmented-precision algorithms will derive from
this one. As noticed by Kahan, the IEEE 754 Standard for
Floating-Point Arithmetic [14] defines functions scaleB
and logB that make this scaling of x and y easier to
implement.

Hull et al. [15] use the naive method along with the
exception-handling possibilities specified by the IEEE
754-1985 Standard to recover a correct result when the
naive method fails.

Then, we investigate the possibility of correctly round-
ing

√

x2 + y2 (assuming round-to-nearest). This requires
solving the table maker’s dilemma for that function, i.e.,
finding a lower bound on the smallest possible nonzero
distance (in ulps, or in terms of relative distance) be-
tween

√

x2 + y2 and a midpoint, where a midpoint is the
exact middle of two consecutive floating-point numbers.

II. TWO WELL-KNOWN ERROR-FREE TRANSFORMS

A. The Fast2Sum algorithm

The Fast2Sum algorithm was first introduced by
Dekker [16], but the three operations of this algorithm

1Unpublished lecture notes

already appeared in 1965 as a part of a summation
algorithm, called “Compensated sum method,” due to
Kahan [1]. Under conditions spelled out by Theorem 1,
it returns the floating term s nearest to a sum a + b and
the error term t = (a + b) − s. Throughout the paper,
RN(u) means “u rounded to the nearest even”.

Algorithm 1. Fast2Sum

s← RN(a + b)
z ← RN(s− a)
t← RN(b− z)
return (s, t)

The following theorem is due to Dekker.

Theorem 1 (Fast2Sum algorithm [16]). Assume the
floating-point system being used has radix β ≤ 3, subnormal
numbers available, and provides correct rounding to nearest.

Let a and b be floating-point numbers, and assume that
the exponent of a is larger than or equal to that of b (this
condition is satisfied if |a| ≥ |b|). Algorithm 1 computes two
floating-point numbers s and t that satisfy the following:

• s + t = a + b exactly;
• s is the floating-point number that is closest to a + b.

B. The 2MultFMA algorithm

The FMA instruction makes it possible to evaluate
±ax ± b, where a, x, and b are floating-point numbers,
with one final rounding only. That instruction was intro-
duced in 1990 on the IBM RS/6000. It allows for faster
and, in general, more accurate dot products, matrix mul-
tiplications, and polynomial evaluations. It also makes it
possible to design fast algorithms for correctly rounded
division and square root [17].

The FMA instruction is included in the newly revised
IEEE 754-2008 standard for floating-point arithmetic [14].

If an FMA instruction is available, then, to compute
the error of a floating-point multiplication x1 · x2, one
can design a very simple algorithm, which only requires
two consecutive operations, and works for any radix
and precision, provided the product does not overflow
and ex1

+ ex2
≥ emin + p − 1, where ex1

and ex2
are

the exponents of x1 and x2, and emin is the minimum
exponent of the floating-point system.

Algorithm 2 (2MultFMA(x1, x2)).

r1 ← RN(x1 · x2)
r2 ← RN(x1 · x2 − r1)
return (r1, r2)

III. AUGMENTED-PRECISION REAL SQUARE ROOT WITH

AN FMA

Let us now present an augmented-precision real
square root algorithm. That algorithm is straightfor-
wardly derived from the following theorem, given in [18]
(see also [19]):

Theorem 2 (Computation of square root residuals using
an FMA [18]). Assume x is a precision-p, radix-β, positive
floating-point number. If σ is

√
x rounded to a nearest

floating-point number then

x− σ2

is exactly computed using one FMA instruction, with any
rounding mode, provided that

2eσ ≥ emin + p− 1, (1)

where eσ is the exponent of σ.

Algorithm 3 (Augmented computation of
√

x).

σ ← RN(
√

x)
t← x− σ2 (exact operation through an FMA)
r ← RN(t/(2σ))
return (σ, r)

We have the following result, which shows that the
number r returned by Algorithm 3 is a very sharp
estimate of the error

√
x− σ.

Theorem 3. In radix-2, precision-p arithmetic, if the expo-
nent ex of the FP number x satisfies ex ≥ emin + p, then the
output (σ, r) of Algorithm 3 satisfies σ = RN(

√
x) and

∣

∣(σ + r)−
√

x
∣

∣ < 2−p−1 ulp(σ),

and
∣

∣(σ + r)−
√

x
∣

∣ < 2−2p · σ.

Proof. First, if ex ≥ emin + p then x ≥ 2emin+p, so that
√

x ≥ 2
emin+p

2 ≥ 2⌊
emin+p

2 ⌋,
which implies

σ = RN(
√

x) ≥ 2⌊
emin+p

2 ⌋,
therefore,

eσ ≥
⌊

emin + p

2

⌋

,

so that we have,

2eσ ≥ emin + p− 1.

Therefore, Theorem 2 applies: t = x − σ2 is a floating-
point number, so that it is exactly computed using an
FMA instruction.

Now, since σ = RN(
√

x) and σ is a normal number (a
square root never underflows or overflows), and since
the square root of a floating-point number is never equal
to a midpoint [20], [21], we have

|σ −
√

x| < 2−p · 2eσ ,

which gives

|t| = |σ2−x| = |σ−
√

x| · |σ +
√

x| < 2−p+eσ · (2σ +2eσ−p).

Notice that 2σ is a floating-point number, and that
ulp(2σ) = 2eσ−p+2. Therefore there is no floating-point

number between 2σ and 2σ+2eσ−p. Hence, since |t|/2−p+eσ

is a floating point number less than 2σ+2eσ−p, we obtain

|t| ≤ 2−p+eσ+1 · σ.

Hence,
∣

∣

∣

∣

t

2σ

∣

∣

∣

∣

≤ 2−p+eσ .

Also, since 2−p+eσ is a floating-point number, the mono-
tonicity of the round-to-nearest function implies

∣

∣

∣

∣

RN

(

t

2σ

)∣

∣

∣

∣

≤ 2−p+eσ .

From these two inequalities, we deduce
∣

∣

∣

∣

RN

(

t

2σ

)

− t

2σ

∣

∣

∣

∣

< 2−2p−1+eσ . (2)

Notice (we will need that in Section IV) that
∣

∣

∣

∣

RN

(

t

2σ

)∣

∣

∣

∣

≤ 2−p · σ (3)

Now, define a variable ǫ as

√
x = σ +

t

2σ
+ ǫ.

We have

ǫ =
√

x− σ − t

2σ

=
t√

x + σ
− t

2σ

= t · 2σ − (
√

x− σ)

(
√

x + σ) · 2σ

= − (σ −√x)2

2σ
,

from which we deduce

|ǫ| < 2−2p+2eσ

2σ
≤ 2−2p−1+eσ . (4)

Now, by combining (2) and (4), we finally get
∣

∣

∣

∣

(

σ + RN

(

t

2σ

))

−
√

x

∣

∣

∣

∣

< 2−2p+eσ

This gives an error in ulps as well as a relative error:
since ulp(σ) = 2eσ−p+1 we obtain

∣

∣

∣

∣

(

σ + RN

(

t

2σ

))

−
√

x

∣

∣

∣

∣

< 2−p−1 ulp(σ),

and
∣

∣

∣

∣

(

σ + RN

(

t

2σ

))

−
√

x

∣

∣

∣

∣

< 2−2p · σ.

Notice that the bound given by Theorem 3 is quite
tight. Consider as an example the case p = 24 (binary32

precision of the IEEE 754-2008 Standard). Assume x is
the floating-point number

x = 8402801 · 2−23,

then one easily gets

σ = 8395702 · 2−23,

and
r = −16749427 · 2−48,

which gives
∣

∣(σ + r)−
√

x
∣

∣ = 0.9970011 · · · 2−48 × σ,

to be compared to our bound 2−48 × σ.

IV. AUGMENTED-PRECISION 2D NORMS

We suggest two very slightly different algorithms.
Algorithm 5 requires three more operations (a Fast2Sum)
than Algorithm 4, but it has a slightly better error bound.

Algorithm 4 (Augmented computation of
√

x2 + y2).

1: if |y| > |x| then
2: swap(x, y)
3: end if
4: bx ← largest power of 2 less than or equal to x
5: x̂← x/bx {exact operation}
6: ŷ ← y/bx {exact operation}
7: (sx, ρx)← 2MultFMA(x̂, x̂)
8: (sy, ρy)← 2MultFMA(ŷ, ŷ)
9: (sh, ρs)← Fast2Sum(sx, sy)

10: sℓ ← RN(ρs + RN(ρx + ρy))
11: r1 ← RN(

√
sh)

12: t← sh − r2
1 (exact operation through an FMA)

13: r2 ← RN(t/(2r1))
14: c← RN(sℓ/(2sh))
15: r3 ← RN(r2 + r1c)
16: r′1 ← r1 · bx {exact operation}
17: r′3 ← r3 · bx {exact operation}
18: (rh, rℓ)← Fast2Sum(r′1, r

′
3)

19: return (rh, rℓ)

Algorithm 5 (Slightly more accurate augmented-preci-
sion computation of

√

x2 + y2).

1: if |y| > |x| then
2: swap(x, y)
3: end if
4: bx ← largest power of 2 less than or equal to x
5: x̂← x/bx {exact operation}
6: ŷ ← y/bx {exact operation}
7: (sx, ρx)← 2MultFMA(x̂, x̂)
8: (sy, ρy)← 2MultFMA(ŷ, ŷ)
9: (sh, ρs)← Fast2Sum(sx, sy)

10: sℓ ← RN(ρs + RN(ρx + ρy))
11: (s′h, s′ℓ)← Fast2Sum(sh, sℓ)
12: r1 ← RN(

√

s′h)
13: t← s′h − r2

1 (exact operation through an FMA)

14: r2 ← RN(t/(2r1))
15: c← RN(s′ℓ/(2s′h))
16: r3 ← RN(r2 + r1c)
17: r′1 ← r1 · bx {exact operation}
18: r′3 ← r3 · bx {exact operation}
19: (rh, rℓ)← Fast2Sum(r′1, r

′
3)

20: return (rh, rℓ)

Notice that if one is juste interested in getting a very
accurate floating-point approximation to

√

x2 + y2 (that
is, if one does not want to compute the error term rℓ),
then it suffices to replace the last Fast2Sum instruction by
“rh ← RN(r′1+r′3)” in both algorithms. Also notice that if
the functions scaleB and logB defined by the IEEE 754-
2008 Standard are available and efficiently implemented,
one can replace lines 4, 5 and 6 of both algorithms
by

ex ← logB(x)
x̂← scaleB(x,−ex)
ŷ ← scaleB(y,−ex)

and lines 16 and 17 of Algorithm 4, or lines 17 and 18
of Algorithm 5 by

r′1 ← scaleB(r1, ex)
r′3 ← scaleB(r3, ex)

We have the following result

Theorem 4 (Accuracy of algorithms 4 and 5). We assume
that a radix-2, precision-p (with p ≥ 8), floating-point arith-
metic is used and that there are no underflows or overflows.

The result (rh, rℓ) returned by Algorithm 4 satisfies

rh + rℓ =
√

x2 + y2 + ǫ,

with

|ǫ| <
(

15

2
· 2−2p + 30 · 2−3p

)

· rh,

and

rℓ ≤
1

2
ulp(rh).

The result (rh, rℓ) returned by Algorithm 5 satisfies

rh + rℓ =
√

x2 + y2 + ǫ′,

with

|ǫ′| <
(

47

8
· 2−2p + 26 · 2−3p

)

· rh,

and

rℓ ≤
1

2
ulp(rh).

Since the proofs are very similar for both algorithms,
we only give the proof for Algorithm 5.

Proof of the error bound for Algorithm 5.
The computations of bx, x̂, and ŷ are obviously error-

less. We have

x̂2 + ŷ2 = sx + sy + ρx + ρy

= sh + ρs + ρx + ρy,

with |ρx| ≤ 2−psx, |ρy| ≤ 2−psy , and |ρs| ≤ 2−psh.
We easily find

|ρx + ρy| ≤ 2−p(sx + sy) = 2−p(sh + ρs).

Define u = RN(ρx + ρy).
We have |u| ≤ RN (2−p(sx + sy)), so that

|u| ≤ 2−psh.

and
|u− (ρx + ρy)| ≤ 2−2p · sh. (5)

We therefore get

|ρs + u| ≤ 2−p+1 · sh,

so that

sℓ ≤ 2−p+1 · sh

when p ≥ 2. Also,

|sℓ − (ρs + u)| ≤ 2−2p+1 · sh.

This, combined with (5), gives

|sℓ − (ρs + ρx + ρy)| ≤ 3 · 2−2p · sh.

As a consequence

x̂2 + ŷ2 = sh + sℓ + ǫ0, with |ǫ0| ≤ 3 · 2−2p · sh.

We also have, s′h + s′ℓ = sh + sℓ, |s′ℓ| ≤ 2−p · s′h, and
|sℓ| ≤ 2−p+1 · sh, so that

sh ≤
1 + 2−p

1− 2−p+1
· s′h ≤ (1 + 3 · 2−p + 7 · 2−2p) · s′h,

when p ≥ 4. Which gives

x̂2 + ŷ2 = s′h + s′ℓ + ǫ0,
with |ǫ0| ≤ (3 · 2−2p + 10 · 2−3p) · s′h,

(6)

when p ≥ 5.
Now,

√

x̂2 + ŷ2 =
√

s′h + s′ℓ + ǫ0

=
√

s′h ·
(

1 +
s′

ℓ+ǫ0
2s′

h

+ ǫ1

)

,

with

|ǫ1| ≤
1

8

(s′ℓ + ǫ0)
2

(s′h)2
·





1

1−
∣

∣

∣

s′

ℓ
+ǫ0
s′

h

∣

∣

∣



 .

From the bounds on s′ℓ and ǫ0 we get
∣

∣

∣

∣

s′ℓ + ǫ0
s′h

∣

∣

∣

∣

≤ 2−p + 3 · 2−2p + 10 · 2−3p,

which gives

|ǫ1| ≤
1

8
·

(

2−p + 3 · 2−2p + 10 · 2−3p
)2

1− (2−p + 3 · 2−2p + 10 · 2−3p)

< 2−2p−3 + 2−3p,

when p ≥ 6. Hence,

√

x̂2 + ŷ2 =
√

s′h ·
(

1 +
s′ℓ
2s′h

+ ǫ2

)

(7)

with

|ǫ2| ≤ |ǫ1|+
∣

∣

∣

∣

ǫ0
2s′h

∣

∣

∣

∣

<
13

8
· 2−2p + 6 · 2−3p.

In Eq. (7),
√

s′h is approximated by r1 + r2 using
Algorithm 3. Therefore, from Theorem 3, we have

√

s′h = r1 + r2 + ǫ3,

with
|ǫ3| < 2−2p · r1.

Now, |s′ℓ/(2s′h)| ≤ 2−p−1, so that |c| ≤ 2−p−1 too, and
∣

∣

∣

∣

c− s′ℓ
2s′h

∣

∣

∣

∣

≤ 2−2p−2,

hence
√

x̂2 + ŷ2 = (r1 + r2 + ǫ3) · (1 + c + ǫ4),

with

|ǫ4| ≤
∣

∣

∣

∣

c− s′ℓ
2s′h

∣

∣

∣

∣

+ |ǫ2| <
15

8
· 2−2p + 6 · 2−3p.

From the bound (3) obtained in the proof of Theo-
rem 3, we have |r2| ≤ 2−p · |r1|. All this gives

√

x̂2 + ŷ2 = r1 + r2 + r1c + ǫ6,

with

|ǫ6| ≤ |ǫ3|+ |r1ǫ4|+ |r2c|+ |r2ǫ4|+ |ǫ3| · |1 + c ǫ4|

≤ r1 ·
(

35

8
· 2−2p +

63

8
· 2−3p + 6 · 2−4p

+
15

16
· 2−5p + 3 · 2−6p

)

≤ r1 ·
(

35

8
· 2−2p + 8 · 2−3p

)

,

when p ≥ 6. From the previously obtained bounds on r2

and c,

|r2 + r1c| ≤
3

2
· 2−p · r1

so that
r3 = r2 + r1c + ǫ7,

with

|ǫ7| ≤
3

2
· 2−2p · r1,

and

|r3| ≤
3

2
· 2−p · (1 + 2−p) · r1.

We therefore conclude that

rh + rℓ = r1 + r3 =
√

x2 + y2 + ǫ8,

with

|ǫ8| ≤ |ǫ6|+ |ǫ7| ≤
(

47

8
· 2−2p + 8 · 2−3p

)

· r1.

From rh + rℓ = r1 + r3, |rℓ| ≤ 2−p|rh|, and |r3| ≤ 3
2 · 2−p ·

(1 + 2−p) · r1, we get

|r1| <
1 + 2−p

1− 3
2 · 2−p · (1 + 2−p)

· |rh|

≤
(

1 + 5
2 · 2−p + 11

2 · 2−2p
)

· |rh|,

when p ≥ 6. From this we finally deduce that when
p ≥ 8,

|ǫ8| ≤
(

47

8
· 2−2p + 23 · 2−3p

)

· |rh|.

V. CAN WE ROUND
√

x2 + y2 CORRECTLY?

In the following we call a midpoint a value exactly
halfway between consecutive floating-point numbers. In
any radix, there are many floating-point values x and y
such that

√

x2 + y2 is a midpoint [21]. A typical example,
in the “toy” binary floating-point system of precision
p = 8 is x = 25310 = 111111012, y = 20410 = 110011002,
for which

√

x2 + y2 = 32510 = 1010001012.
If the minimum nonzero distance (in terms of relative

distance, or in terms of ulps) between
√

x2 + y2 and a
midpoint is η, then correctly rounding

√

x2 + y2 can be
done as follows:

• approximate
√

x2 + y2 by some value s with error
less than η/2;

• if s is within η/2 from a midpoint m, then necessar-
ily

√

x2 + y2 is exactly equal to that midpoint: we
should return RN(m);

• otherwise, we can safely return RN(s).

Hence our purpose in this section is to find lower
bounds on the distance between

√

x2 + y2 and a mid-
point.

As previously, we assume a binary floating-point
arithmetic of precision p. Let x and y be floating-
point numbers. Without loss of generality, we assume
0 < y ≤ x. Let ex and ey be the exponents of x and y.
Define δ = ex − ey , so δ ≥ 0. We will now consider two
cases.

1. If δ is large
First, let us notice that if x is large enough compared

to y, our problem becomes very simple. More precisely,
we have

√

x2 + y2 = x ·
√

1 +
y2

x2

= x +
y2

2x
+ ǫ,

with

−1

8

y4

x3
< ǫ < 0.

When
y ≤ 2−p/2x,

we have

0 <
y2

2x
≤ 2−p−1x <

1

2
ulp(x).

So that
∣

∣

∣
x−

√

x2 + y2
∣

∣

∣
=

y2

2x
+ ǫ <

1

2
ulp(x).

Hence when y ≤ 2−p/2x,
√

x2 + y2 is far from a
midpoint. Furthermore, in such a case, correctly
rounding

√

x2 + y2 is straightforward: it suffices to
return x. Notice that δ ≥ p/2 + 1 implies y ≤ 2−p/2x.
So, let us now focus on the case δ < p/2 + 1, i.e.
δ ≤ ⌊(p + 1)/2⌋.

2. If δ is small
Since x and y are floating-point numbers, there exist

integers Mx, My , ex, and ey such that

x = Mx · 2ex−p+1

y = My · 2ey−p+1,

with 0 < Mx, My ≤ 2p − 1. Assume
√

x2 + y2 is within
ǫ ulps from a midpoint of the form (Ms + 1/2) · 2es−p+1

(with |ǫ| nonzero and much less than 1/2). Notice that
x ≤ s ≤ ∆(x

√
2), where ∆(u) means u rounded up, so

that es is ex or ex + 1. We have,
√

M2
x · 22ex + M2

y · 22ey =

(

Ms +
1

2
+ ǫ

)

· 2es ,

which gives

ǫ = 2−es

√

M2
x · 22ex + M2

y · 22ey −
(

Ms +
1

2

)

.

This implies

ǫ = 2−es ·
22ey

(

M2
x · 22δ + M2

y

)

− 22es
(

M2
s + Ms + 1

4

)

2ey

√

M2
x · 22δ + M2

y + 2es

(

Ms + 1
2

)

= 2−es
N

D
. (8)

Now since Ms ≤ 2p−1, 2es ,
(

Ms + 1
2

)

is less than 2p+es .

Moreover, since |ǫ| < 1/2, 2ey

√

M2
x · 22δ + M2

y is less than

2p+es too, so that the term D in (8) is less than 2p+es+1.
Notice that if es = ex + 1 we can improve on that

bound. In that case,

√

M2
x · 22ex + M2

y · 22ey <
√

22p + 22p−2δ · 2ex

= 1
2

√
1 + 2−2δ · 2p+es ,

so that, when es = ex + 1,

D <
(
√

1 + 2−2δ · 2p + 1
)

· 2es .

(since |ǫ| < 1/2,
(

Ms + 1
2

)

is within 2es−1 from
√

M2
x · 22ex + M2

y · 22ey). Let us now focus on the term

N in (8). It is equal to

22ex−2δ

(

M2
x · 22δ + M2

y − 22(es−ex)+2δ

(

M2
s + Ms +

1

4

))

,

therefore

• if es = ex + 1 or δ > 0, then N is an integer
multiple of 22es−2(es−ex)−2δ = 22es−2−2δ . Hence, if
ǫ is nonzero, its absolute value is at least

2−es · 22es−2−2δ

(√
1 + 2−2δ · 2p + 1

)

· 2es

=
2−2−2δ

√
1 + 2−2δ · 2p + 1

;

• if es = ex and δ > 0, then again N is an integer
multiple of 22es−2(es−ex)−2δ . Hence, if ǫ is nonzero,
its absolute value is at least

2−es · 2
2es−2(es−ex)−2δ

2p+es+1
≥ 2−p−1−2δ.

• if es = ex and δ = 0 then

N = 22es

(

M2
x + M2

y −M2
s −Ms −

1

4

)

is a multiple of 22es/4, so that if ǫ is nonzero, its
absolute value is at least 2−p−3.

To summarize what we have obtained so far in the case
“delta is small”, whenever ǫ 6= 0, its absolute value is
lower-bounded by

2−p−3

in the case δ = 0; and

min

{

2−2−2δ

√
1 + 2−2δ · 2p + 1

; 2−p−1−2δ

}

=
2−2−2δ

√
1 + 2−2δ · 2p + 1

in the case δ > 0.
Now we can merge the various cases considered above

and deduce

Theorem 5. If x and y are radix-2, precision-p, floating-
point numbers, then either

√

x2 + y2 is a midpoint, or it is
at a distance at least

2−2⌊(p+1)/2⌋−2

√
2 · 2p + 1

ulp
(

√

x2 + y2
)

from a midpoint.

When x and y are close, we obtain a much sharper
result. For instance, when they are within a factor 2, δ is
equal to 0 or 1, which gives

Theorem 6. If x and y are radix-2, precision-p, floating-point
numbers such that |x/2| ≤ |y| ≤ 2 · |x|, then either

√

x2 + y2

is a midpoint, or it is at a distance at least

2−p−3

√
5 + 2−p+1

ulp
(

√

x2 + y2
)

from a midpoint.

Tables I and II compare the actual minimum distance
to a midpoint (obtained through exhaustive computa-
tion) and the bounds we have obtained in this section,
in the case of “toy” floating-point systems of precision
p = 10 and 15 (an exhaustive research was not possible
for significantly wider formats). One can see on these
tables that in the cases δ = 0 or δ = 1, our bounds are
close to the minimum distance (a consequence is that
there is little hope of significantly improving the bound
given in Theorem 6), and that for larger values of δ, our
bounds remain of the same order of magnitude as the
minimum distance.2

δ
actual minimum distance

to a midpoint

our bound to

that distance

0 1.24 × 10−4 ulp 1.22 × 10−4 ulp

1 5.73 × 10−5 ulp 5.45 × 10−5 ulp

2 9.49 × 10−5 ulp 1.48 × 10−5 ulp

3 8.76 × 10−6 ulp 3.78 × 10−6 ulp

4 2.01 × 10−6 ulp 9.51 × 10−7 ulp

5 6.24 × 10−7 ulp 2.38 × 10−7 ulp

Table I
COMPARISON BETWEEN THE ACTUAL MINIMUM DISTANCE TO A

MIDPOINT (OBTAINED THROUGH EXHAUSTIVE COMPUTATION) AND

THE BOUNDS OBTAINED USING OUR METHOD, IN THE CASE OF A

“TOY” FLOATING-POINT SYSTEM OF PRECISION p = 10. WHEN δ ≥ 6,
p

x2 + y2 IS NECESSARILY FAR FROM A MIDPOINT.

VI. APPLICATION: CORRECT ROUNDING OF
√

x2 + y2

Various properties can be deduced from the analyses
performed in the paper. Examples are:

• we can obtain
√

x2 + y2 correctly rounded in the
binary32 format of the IEEE 754-2008 standard if
Algorithm 4 or Algorithm 5 is run in the binary64
format (or a wider format);

• we can obtain
√

x2 + y2 correctly rounded in the
binary64 format of the IEEE 754-2008 standard if
Algorithm 4 or Algorithm 5 is run in the binary128
format;

• if |x/2| ≤ |y| ≤ |2x|, we can obtain
√

x2 + y2

correctly rounded in the binary64 format of the IEEE
754-2008 standard if Algorithm 4 or Algorithm 5 is
run in the INTEL binary80 format.

2Note that in the case p = 15, there is a large difference between the
actual minimum distance and our bound when δ = 8. This is due to
the fact that, when δ = 8, a very large part of the pairs (x, y) fall in

the category “y < 2−p/2x”, for which we have seen that
p

x2 + y2 is
always far from a midpoint.

δ
actual minimum distance

to a midpoint

our bound to

that distance

0 3.81 × 10−6 ulp 3.81 × 10−6 ulp

1 1.71 × 10−6 ulp 1.70 × 10−6 ulp

2 4.65 × 10−7 ulp 4.62 × 10−7 ulp

3 2.38 × 10−7 ulp 1.18 × 10−7 ulp

4 5.96 × 10−8 ulp 2.97 × 10−8 ulp

5 1.49 × 10−8 ulp 7.44 × 10−9 ulp

6 3.76 × 10−9 ulp 1.86 × 10−9 ulp

7 9.86 × 10−10 ulp 4.56 × 10−10 ulp

8 3.81 × 10−5 ulp 1.16 × 10−10 ulp

Table II
COMPARISON BETWEEN THE ACTUAL MINIMUM DISTANCE TO A

MIDPOINT (OBTAINED THROUGH EXHAUSTIVE COMPUTATION) AND

THE BOUNDS OBTAINED USING OUR METHOD, IN THE CASE OF A

“TOY” FLOATING-POINT SYSTEM OF PRECISION p = 15. WHEN δ ≥ 9,
p

x2 + y2 IS NECESSARILY FAR FROM A MIDPOINT.

CONCLUSION

We have given a very tight error bound for a simple
augmented-precision algorithm for the square root. We
have also introduced two slightly different augmented-
precision algorithms for computing

√

x2 + y2. Then, we
have given bounds on the distance between

√

x2 + y2

and a midpoint, where x and y are floating-point num-
bers and

√

x2 + y2 is not a midpoint. These bounds can
be used to provide correctly-rounded 2D-norms (either
using one of our algorithms, or another one).

REFERENCES

[1] W. Kahan, “Pracniques: further remarks on reducing truncation
errors,” Commun. ACM, vol. 8, no. 1, p. 40, 1965.

[2] I. Babuška, “Numerical stability in mathematical analysis,” in
Proceedings of the 1968 IFIP Congress, vol. 1, 1969, pp. 11–23.

[3] D. M. Priest, “Algorithms for arbitrary precision floating point
arithmetic,” in Proceedings of the 10th IEEE Symposium on Computer
Arithmetic (Arith-10), P. Kornerup and D. W. Matula, Eds. IEEE
Computer Society Press, Los Alamitos, CA, Jun. 1991, pp. 132–
144.

[4] ——, “On properties of floating-point arithmetics: Numerical sta-
bility and the cost of accurate computations,” Ph.D. dissertation,
University of California at Berkeley, 1992.

[5] M. Pichat, “Correction d’une somme en arithmétique à virgule
flottante,” Numerische Mathematik, vol. 19, pp. 400–406, 1972, in
French.

[6] S. M. Rump, T. Ogita, and S. Oishi, “Accurate floating-point
summation part I: Faithful rounding,” SIAM Journal on Scientific
Computing, vol. 31, no. 1, pp. 189–224, 2008. [Online]. Available:
http://link.aip.org/link/?SCE/31/189/1

[7] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot
product,” SIAM Journal on Scientific Computing, vol. 26, no. 6, pp.
1955–1988, 2005.

[8] S. Graillat, P. Langlois, and N. Louvet, “Algorithms for accurate,
validated and fast computations with polynomials,” Japan Journal
of Industrial and Applied Mathematics, vol. 26, no. 2, pp. 215–231,
2009.

[9] J. R. Shewchuk, “Adaptive precision floating-point arithmetic
and fast robust geometric predicates,” Discrete Compu-
tational Geometry, vol. 18, pp. 305–363, 1997. [Online].
Available: http://link.springer.de/link/service/journals/00454/
papers97/18n3p305.pdf

[10] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double
precision floating-point arithmetic,” in Proceedings of the 15th IEEE
Symposium on Computer Arithmetic (ARITH-16), N. Burgess and
L. Ciminiera, Eds., Vail, CO, Jun. 2001, pp. 155–162.

[11] K. Briggs, “The doubledouble library,” 1998, available
at http://www.boutell.com/fracster-src/doubledouble/
doubledouble.html.

[12] P. Friedland, “Algorithm 312: Absolute value and square root of
a complex number,” Communications of the ACM, vol. 10, no. 10,
p. 665, Oct. 1967.

[13] P. Midy and Y. Yakovlev, “Computing some elementary functions
of a complex variable,” Mathematics and Computers in Simulation,
vol. 33, pp. 33–49, 1991.

[14] IEEE Computer Society, IEEE Standard for Floating-Point Arith-
metic. IEEE Standard 754-2008, Aug. 2008, available at http:
//ieeexplore.ieee.org/servlet/opac?punumber=4610933.

[15] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang, “Implementing
complex elementary functions using exception handling,” ACM
Transactions on Mathematical Software, vol. 20, no. 2, pp. 215–244,
Jun. 1994.

[16] T. J. Dekker, “A floating-point technique for extending the avail-
able precision,” Numerische Mathematik, vol. 18, no. 3, pp. 224–242,
1971.

[17] P. W. Markstein, “Computation of elementary functions on the
IBM RISC System/6000 processor,” IBM Journal of Research and
Development, vol. 34, no. 1, pp. 111–119, Jan. 1990.

[18] S. Boldo and M. Daumas, “Representable correcting terms for
possibly underflowing floating point operations,” in Proceedings
of the 16th Symposium on Computer Arithmetic, J.-C. Bajard
and M. Schulte, Eds. IEEE Computer Society Press, Los
Alamitos, CA, 2003, pp. 79–86. [Online]. Available: http:
//perso.ens-lyon.fr/marc.daumas/SoftArith/BolDau03a.pdf

[19] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres,
Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010,
ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[20] P. Markstein, IA-64 and Elementary Functions: Speed and Precision,
ser. Hewlett-Packard Professional Books. Prentice-Hall, Engle-
wood Cliffs, NJ, 2000.

[21] C.-P. Jeannerod, N. Louvet, J.-M. Muller, and A. Panhaleux, “Mid-
points and exact points of some algebraic functions in floating-
point arithmetic,” IEEE Transactions on Computers, 2010, to appear.

