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Abstract

By identifying a bosonic consistent truncation from the 1
4 -BPS wrapped M5-

brane geometry of Maldacena, Strominger and Witten in D = 11 supergravity

and finding a supersymmetric extension, we recover an N = 2 D = 3 super-

gravity theory. Reductions of a large class of supersymmetric solutions corre-

sponding to wrapped M2 and M5-branes lead to black strings and warpedAdS3

solutions preserving supersymmetry. With a view to AdS/CMT applications,

we also construct a numerical hairy BTZ black hole and, as a preliminary step

in this direction, determine the conductivity of the dual CFT.



1 Introduction

Continued interest in the AdS/CFT correspondence owes much to the potential computa-

tional control it gives in studying strongly coupled, non-perturbative field theories. Having

witnessed attempts to model QCD-like theories holographically, much focus has shifted to

condensed matter theory (CMT). In contrast to its predecessor, AdS/QCD, swift progress

in AdS/CMT has been precipitated through simple, bottom-up models with a phenomeno-

logical flavour. With attention now turning to the task of embedding promising bottom-up

theories in higher-dimensional supergravity, a footing where we have greatest confidence

in the AdS/CFT, we have seen a small renaissance in the study of consistent truncations.

An interesting spin-off of all this recent activity is a deeper understanding of how the

various supergravity theories are related. In particular, starting from simplified setting

of D = 11 supergravity, it would be attractive to map out all the lower-dimensional

supergravities arising through consistent truncations. Prior to AdS/CMT research, the

most well known examples in either Type IIB or D = 11 involved sphere reductions to

maximally supersymmetric theories on S5 [1, 2], S7 [3] and S4 [4]. A few years ago it

was shown that the most general supersymmetric AdS5 solutions of D = 11 supergravity

[5] (of which Sasaki-Einstein Y p,q [6] belong) permits a consistent reduction to minimal

N = 2 D = 5 gauged supergravity [7, 8]. Since then there have been subsequent studies

on consistent reductions [9, 10], while the extension to examples incorporating massive

modes appeared in [11] and [12].

Then since the explosion in interest in AdS/CMT, there has been a blistering race to

embed promising bottom-up, holographic superconducting models [13, 14] in Type IIB [15]

and D = 11 [16, 17]. The interest in SE5 bosonic reductions from Type IIB peaked earlier

this year when numerous overlapping results appeared [18] (see also [19, 20]) . Shortly

after the overlooked fermion reduction on Sasaki-Einstein spaces from Type IIB [21, 22]

and D = 11 [23] also appeared in the literature.

In terms of reductions to D = 3, the story is not so well established. Reductions from

N = 1 D = 6 supergravity [24] aside, in this paper we present one of the first examples

from D = 11. We will begin with the geometry dual to chiral N = (4, 0) SCFT in two-

dimensions. The dual spacetime, commonly referred to by the Maldacena, Strominger,

Witten (MSW) geometry, arises from M5-branes wrapping Kähler four-cycles in a Calabi-

Yau three-fold CY3 [25]:

ds2 =
1

m2
ds2(AdS3) +

1

4m2
ds2(S2) + ds2(CY3),

F (4) = ± 1

2m
vol(S2) ∧ J. (1.1)

Here m denotes the inverse AdS3 radius, J the Kähler form and the choice of sign depends

on whether one wraps M5-branes or anti-M5-branes. This geometry with SU(3)-holonomy

appeared as the only example in a recent classification of AdS3 ×S2 geometries in D = 11
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with SU(3)-structure and eight supercharges [26]. Given its uniqueness, the strategy then

is to deform this geometry in a similar way to [27] where, in comparison to the case

presented here, the background is sourced by wrapped M5-branes. Next one imposes the

D = 11 equations of motion to derive a set of D = 3 equations of motion and then

reconstructs the Lagrangian. Such a process leads to a consistent truncation on S2 ×CY3

and a scalar potential that admits a single supersymmetric vacuum inherited from the

parent MSW geometry. For simplicity and also with one eye on the AdS/CMT literature

where U(1) isometries are ubiquitous, we have chosen not to gauge the S2 in the reduction,

though one imagines that this can be incorporated.

As the general structure of three-dimensional supergravity theories with various amounts

of supersymmetry has been explored in detail in the past [28, 29], the form of the bosonic

Lagrangian that we obtain in the reduction allows to identify the underlying N = 2 struc-

ture. After redualizing the three-dimensional vector degrees of freedom, the field content

of the three-dimensional theory is given by three complex scalar multiplets, parametriz-

ing the Kähler manifold SU(2, 1)/U(2)×SU(1, 1)/U(1). Supersymmetric interactions are

triggered by a particular shift symmetry gauging and a holomorphic superpotential. This

analysis allows to reconstruct the full fermionic sector, including the Yukawa couplings

and the Killing spinor equations without performing the explicit fermionic reduction. In

particular, the Killing spinor equations may be employed to construct supersymmetric

solutions directly in three dimensions.

Having performed the reduction and identified a supersymmetric extension, in the

rest of the paper, we reduce a large class of supersymmetric wrapped M2 and M5-brane

[30, 31] geometries to d = 3 in order to check the consistency. We observe that the

near-horizon limit of one of these classes recovers the warped AdS3 solution of [32] while

black string solutions reminiscent of [33] also appear. We also construct numerically a

black hole solution that is asymptotically the same as charged BTZ [34, 35] with the CY3

breathing mode providing the hair. Using this background, as a preliminary foray into

the AdS/CMT world, we determine the conductivity of the dual system recovering results

similar to [36, 37], but stress our black hole has an M-theory embedding, even away from

the probe limit.

A big future challenge for this geometry concerns whether it captures signatures of

the Luttinger liquid model [38]. In contrast to higher dimensions, Fermi-Landau liquid

theory is not applicable in one spatial dimension, and for theories with a gapless branch,

the effective description of the physics may be given in terms of a Luttinger liquid. One

of the most interesting predictions of this model is an experimentally observed [39] effect

known as spin-charge separation [40], where the spin and charge excitations of spin-half

fermions travel at different velocities. To date, we have already seen attempts to model

Luttinger liquids holographically [36, 37]. However, neither group were able to report any

signature of spin-charge separation, an effect that would be an important milestone to

reproduce from a gravity set-up if one is going to consider AdS/CMT more seriously in
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lower-dimensions.

2 Consistent Truncation

In this section we give an account of the consistent truncation forming the bedrock of this

study. We will consider an Abelian reduction of the MSW [25] geometry using the simple

ansatz

ds2 = ds2(M3) + e2Uds2(S2) + e2V ds2(CY3),

F (4) = αvol(S2) ∧ J + vol(S2) ∧H1 + βJ2 + J ∧H2

+ γ vol(M3) ∧ cos θdφ+ [df ∧ Ω + c.c.] , (2.1)

where θ, φ parameterise the two-sphere and J,Ω denote the usual forms on CY3. The

scalars α, β, γ, U, V are a priori real scalars, f is a complex scalar, and H1,H2 define

two-forms on M3. As we shall see shortly, only U, V, f survive the reduction with α being

demoted to a constant in the process.

Note also that the original solution is recoverable from this ansatz when M3 is an AdS3

metric of unit inverse radius m = 1, α = 1
2 and U = − ln 2. The immediate task now is to

solve the eleven-dimensional equations of motion

dF (4) = 0, (2.2)

d(∗F (4)) = −1
2F

(4) ∧ F (4), (2.3)

RMN = 1
12F

(4)
MPQRF

(4) PQR
N − 1

144gMNF
(4)
PQRSF

(4) PQRS, (2.4)

where M,N = 0, · · · 10. While the details of the reduction may be found in appendix

A, the D = 3 equations of motion that one obtains may be derived from the following

Lagrangian

L3 = e2U+6V [Rvol3 + 2dU ∧ ∗dU + 24dU ∧ ∗dV + 30dV ∧ ∗dV ]

− 8e2Udf ∧ ∗df∗ − 1
2e

−2U+6VH1 ∧ ∗H1 − 3
2e

2U+2VH2 ∧ ∗H2

− 8iB1 ∧ df ∧ df∗ − 3αB2 ∧H2 + (2e6V − 3
2α

2e−2U+2V )vol3, (2.5)

where we have introduced the gauge potentials B1, B2 such that H1 = dB1,H2 = dB2.

One may also find the Einstein frame Lagrangian by performing the metric rescaling

gµν = e−2(2U+6V )ĝµν . The Einstein-frame Lagrangian is

LEinstein = R̂v̂ol3 − 6dU ∧ ∗̂dU − 24dU ∧ ∗̂dV − 42dV ∧ ∗̂dV
− 8e−6V df ∧ ∗̂df∗ − 1

2e
12V H1 ∧ ∗̂H1 − 3

2e
4U+8VH2 ∧ ∗̂H2 (2.6)

− 8iB1 ∧ df ∧ df∗ − 3αB2 ∧H2 + (2e−6U−12V − 3
2α

2e−8U−16V ) ˆvol3.

One may then proceed to simplify the action by diagonalising the scalar kinetic terms

W = U + 2V, (2.7)
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resulting in

LEinstein = R̂v̂ol3 − 6dW ∧ ∗̂dW − 18dV ∧ ∗̂dV
− 8e−6V df ∧ ∗̂df∗ − 1

2e
12V H1 ∧ ∗̂H1 − 3

2e
4WH2 ∧ ∗̂H2 (2.8)

− 8iB1 ∧ df ∧ df∗ − 3αB2 ∧H2 + (2e−6W − 3
2α

2e−8W ) ˆvol3.

Having established the form of the Einstein frame Lagrangian, one may determine the

vacua of the theory by analysing the critical points of the scalar potential

Lpot = (2e−6W − 3
2α

2e−8W ) ˆvol3. (2.9)

One finds that a single AdS3 vacuum exists whenW = ln(α). This is no surprise, as setting

V = 0, α = 1
2 , we recover the supersymmetric vacuum of the original MSW solution (unit

AdS3 radius). This provides us with an initial non-trivial consistency check.

As an extra consistency check, we can start from the consistent reduction from eleven

dimensions to five dimensions on KE6 appearing in [41]1 by truncating out the complex

scalar f i.e. f = 0. We recall that the Ricci tensor for the KE6 metric is simply

Rmn = 2c2gmn, (2.10)

so c = 0 makes the KE6 space CY3. To make connection with the work appearing above,

one simply has to further reduce the five-dimensional theory to three-dimensions. This

may be done by employing the identifications

H̃4 = vol(S2) ∧H1, H̃2 = α vol(S2) +H2, (2.11)

where we have introduced tilde notation to differentiate. Then by relabeling the warp

factor U of [41] as V , one recovers the above equations of motion. To be a little more

precise, (2.5), (2.6) and (2.7) of [41] are respectively, (A.3), (A.3) and (A.13) of this draft.

Then, one can derive (A.11) from the Einstein equation (2.8) of [41], while (A.12) can also

be extracted from the sphere directions of the Einstein equation by using the Christoffel

symbols Γµ
θθ = Γµ

φφ = −∂ρU∂
ρV .

3 Effective D = 3 supergravity

In this section we will cast the three-dimensional action obtained in the reduction into

the standard form of three-dimensional gauged supergravity. In particular, this allows to

reconstruct the entire fermionic sector as well as the Killing spinor equations from the

underlying N = 2 supersymmetry structure.

1Although the stability of non-supersymmetric solutions is a constant concern, when KE
6
≡ CP

3, the

AdS5 vacuum appears to be classically stable [42].
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3.1 Redualizing and scalar geometry

In order to make the underlying N = 2 structure of (2.8) manifest, we first need to dualize

all propagating degrees of freedom into the scalar sector [29]. The bosonic equations of

motion for the vector fields

0 = d(e12V ∗H1) + 8idf ∧ df∗ ,
0 = d(e4W ∗H2) + 2αH2 , (3.1)

allow to introduce scalar fields X,Y according to the duality equations

H1 = e−12V {∗dX + 4i(f ∗ df∗ − f∗ ∗ df)} ,

H2 = e−4W ∗DY , (3.2)

with the covariant derivative defined as DµY = ∂µY −2αB2µ . The integrability conditions

of (3.2) reproduce (3.1) while the Bianchi identities for H1,2 provide the second order field

equations for the scalar fields X,Y . The latter are obtained from the Lagrangian

L = Rvol3 − 6 dW ∧ ∗dW − 3
2e

−4W DY ∧ ∗DY

− 18 dV ∧ ∗dV − 1
2e

−12V {dX ∧ ∗dX + 8ifdX ∧ ∗df∗ − 8if∗dX ∧ ∗df}

− 8e−6V
(

1 + 2e−6V |f |2
)

df ∧ ∗df∗ + 8e−12V
{

f2df∗ ∧ ∗df∗ + (f∗)2df ∧ ∗df
}

− 3αB2 ∧H2 + (2e−6W − 3
2α

2e−8W ) vol3 , (3.3)

which thus provides an (on-shell) equivalent description of (2.8). In this form of the action,

the vector field B1 has disappeared while B2 appears with a Chern-Simons term such that

its field equations yield the second of the duality equations (3.2). Inspection of the scalar

kinetic terms shows that the geometry of the full scalar target space is given by the Kähler

manifold SU(1, 1)/U(1) × SU(2, 1)/U(2), whose two factors are parametrized by (W,Y )

and (V, f, f∗,X), respectively. For completeness, we give an explicit construction of the

latter space in appendix B and reproduce the kinetic term of (3.3) in (B.5).

The Kähler structure of the scalar target space can be made explicit by introducing

the Kähler potential

K = K1(u, ū, f, f̄) +K2(z, z̄) ≡ − log(ℜu− 4|f |2) − 3 log(ℜz) , (3.4)

in terms of the complex coordinates φı = {u, f, z} given by

u ≡ e6V + 4 |f |2 − iX , z = e2W + iY , (3.5)

in terms of which the target space metric is given by gı̄ = ∂ı∂̄K. For later use (in

particular for the coupling to fermions), it turns out to be useful to define the complex

dreibein Eı
a according to

gı̄ = Eı
aE̄ a , (3.6)
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(with Eı̄ a = (Eı
a)∗) explicitly given as

Eı
a =







1
2e

−6V 0 0

−4e−6V f̄ 2e−3V 0

0 0
√

3
2 e

−2W






. (3.7)

It allows to express the scalar kinetic term of (3.3) as

Lkinetic = −2gı̄Dµφ
ıDµφ̄ = − 2P a

µP
µ
a , (3.8)

with

P a
µ = Eı

aDµφ
ı (3.9)

=
{

3∂µV − i
2e

−6V
(

∂µX + 8ℑ(f̄∂µf)
)

, 2e−3V ∂µf ,
√

3
(

∂µW + i
2e

−2WDµY
)

}

.

3.2 Gauging and scalar potential

In the general framework of [29], the couplings in the last line of (3.3) can be under-

stood as a deformation of the unique ungauged N = 2 theory with scalar target space

SU(1, 1)/U(1) × SU(2, 1)/U(2). In particular, the α dependent terms correspond to the

gauging of the shift symmetry Y → Y + c according to the covariant derivative introduced

after (3.2). The remaining term in the scalar potential descends from a holomorphic super-

potential which is compatible with the N = 2 structure. Identifying these deformations

from the bosonic Lagrangian then allows to reconstruct the full fermionic sector of the

theory.

Explicitly, the new couplings due to the gauging2 are parametrized in terms of the real

scalar dependent tensor T

T =
4

3
αP0P0 =

3

4
αe−4W , (3.10)

expressed in terms of the moment map P0 ≡ 3
4e

−2W of the gauged shift isometry. In

particular, its contribution to the scalar potential is given by

VT = −8T 2 + 8 gı̄ ∂ıT ∂̄T = 3
2α

2e−8W , (3.11)

in accordance with (3.3). This gauged supergravity is unique up to couplings induced by

a holomorphic superpotential W = W(u, f),3 whose contribution to the scalar potential

is given by

VW = −8 eK |W|2 + 2gı̄ eKDıWD̄W∗ . (3.12)

2In the notation of [29], this gauging is described by an embedding tensor of the form Θ00 = 2

3
α which

defines the minimal couplings DµY ≡ ∂µY + A
0
µΘ00 upon introducing the vector fields A

0
µ ≡ −3Bµ.

Furthermore, w.r.t. to the conventions of this paper, the full Lagrangian is rescaled as L → 2L.
3Note that the required invariance of the holomorphic superpotential under the gauged isometries

Y → Y + c implies that it does not depend on the complex variable z.
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With the explicit form of the Kähler metric given above, it is straightforward to verify

that the particular holomorphic superpotential

W =
1

2
(1 + u) = =

1

2
(1 + eρ + 4|f |2 − iX) , (3.13)

precisely yields the correct negative contribution VW = −2e−6W to the scalar potential.

We should stress however that there are different choices for W which give rise to the

same contribution (3.12), i.e. the underlying N = 2 structure is unique only up the choice

of W satisfying VW = −2e−6W . This is to be expected, as the global SU(2, 1) symmetry

of the scalar sector (such as the transformations (B.7)) is a symmetry of the full bosonic

Lagrangian but not of the holomorphic superpotential. The entire N = 2 fermionic sector

can finally be reconstructed in terms of T and W using the general formulas given in [29].

We note in particular, the fermionic supersymmetry variations

δǫψµ = ∇µǫ− 1
4 i
(

e−6V
(

∂µX + 8ℑ(f̄∂µf)
)

− 3e−2WDµY
)

ǫ

+ 3
4αe

−4W γµǫ+ 1
2e

−3W−3V (1 + e6V + 4|f |2 − iX) γµǫ
∗ ,

δǫλ
a = 1

2γ
µP a

µ ǫ+Aaǫ+Baǫ∗ , (3.14)

with P a
µ from (3.9) and the scalar dependent tensors Aa, Ba defined as

Aa = e−4W
{

0, 0, 1
2

√
3α
}

, (3.15)

Ba = e−3W
{

1
4e

−3V (1 − e6V + 4|f |2 − iX),−f̄ , 1
4

√
3e−3V (1 + e6V + 4|f |2 − iX)

}

.

These tensors likewise appear in the description of the Yukawa couplings of the fermionic

fields. W.r.t. [29] we have redefined the (complex) spin 1/2 fermions as λa ≡ Eı
aχı with

the dreibein from (3.7) and introduced the complex gravitino ψµ ≡ ψ1
µ + iψ2

µ . Equations

(3.14) define the Killing spinor equations of the the three-dimensional theory, which we

will employ in the following to identify various BPS solutions.

Let us finally note, that the scalar potential of the three-dimensional theory (3.3) may

be expressed in terms of a real superpotential F as follows

V = −8F 2 + 8 gı̄ ∂ıF∂̄F , (3.16)

where we choose F to be one of the eigenvalues of the gravitino mass matrix

F = −T ± eK/2|W| , (3.17)

with T and W from (3.10), (3.13). Remarkably, there is another choice for the real

superpotential

F = −3
4αe

−4W ± e−3W , (3.18)

which likewise generates the scalar potential via (3.16). Its existence may be related to

some fake supersymmetry structure of the theory.
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4 Equations of motion

In this section we will begin by deriving the equations of motion in Einstein frame from

the action (2.8), before we exhibit some solutions which are the result of reducing known

solutions in the literature. As expected, both the AdS3 vacuum and the BTZ black hole

[34] are solutions to the equations of motion. As we will later see, non-trivial rotations

mean that it is not possible to embed the charged BTZ [35] in D = 11 supergravity using

our ansatz.

The equations of motion derived from (2.8) may be expressed as

0 = d(e12V ∗H1) + 8idf ∧ df∗,
0 = d(e4W ∗H2) + 2αH2,

0 = d(e−6V ∗ df) + iH1 ∧ df,
0 = d ∗ dV + 4

3e
−6V df ∧ ∗df∗ − 1

6e
12V H1 ∧ ∗H1,

0 = d ∗ dW − 1
2e

WH2 ∧ ∗H2 − e−6W vol3 + α2e−8W vol3,

Rµν = 6∂µW∂νW + 18∂µV ∂νV + 4e−6V (∂µf∂νf
∗ + ∂µf

∗∂νf)

+ ηµν

(

3
2α

2e−8W − 2e−6W
)

+ 1
2e

12V (H1µσH
σ

1ν − 1
2ηµνH1σ1σ2

Hσ1σ2

1 )

+ 3
2e

4W (H2µσH
σ

2ν − 1
2ηµνH2σ1σ2

Hσ1σ2

2 ). (4.1)

In the next subsection, we reduce a general class of known supersymmetric solutions

from D = 11 to D = 3. These solutions also act as another rudimentary consistency check

on some of the equations of motion.

4.1 Supersymmetric solutions

In addition to the supersymmetric AdS3 vacuum, we can also check the Einstein frame

equations of motion (4.1) by following the reduction of the intersecting M5-brane geometry

of [30]. The D = 3 solution is given by

ds2 = H3r4(dudv +Kdu2) +H6r4dr2,

H = 1 + α
r , K = 1 + Q

r , W = ln(r + α), (4.2)

where u = x− t, v = 2t and apart from the metric, one has a scalar W corresponding to

the breathing mode of the S2 (note V = 0). Indeed it is straightforward to check that

(4.2) provides a solution to the Killing spinor equations (3.14) with ǫ = ir1/2(α+r)3/4

(Q+r)1/4 ǫ0 and

a real constant spinor ǫ0 = γrǫ0.

We observe that this solution in D = 3 has the same form as one of the black string

solutions of [33]. To see this, one can send r → −r in (4.2) and then with α > 0, the

asymptotic geometry at r = 0 is AdS3, whereas the metric encounters a singularity at

r = α. Explicitly, the three-dimensional curvature scalar is of the form R = 3
2α(8r −

α)/(r − α)8 .
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Here the constant α in the reduction (2.1) corresponds to the D4-charge, while Q

corresponds to the D0-charge that results when the geometry of [30] is reduced to type

IIA. Then taking a near-horizon decoupling limit similar to [43], i.e. r → 0 while Q/r is

kept constant, one recovers the usual rotating BTZ form

ds2 = −(ρ2 − ρ2
∗)

2

ρ2
dt2 +

4α6ρ2

(ρ2 − ρ2
∗)

2
dρ2 + ρ2(dx− ρ2

∗

ρ2 dt)
2, (4.3)

where we have redefined

α3r = ρ2 − ρ2
∗, ρ2

∗ = α3Q. (4.4)

It is worth noting here the location of the horizon. Indeed, ρ∗ is given in terms of the

product of three identical D4-charges α and the D0-charge Q. In the special case when

Q = 0, one recovers AdS3 in the near-horizon limit with radius ℓ = 2α3.

A sterner check for the equations of motion can be obtained by working with the large

class of D = 5 supersymmetric black rings, black holes and supertubes compactified on T 6

from D = 11 [31]. Our ansatz (2.1) means that when identifying CY3 with T 6 ≡ (T 2)3,

each T 2 has to come with the same warp factor, i.e. e2V . The ansatz we have chosen for

the reduction also confines us to direct products of AdS3 with S2 in D = 5, though we

remark that fibred solutions have appeared in [44].

In contrast to [44], we also confine ourselves to single-centred solutions and set D6-

charge p and rotation parameter ω to zero from the offset, so that the D = 5 solution

becomes a direct product of AdS3 and S2, thus enabling the two-sphere to be decoupled

to give a D = 3 solution. By rescaling correctly in going to Einstein frame one finds the

following class of solutions

ds2 = r4
[

−(dt + µdx)2 + Z3(dx2 + dr2)
]

,

H2 = −dZ−1 ∧ dt − d
[

Z−1(1
2KL+M)

]

∧ dz,
W = 1

2 ln(Zr2), (4.5)

where

M = m0 +
m1

r
, L = l0 +

l1
r
, K = k0 +

k1

r
, (4.6)

are general harmonic functions with Z and µ expressible in terms of them:

Z = K2 + L,

µ = K3 + 3
2KL+M. (4.7)

One final constraint comes from the setting the rotation parameter ω to zero:

m1 =
3

2
(k1l0 − k0l1). (4.8)

The equations of motion (4.1) may be shown to be satisfied by making use of the relation-

ship among the charges above (4.8) and again setting the D4-charge, k1 = ±α, providing

9



us with a valuable consistency check on the D = 3 Lagrangian. For α = −1 this solution

is a solution to the three-dimensional Killing spinor equations (3.14) corresponding to a

Killing spinor ǫ = rǫ0 with constant ǫ0 satisfying ǫ∗0 = −γrǫ0, γtǫ0 = iǫ0 .

Solutions constructed in this fashion are usually prone to causal pathologies, however

this solution will be free of CTCs provided the gzz component of the metric has the

correct signature. This can be guaranteed by ensuring that the following inequality holds

everywhere

Z3 − µ2 ≥ 0. (4.9)

4.2 Warped AdS3

It is known that warped AdS3 spacetimes with dynamical exponent z exist as solutions [45]

to topologically massive gravity (TMG) [46]. However, when the coupling to the Cotton

tensor in TMG is switched off, these solutions may still be supported in the presence of

a Maxwell Chern-Simons term [32]. In D = 3 the solution to the Einstein equations may

be written

ds23 = −rzdt2 ± 2βrdtdx+
ℓ2

4

dr2

r2
,

At =
2

α2
√

3z

√

rzz(z − 1), (4.10)

where the constant β drops out of the equations of motion i.e. one can always rescale x, so

β is undetermined. The dynamical exponent z is then set by the flux equations of motion

and, for this particular case z = 4. Note now that this is the same as (4.5) when β = 1

and only k1 = ±α is non-zero, so warped AdS3 is a particular solution in this class and is

supersymmetric.

Interestingly the dynamical exponent is the same as the non-relativistic solution iden-

tified in [41] by performing the consistent truncation from D = 11 on KE6. However, as

we have replaced KE6 with CY3, the final form of the uplifted solution is very different

ds211 =
1

α4
ds23 + α2ds2(S2) + ds2(CY3),

F (4) =

(

αvol(S2) +
2r

α2
dr ∧ dt

)

∧ J. (4.11)

4.3 A supersymmetric domain wall solution

The explicit form of the Killing spinor equations (3.14) and the associated real superpo-

tential (3.17) underlying the scalar potential according to (3.16) further allow to construct

explicit domain wall solutions within the three-dimensional theory. With the standard

ansatz

ds2 = e2A(r)(−dt2 + dz2) + dr2 , (4.12)

10



for the three-dimensional metric, with both vector fields set to zero, the Killing spinor

equations reduce to the differential equations

2e3V (α+ e4WW ′) = eW + e6V +W , sinh(3V ) = − 3e3WV ′ ,

A′ = 2e−3W cosh(3V ) − 3
2αe

−4W . (4.13)

This is a particular case of the standard first order equations (φi)′ = gij(φ)∂jF for a

theory with a scalar potential generated by a real superpotential F via (3.16), see e.g. [47].

Equations (4.13) can be explicitly integrated to give

eW =
3αV

sinh(3V )
, e2A =

216α3V 3

sinh4(3V )
, (4.14)

in terms of the single function V which is defined by the first order equation

V ′ = −sinh4(3V )

81α3V 3
. (4.15)

In turn, this can be implicitly expressed in terms of polylogarithmic functions.4 For

r → ∞, this solution approaches the AdS3 geometry

W → log α , V → e−rα−3

, A→ 1
2α

−3 r , (4.16)

while at r = 0 the scalar fields and the space-time curvature diverge. It is possible to show

that the equations of motion are also satisfied using the relationships above to write all

equations in terms of V .

4.4 Numerical Black Holes

As the reader may appreciate from the proceeding sections, a non-zero gauge field B2

leads to a rotating system, so henceforth we focus on solutions where this gauge field does

not appear. We will also set f = 0, but it should be noted that though the action bears

some resemblance to an Einstein-Yang-Mills action, the charged BTZ black hole is not a

solution. Indeed, one sees from (4.1) that one needs the presence of a non-constant scalar

V , so that H1 can be supported.

We next introduce the following black hole ansatz

ds2 =
1

z2

[

−e2Agdt2 +
1

g
dz2 + dϕ2

]

, (4.17)

4More precisely, V is implicitly defined by the equation

α
−3

r =
18V

2
e
6V

`

1 + 4 ln(1 − e
−6V ) sinh2(3V )

´

(1 − e6V )2
+

36V
3(1 − 3e

6V )

(1 − e6V )3

− ln(1 − e
−6V ) − Li3 e

−6V
− 6V

„

Li2 e
−6V +

1

1 − e6V

«

.
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where A, g are functions of the radial direction z only. Naturally the warp factors W,V

will also depend on z and we will take the gauge fields B1 to be purely electric

B1 = φ(z)dt. (4.18)

With this choice of ansatz the original equations of motion involving the matter content

become respectively

0 =
[

e12V −Azφ′
]′
,

0 =

[

geAV ′

z

]′
− 1

6e
12V −Az(φ′)2,

0 =

[

geAW ′

z

]′
+
eA

z3
(e−6W − α2e−8W ). (4.19)

The non-zero components of the Ricci tensor in orthonormal frame become

Rtt = e−Az2

[√
gz[eA

√
g

z
]′
]′

−√
ge−Az2[eA

√
g

z
]′,

Rzz = −e−Az2

[√
gz[eA

√
g

z
]′
]′

+ 1
2z

2
[ g

z2

]′
,

Rϕϕ =
√
gz2e−A[eA

√
g

z
]′ + 1

2

[ g

z2

]′
z3, (4.20)

meaning that the Einstein equations may then be expressed as

Rtt = −(3
2α

2e−8W − 2e−6W )

Rzz = (3
2α

2e−8W − 2e−6W ) + gz2
(

6W ′2 + 18V ′2) ,

Rϕϕ = (3
2α

2e−8W − 2e−6W ) + 1
2e

12V −2Az4(φ′)2. (4.21)

By combining Ett and Ezz one gets the additional equation

A′ = −6z
[

(W ′)2 + 3(V ′)2
]

. (4.22)

As in [14], it is possible to show all equations are satisfied if the field equations of motion

(4.19), Eϕϕ = 0 and (4.22) are satisfied. This may be done by differentiating Eϕϕ = 0

and showing that Ett = Ezz = 0 may be obtained by using the other equations of motion.

Therefore, one may ignore the equations involving second derivatives in g. We remark

that if one sets W = 0, then there is no solution to these equations, which may be verified

by manipulating the equations.

Following [14, 17], one can solve the full set of equations numerically by integrating

out from the horizon to the AdS3 boundary. In doing so, we assume there is a horizon at

12



z = z+ defined by g(z+) = 0 and consider a series solution:

A = a0 + a1(z − z+) + · · · ,
g = g1(z − z+) + g2(z − z+)2 + · · · ,
φ = φ1(z − z+) + φ2(z − z+)2 + · · · ,
W = w0 + w1(z − z+) + · · · ,
V = v0 + v1(z − z+) + · · · . (4.23)

Ensuring that the equations of motion are satisfied at the horizon leads to expressions for

the higher order terms in terms of the following set of parameters:

z+, a0, φ1, w0, v0. (4.24)

The temperature of the black hole is given by

T = −e−ab
1

4π

[

eAg′
]

z=z+
,

= ea0−ab
1

8πz+
[4e−6w0 − 3α2e−8w0 − z4

+e
12v0−2a0φ2

1], (4.25)

where we have used the subscript b to denote the value at the boundary z = 0.

From the numerics, we see that there are black hole solutions where W starts off away

from the AdS3 minimum and falls down the potential to the bottom where it oscillates

before settling, leading to an emergent conformal symmetry at the boundary z = 0.

The other breathing mode V also saturates close to the boundary as is evident from

Figure 1. Similar behaviour is also noted for A near the boundary where it also approaches

a constant. At the boundary the final form of the numeric solution is reminiscent of the

charged BTZ black hole. In other words, the asymptotic form is

φ ∼ Q ln z,

g ∼ 1

ℓ2
−Mz2 + e12vb−2ab

Q2

2
z2 ln z, (4.26)

where M is an integration constant related to the mass of the black hole.

We observe that the solution has scaling symmetries

eA → β−1eA, t→ βt, φ→ β−1φ,

z → β−1z, (t, ϕ) → β−1(t, ϕ), φ→ βφ. (4.27)

Note that the first one may be chosen so that A|z=0 = ab = 0. We will henceforth work

on the assumption that we will use this scaling symmetry to set ab = 0.

The Euclidean action IE for this hairy black hole may be determined in much the same

way to [14]. From the symmetries of the solution, the Einstein’s equation implies that the

Einstein tensor Gϕϕ ≡ Rϕϕ − 1
2gϕϕR satisfies

Gϕϕ =
1

2z2
(L −R). (4.28)
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Figure 1: The left-hand figure captures the emerging conformal symmetry asW approaches

its AdS3 value at the boundary from a set initial starting value of w0 = 0 at horizon

(AdS3 radius ℓ = 1 i.e. WAdS = −1
3 ln 2). From the right-hand figure we see clearly that

V approaches a constant at the boundary.

Then using R = −2Gµ
µ, one can write the Lorentzian action S0 as

S0 = −
∫

d3x
√−gL = 2

∫

dtdϕ

∫ z=0

z=z+

dz

[

geA

z2

]′
. (4.29)

As g(z+) = 0, the surface term at the horizon vanishes and we just get the surface term at

z = 0. The action thus diverges as z → 0 and may be regulated in the standard fashion by

incorporating a Gibbons-Hawking term and a counterterm to remove the ln z divergence

term [48, 49]

S1 =

∫

z→0
dtdϕ

√−γ
(

−K +
e12v∞

2
nµH

µν
1 B1ν

)

, (4.30)

where γ is the induced boundary metric at z = 0, nµ corresponds to the outward pointing

unit normal vector to the boundary and K = γµν∇µnν denotes the extrinsic curvature.

The presence of the second term can be motivated by looking at the variation of the Yang-

Mills term H1µνH
µν
1 at the boundary. Finally, the Euclidean action IE may be obtained

from the total finite action St ≡ S0 +S1 by analytic continuation through the redefinitions

t = −iτ , iSt = −IE.

4.5 Conductivity

Linear response theory can be used to determine the various conductivities of the dual

field theories. One proceeds [50, 14] by considering small perturbations of the form

δgtϕ = htϕ(z)e−iωt,

δB1 = b(z)e−iωtdϕ, (4.31)
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with all other fields retaining their background values. Linearising the equations of motion,

one finds two independent equations

b′′ + b′
(

12V ′ +A′ +
g′

g
+

1

z

)

+ be−2A

(

ω2

g2
− e12V z

2φ′2

g

)

= 0,

h′tϕ +
2

z
htϕ + e12V φ′b = 0. (4.32)

Remarkably the Einstein equations are first order with the second order Einstein equations

being implied by the equations of motion.

The equation for the gauge fluctuation may now be integrated numerically in the

black hole background described earlier. In proceeding, one typically introduces infalling

boundary conditions at the horizon through the ansatz

b(z) = g−iω/(ea0g1)ρ(z) = g−iω/(4πT )ρ(z). (4.33)

This takes care of oscillations at the horizon and leaves one with a differential equation to

be solved for ρ(z). As described in [50], one then proceeds to expand ρ(z) at the horizon

in a Taylor series to ensure that the equation is satisfied there, before integrating from the

horizon out to the boundary.

1 2 3
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10

12

ReHΣL

1 2 3
Ω

-14

-12

-10
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-6

-4

-2

ImHΣL

Figure 2: The left and right graphs here illustrate the results of calculating Re(σ) and

Im(σ) at temperatures of T = 0.042 (Red), T = 0.038 (Blue), T = 0.033 (Black), T =

0.028 (Green) and T = 0.022 (Orange).

In order to determine the conductivity, one simply has to note the form of the solution

near the boundary. Asymptotically, ρ is of the form ρ ∼ ρ0 + ρ1 ln z, where the complex

valued constants can easily be read off from the numerical solution. As explained in some

detail in [51] (see also [37, 36]), the Green’s function may then be defined by the ratio

G = −ρ0/ρ1. It is also worth observing that the Green’s function has an ambiguity due to

the logarithmic term and may be shifted by a constant lnC. The conductivity σ(ω) may

then be determined from

σ(ω) =
i

ω

ρ0

ρ1
. (4.34)
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Since the conductivity is calculated at the boundary and the numerical solution asymp-

totes to the charged BTZ solution there, it is not surprising to find considerable agreement

with the results of [36, 51]. Figure 2 shows the result of a calculation of the conductivity

at various temperatures.

5 Discussion

In this work motivated primarily by AdS/CMT considerations, we have exhibited one of

the first examples of a consistent reduction from D = 11 supergravity to D = 3 super-

gravity at the level of the bosonic equations of motion. The choice of internal geometry,

S2 × CY3, was inspired by the observation in [26] that the MSW geometry should be the

only example in its class, and also to some extent by the simplicity of the undeformed

wrapped M5-brane geometry. Though one may have naively expected multiple AdS3 vacua

from the offset, the reduction presented here leads to a simple scalar potential with a single

supersymmetric AdS3 vacuum.

The scalar potential proves instrumental in uncovering rich N = 2 supersymmetric

structure up to the determination of a holomorphic superpotential term. As we have

seen, once the supersymmetric structure is illuminated, the full Lagrangian may be easily

read off from the established D = 3 literature. Throughout this work, we have performed

numerous consistency checks and have made use of supersymmetric solutions reduced from

D = 11 leading to black strings, warped AdS3, among other solutions in D = 3. These

solutions have also served to check the fermionic extension by ensuring that the Killing

spinor equations are satisfied in D = 3.

In the final part of this paper, we have constructed an electrically charged hairy BTZ

solution numerically in the reduced D = 3 theory. As a first step in AdS/CMT applica-

tions, we have computed the conductivities, but the identification of this solution may be

regarded as an important milestone in examining the physics of the dual strongly coupled

CFT from the perspective of M-theory. Of particular interest in this regard will be ap-

plying the techniques of [52] to study the spectral functions of the fermions in the hairy

BTZ black hole. Note here that the fermion mass is motivated from the supersymmet-

ric Lagrangian, instead of being plucked from thin air. Any observation of characteristic

Luttinger liquid behaviour would offer support to the notion that applying AdS/CFT to

condensed matter is not so far-fetched.

In other work, it would certainly be interesting to extend this study to find consistent

truncations from eitherD = 10 orD = 11 supergravity to D = 3 with multiple AdS3 vacua

permitting interpolating solutions dual to RG flows. Such solutions have been discussed

in [53] in the context of D = 3 gauged supergravity. Ideally, such flows should preserve

some supersymmetry, as when supersymmetry is broken, doubts are raised over stability

[54]. A systematic analysis of D = 3 supersymmetric solutions of this type may proceed

along the lines of [55].
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A Details of consistent truncation

The Bianchi dF (4) = 0 is satisfied provided α and β are constants and

dH1 = −γvol(M3),

H2 = dB2, (A.1)

where B2 is a one-form potential. The flux equations of motion

d(∗F (4)) + 1
2F

(4) ∧ F (4) = 0, (A.2)

are then satisfied if

β = 0,

d(e−2U+6V ∗H1) + 8idf ∧ df∗ = 0,

d(e6V γ) = 0,

d(e2U+2V ∗H2) + 2αH2 = 0,

d(e2U ∗ df) + iH1 ∧ df = 0. (A.3)

In deriving these expressions we have used

∗Ω = iΩ, ∗Ω̄ = −iΩ̄,
Ω ∧ Ω̄ = −8ivol(CY3). (A.4)

The next step is to consider the Einstein equations

RMN = 1
12F

(4)
MPQRF

(4) PQR
N − 1

144gMNF
(4)
PQRSF

(4) PQRS. (A.5)

Using the elfbein

eµ = ēµ, eα = eU ēα, ei = eV ēi, (A.6)

where µ = 0, 12, α = 3, 4 and i = 5, · · · 10, the non-zero components of the Ricci-tensor in

orthonormal frame may be expressed as

Rµν = R̄µν − 2(∇ν∇µU + ∂µU∂νU) − 6(∇ν∇µV + ∂µV ∂νV ),

Rαβ = δαβ

[

e−2U −∇ρ∇ρU − 2∂ρU∂
ρU − 6∂ρU∂

ρV
]

,

Rij = δij [−∇ρ∇ρV − 6∂ρV ∂
ρV − 2∂ρU∂

ρV ] . (A.7)
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We may now use the above Ricci tensors in writing out the Einstein equations. The field

strength squared term may be expressed

1
4!F

(4)
PQRSF

(4) PQRS = 3α2e−4U−4V + 1
2e

−4UH1ρσH
ρσ
1 + 3

2e
−4V H2ρσH

ρσ
2

+ 16e−6V ∂ρf∂
ρf∗. (A.8)

From the directions along the sphere we see that γ = 0 for consistency, with the final

equation being

∇ρ∇ρU + 2∂ρU∂
ρU + 6∂ρU∂

ρV − e−2U + α2e−4U−4V

+ 1
6e

−4UH1ρσH
ρσ
1 − 1

4e
−4VH2ρσH

ρσ
2 − 8

3e
−6V ∂ρf∂

ρf∗ = 0. (A.9)

Then from the directions along the CY3 we find the following expression

∇ρ∇ρV + 6∂ρV ∂
ρV + 2∂ρU∂

ρV − 1
12e

−4UH1ρσH
ρσ
1 + 4

3e
−6V ∂ρf∂

ρf∗ = 0.

(A.10)

Finally, along the three-dimensional space we have the 3d Einstein equation

R̄µν = 2(∇ν∇µU + ∂µU∂νU) + 6(∇ν∇µV + ∂µV ∂νV ) − 1
2ηµνα

2e−4U−4V

+ 1
2e

−4U
(

H1µρH
ρ

1ν − 1
6ηµνH1ρσH

ρσ
1

)

+ 3
2e

−4V
(

H2µρH
ρ

2ν − 1
6ηµνH2ρσH

ρσ
2

)

+ 4e−6V
(

∂µf∂νf
∗ + ∂νf∂µf

∗ − 2
3ηµν∂ρf∂

ρf∗
)

. (A.11)

Observe that equation (A.9) and (A.10) may be repackaged as

d(e2U+6V ∗ dU) − e6V vol3 + α2e−2U+2V vol3 − 8
3e

2Udf ∧ ∗df∗

+ 1
3e

−2U+6VH1 ∧ ∗H1 − 1
2e

2U+2VH2 ∧ ∗H2 = 0, (A.12)

d(e2U+6V ∗ dV ) − 1
6e

−2U+6VH1 ∧ ∗H1 + 4
3e

2Udf ∧ ∗df∗ = 0. (A.13)

B Coset space SU(2, 1)/U(2)

In this appendix, we give an explicit construction of the scalar target space SU(2, 1)/U(2).

The group SU(2, 1) is defined as the set of matrices U satisfying Uη U † = η, with η =

diag{−1, 1, 1}. Its maximal compact subgroup is U(2) = U(1) × SU(2). A basis of

generators of the latter is given by matrices

TU(1) ≡
(

−2i

iI2

)

, TSU(2),k ≡
(

0

iσk

)

, (B.1)

with Pauli matrices σk and the 2×2 identity matrix I2 . The full algebra su(2, 1) is spanned

by the compact generators (B.1) together with the four generators

T0 ≡





0 1 0

1 0 0

0 0 0



, T+1 ≡





0 0 0

0 0 0

−i i 0



, T ′
+1 ≡





0 0 i

0 0 i

0 0 0



, T+2 ≡





i −i 0

i −i 0

0 0 0



 . (B.2)
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The subscript refers to the grading defined by the adjoint action of the noncompact gen-

erator T0. We choose to parametrize a coset representative V in triangular gauge as

V = exp(1
2XT+2) exp(2f∗T+1 + 2fT ′

+1) exp(3V T0) . (B.3)

According to the coset space structure, the left-invariant scalar current may be decomposed

into

Jµ ≡ V−1∂µV ≡ Qµ + Pµ , (B.4)

where Qµ ≡ 1
2 (Jµ − J†

µ) and Pµ ≡ 1
2(Jµ + J†

µ) live in the compact part of the algebra

spanned by (B.1), and its orthogonal complement, respectively. The target space metric

on the coset manifold SU(2, 1)/U(2) is given by

−Tr(PµPµ) = −18 ∂µV ∂µV − 1
2e

−12V ∂µX∂µX − 8e−ρ(1 + 2e−6V ff∗) ∂µf ∂µf
∗

+ 4e−12V
(

if∗∂µX∂µf + 2(f∗)2∂µf∂µf + c.c.
)

, (B.5)

which precisely reproduces the corresponding kinetic term of the Lagrangian (3.3).

The SU(2, 1) isometry group acts on the four coordinates in a non-linear way. Its action

may be made manifest in the triangular gauge (B.3) by acting on the coset representative

by left multiplication

V → GV HG , (B.6)

with an SU(2, 1) element G, and a compensating right multiplication with HG ∈ U(2)

that restores the triangular gauge. An example of such a non-trivial (Ehlers-type) trans-

formation is given by

e6V → e6V

1 + 8e6V |ω|2 + 16|ω|4(e12V +X2)
,

f → ω (e6V − iX)

1 + 4|ω|2(e6V − iX)
,

X → X

1 + 8e6V |ω|2 + 16|ω|4(e12V +X2)
, (B.7)

for complex constant ω, where for simplicity we have only given the action onto a solution

with vanishing f . By means of this transformation one may e.g. construct solutions with

non-trivial f from the solutions given in sections 4.3 and 4.4.
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