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Abstract

Applications based on Single Walled Carbon Nanotube (SWNT) are good example of the great need to

continuously develop metrology methods in the field of nanotechnology. Contact and interface properties are

key parameters that determine the efficiency of SWNT functionalized nanomaterials and nanodevices. In this

work we have taken advantage of a good control of the SWNT growth processes at an atomic force microscope

(AFM) tip apex and the use of a low noise (10−13 m/
√

Hz) AFM to investigate the mechanical behavior of a

SWNT touching a surface. By simultaneously recording static and dynamic properties of SWNT, we show

that the contact corresponds to a peeling geometry, and extract quantities such as adhesion energy per unit

length, curvature and bending rigidity of the nanotube. A complete picture of the local shape of the SWNT

and its mechanical behavior is provided.
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Introduction

Since their discovery [1], Single Walled Carbon Nanotube (SWNT) are at the origin of numerous creative works

based on the conjugation of their exceptional electronic and mechanical properties. Their high aspect ratio with

diameter in the nm range makes them perfect candidates as nano sensors. Ultimate detection at molecular level

are envisioned with nanodevices in which carbon nanotubes (CNTs) are a central part: squid aiming at spin

detection at the molecular level [2], nanoscale resonators where coupling electronic charge transport with high

frequencies CNT oscillation leads to highly sensitive mass detection [3] or using exciton properties as to detect

local variation of pH in biological environment [4]. Near field and nanoelectronic domains have motivated a

wealth of attempts based on CNT as a central component [5, 6], while applications as original as fabrication

of nanocomposite exhibiting thermal memory effect [7] exploit its low density and high strength. Because

the contact between the SWNT and the substrate or the surrounding medium always happens, the interface

properties determine most of the nanodevice efficiency. For instance, contact between CNTs and electrodes

might exhibit unwanted contact mechanical fluctuation leading to additional energy dissipation, while profile of

polymer density surrounding CNT makes the interface properties a key parameter. Therefore, the conception

and the fabrication of nanosystems need a companion development of metrology and methodology, a crucial

step to develop efficient tools in nanotechnology.

In this work, we present experimental results from an original study of the SWNT mechanical behavior.

Numerous works have been focused on mechanical properties of CNT [8, 9, 10, 11, 12, 13, 14, 15]. However,

accessing quantitative information such as SWNT adhesion energy and mechanical properties of SWNT when

brought in contact with a substrate is still a challenging experiment. In all existing experiments for example,

measuring the adhesion energy per unit length of the CNT is either done in a very specific geometry (e.g.

nanotube-nanotube interaction) [15, 16, 17, 18, 19] or using uncontrolled assumptions (e.g. CNT length in

interaction) [9, 12, 13, 14], leading to large incertitudes. In the present work, we take advantage of a good

control of the SWNT growth processes at an Atomic Force Microscope (AFM) tip apex [20] and the use of

a high resolution AFM [21, 22] to extract this information. The low level of noise (10−13m/
√
Hz) affords

simultaneous recording of static and dynamic measurements, i.e. force curves and thermal noise study, then

giving a complete and precise picture of the SWNT mechanical behavior when the CNT partially touches a

surface.
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Experiments

CNT Growth at the tip apex

The growth of CNT at the tip apex uses the Hot Filament assisted Chemical Vapor Deposition (HFCVD)

method [20]. Several parameters are of importance to control SWNT growth, in particular it has been shown

that cobalt catalyst thickness is a critical parameter. Cobalt layer thickness superior to 9 nm leads to the growth

of too many nanotubes at the tip apex, while for too thin one (< 4 nm), the yield of SWNT growth at the apex

of the Si tip becomes negligible. With an optimal catalyst thickness of the order of (5 − 8) nm, the yield of

production of a unique SWNT bundle at the apex of a commercial Si (similar to fig. 1) tip is of about 30%.

HRTEM observations demonstrate the formation of predominantly SWNT and double walled CNT, with

diameters mostly found to be between (1.2− 2.1) nm± 0.3 nm [23]. Raman spectroscopy studies are also strong

indications of the excellent crystalline property and purity of the grown CNT [24]. Therefore, HFCVD technique

appears to be powerful to grow highly crystalline and pure SWNT at the apex on Si tips by taking advantage

of the catalytic properties of a thin cobalt layer. A scanning electron micrograph of the nanotube used in the

experiment described in this paper is presented in fig. 1. It is about 2µm long, and well aligned with the tip.

Peeling experiments

In the experiment, we press the CNT against a flat surface of graphite or mica, and record the deflexion d of the

AFM cantilever as a function of the sample vertical position Z. The translation of the substrate is performed

with a piezo translation platform operated in closed loop (PI P-527.3), featuring an accuracy of 0.3 nm rms. The

measurement of the deflexion d is performed with a home made interferometric deflection sensor [21, 25, 22],

inspired by the original design of Schonenberger [26] with a quadrature phase detection technique [27]: the

interferences between the reference laser beam reflecting on the base of the cantilever and the sensing laser

beam on the free end of the cantilever (see figure 1) directly gives a measurement of d, with very high accuracy.

The intrinsic background noise of our detector is only 10−13 m/
√
Hz for the cantilevers used in this experiment

(see inset in figure 2). Beyond this very low noise, one advantage of the technique is that it offers a calibrated

measurement of the deflection, without conversion factor from Volt to meter as in the standard optical lever

technique common in AFM. Z and d being both calibrated, we can therefore compute at any time the CNT

compression z = Z−d cos(θ0), and set the origin of z at the last contact between the nanotube and the surface.

In this formula, cos(θ0) accounts for the θ0 = 15◦ inclination of the AFM cantilever with the substrate.

We calibrate the spring constant k of the cantilever with a thermal noise measurement far from the sample [25,

28]: the thermal excitation operates like a random force (white noise) on the cantilever, and we measure the

resulting power spectrum density (PSD) of deflexion fluctuation. As illustrated by the inset of figure 2, the

PSD of the first resonance of the cantilever is well described by a simple harmonic oscillator model. From this
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fit, we determine the dynamic spring constant k1 of the first mode of the cantilever: k1 = (84 ± 5).10−3N/m.

The static stiffness k is deduced from the dynamic one k1 with a small correction coefficient computed for an

Euler Bernoulli description of the cantilever [28]: k = 0.97k1 = (81 ± 5).10−3N/m. In quasi-static operation,

the vertical force acting on the nanotube is computed by F = kd/ cos(θ0).

All signal are acquired at 200kHz with high resolution acquisition cards (NI-4462) to determine the force com-

pression curves F vs z when cycling the CNT against the substrate at low ramping speed (typically 500 nm/s).

Due to the finite stiffness of the cantilever, a mechanical instability occurring with attractive forces prevents

continuous operation in equilibrium, and part of the force compression curves F (z) cannot be accessed during

the approach-retraction cycle. To exclude data that do not correspond to quasi-static operation of the cantilever,

we discard any point presenting a deflexion speed dd/dt greater than 4 standard deviations of its equilibrium

fluctuations.

If the ramp is sufficiently slow, we stay long enough around any compression z to measure a spectrum of

thermal noise driven fluctuations of deflexion. The force acting on the AFM tip is no longer due to the deflected

cantilever alone, since the nanotube touching the surface has to be considered as well. The mechanical oscillator

(cantilever first mode) experience an effective stiffness k1 + kCNT, shifting its resonance frequency from f0 to

f0 + ∆f , as illustrated in the inset of figure 2. In first approximation, the dynamic stiffness of the cantilever

(around the resonance frequency of the oscillator) can be computed by [29]:

kCNT = k1

[

(

1 +
∆f

f0

)2

− 1

]

(1)

We perform a time-frequency analysis of the deflexion signal, to access at each time to the PSD of the thermal

noise driven deflexion. As long as the quasi-static approximation is valid and the resonance has a high enough

quality factor, the maximum of the spectrum directly gives ∆f , so we can use equation 1 to estimate kCNT.

Figure 2 present a spectrogram of the deflexion signal during an approach-retract cycle. Each spectrum has

been computed in a 5ms time window, corresponding to a 2.5 nm translation of the sample. The thermal noise

excitation is clearly strong enough to determine the resonance frequency shift, and thus kCNT. As kCNT is

inferred in the 10 kHz frequency range, it measures the dynamic stiffness of the nanotube/substrate system.

Force-compression curves F (z) and dynamic stiffness kCNT(z) measured on graphite and mica surfaces are

reported in figure 3 and 4 respectively. Our measurement device is fully calibrated for all observables, these

are therefore quantitative measurements. An hysteresis between approach and retraction can be noticed, with

anyway a perfect overlap of both force-compression profiles in some part of the curves. The interaction is

everywhere attractive (F < 0) or marginally repulsive, hinting at adhesion to be the most pertinent process

to consider. Except for the two pronounced negative peaks during retraction, the force mainly presents two

plateaux, one close to zero (principally during approach), the other around −1 nN for graphite and −0.4nN

4



for mica (principally during retraction). The very same characteristics can be noted on the stiffness curves,

with diverging values of kCNT connected to force accidents, and plateaux around zero and 0.4N/m for graphite,

0.1N/m for mica. As illustrated in figure 5, this behavior is very robust and the measurement is reproducible for

different landing position of the substrate, ramping speeds (from 500nm/s to 5µm/s), surrounding atmosphere

(air or dry nitrogen) and for the two surfaces of graphite and mica. Values of the force and stiffness plateau are

about half and one third on mica compare to that on graphite.

Discussion

To interpret those observations, let us model the nanotube by an elastic line, incompressible along its axis [9, 30].

The shape of the force-compression curves, with two similar patterns (force plateaux, jumps and divergences)

occurring reproducibly at about 300 nm distance for that specific nanotube, suggests that it is not mechanically

integer on its whole 2µm length. On other nanotubes (data not presented), similar reproducible patterns can be

observed, with distances from few tens of nanometers up to 400nm. Stick-slip phenomenon can be discarded as

the observed behavior is independent on ramping speed. A sound hypothesis is that the nanotube is composed

of several ideal segments linked by defects presenting higher flexibility (kink like defects for example). The

equilibrium shape of each segment can thus be described by the Elastica [30]:

EI
d2θ

ds2
= EIθ′′ = F sin θ (2)

where s is the arc length along the line, θ(s) the angle between the local slope and the vertical direction (normal

to the sample), E and I are the Young’s modulus and quadratic moment of the CNT, and F the vertical

force. We suppose that the nanotube segments can freely slide horizontally (either on the substrate or at their

suspension point), so that we will not consider any horizontal forces.

The interaction between the SWNT and the substrate is due to short range Van der Waals potential, it thus

rapidly vanishes when the nanotube is not in immediate proximity (a few nanotube diameter at most) with the

surface [30]. We will therefore model this attractive interaction by a simple energy of adhesion per unit length

Ea. The boundary condition on the substrate can be either a torque free condition (θ′ = 0), corresponding

to only the very end of the segment being in contact with the surface (point contact state), or an adsorption

condition, when a non zero length of the nanotube is in contact with the substrate (adsorbed state). In this

case, the continuity of the slope of the elastic line thus implies θ = π/2 for the last point of the free standing

part of the nanotube. As soon as part of the nanotube is adsorbed, minimizing the energy of the system will

tend to maximize the absorbed length. However, this process increases the bending of the free standing part of

the nanotube and its the associated curvature energy. The local shape of the CNT is the result of the balance
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between adhesion and bending, leading the radius of curvature at the contact point to be [31, 32]

1

θ′
= Ra =

√

EI

2Ea

(3)

If the free standing part of the nanotube has a length large compared to Ra, the local shape of the SWNT does

not change much when it is being peeled from the substrate. The vertical displacement δz needed to peel a small

length δl is in first approximation δz ≃ δl. As we are pulling with a force F , the work produced is Fδz while

the energy released is Eaδl, leading to F ≃ Ea: peeling the nanotube results in a flat force-compression curve.

This is indeed what is observed in our experiments, the value of the plateaux giving direct access to the value

of the energy of adhesion per unit length: EHOPG
a ≃ 0.98 nJ/m for graphite substrate, and Emica

a ≃ 0.42nJ/m

for mica (see table 1 for details). These values are in good agreement with the few results available in the

literature [9, 15, 16, 17, 18, 19, 33, 34], though our error bars are much smaller.

In order to close the description of the nanotube as an elastic line, let us briefly discuss the boundary

condition at the suspension point. When the nanotube is adsorbed, the torque applied at this point is small in

the hypothesis of a high flexibility of this defect linking the segment under consideration to the upper part of

the nanotube. We can thus use a torque free condition (θ′ = 0) in this case. However, when the nanotube is

not adsorbed, this boundary condition is not reasonable any more, since it would lead to a unrealistic straight

shape for the considered segment. In this case, we will simply use a clamped hypothesis, with θ ∼ θ0 (where

θ0 = 15◦ is the common inclination of the AFM cantilever with the substrate).

We present in figure 6 the force-compression curves numerically simulated for the model of an elastic line

with a ratio Ra/L = 0.2 where L is the nanotube length (see Appendix for details). During approach, the

nanotube will first adopt a weakly bended shape, resulting in a small repulsive force. As the compression is

increased, this state turns metastable, but may remain till the end of the nanotube gets tangent to the substrate.

At this point, this branch of solution stops existing and part of the nanotube will be absorbed on the surface,

on a force plateau close to the value of Ea. As the suspension point is brought closer to the surface, the force

exhibit a divergence towards −∞: let Lf be the length of the free standing part of the nanotube, the distance

between the surface and suspension point is of order L2
f/2Ra, so equalizing the work done by the force F and

the variation in adsorption energy leads to F ∼ −2EaRa/Lf , diverging when Lf tends to 0.

During retraction, the adsorbed shape will remains stable or metastable as long as the absorbed length is

non-zero, the force presenting the peeling plateau expected when the free standing length is larger than Ra.

When the absorbed state disappear, the force will jump close to 0 as the nanotube recover a weakly bended

shape. The adhesion of the end point or next segment creates however a strong coupling to the surface. Further

retraction will eventually lead to a fully extended nanotube (almost perpendicular to the surface), corresponding

to very high negative forces. The connection with the substrate will finally break. The phenomenology expected
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from this model is very close to the experimental observations, as shown by the similarity between figures 6 and

3 or 4.

Flat force-compression curves should lead to zero stiffness, since dF/dz = 0. However, it is clear on figures

3 and 4 that kCNT does not vanish when the force presents a plateau. This dynamic stiffness is measured in

the ( 10− 50) kHz range through thermal noise fluctuations. The discrepancy between kCNT and dF/dz can

be explained by the simple assumption that adhesion is a slow process: in such a case, high frequency thermal

fluctuations will only probe the response of the free standing part of the nanotube, the adsorbed length acting

like a rigid clamping condition at fast time scales. The SWNT behaves as a nanomachine of finite stiffness

linked to its local shape and its characteristic length Ra. In figure 6, we plot the dynamic stiffness computed

under this hypothesis for the adsorbed elastic line. Just as for experimental data, it present a flat profile in

correspondence to the static peeling force plateau. The value of this stiffness kpeelingCNT can be compared to Ea/Ra,

the natural scale of the problem for the spring constant: we get from our model

kpeelingCNT ≃ 2
Ea

Ra

=
EI

R3
a

(4)

Using mean value of the force and stiffness plateaux of figures 3 and 4, and equation 4, we estimate the radius

of curvature at the adhesion point for both substrates: RHOPG
a = 59nm and Rmica

a = 72nm (see table 1 for

details).

The distance La between the last adhesion point and the fully extended nanotube can also be used to

estimate Ra: we read on figure 6 La = 0.85Ra for a ratio Ra/L = 0.2. La corresponds to the length stored

in the curved shape and involved in the peeling process, that is restored as the peeling end up. In fact, as the

last adhesion point is a metastable state (corresponding to a vanishing adsorbed length), the estimation we get

through this observation gives an upper bound to Ra. This leads to RHOPG
a . 90nm and Rmica

a . 115nm,

values that are coherent with the estimation through the dynamic stiffness.

From the definition ofRa (equation 3), its estimation together with the value ofEa can be used to characterize

the mechanical properties of the nanotube as we can compute the bending rigidity EI. This quantity should

be independent of the substrate, and we find indeed a reasonable agreement (within 40%, see table 1) between

the two measurements, with EI ∼ 6× 10−24 Jm. The bending rigidity is a characteristic mechanical property

of the nanotube, linking its diameter DCNT to its Young’s modulus [35]: EI = πED3
CNTtCNT/8, with tCNT

the thickness of the SWNT wall. Assuming E = 1012Pa and tCNT = 0.34nm [11], we can compute a diameter

DCNT ∼ 3.5 nm for the nanotube segment probed in this experiment. This size is close to the expected diameter

for our nanotubes.
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Conclusion

As a conclusion let us first summarize the main points we have developed in this article: we perform a series

of experiments where a SWNT is pushed almost perpendicularly against a substrate of graphite or mica. We

measure the quasi-static force as a function of the compression, but we can also access the dynamic stiffness

using a analysis of thermal noise during this process. The most striking feature of these two observables is

a plateau curve for a large range of compression, the values of which are substrate dependent. We use the

Elastica to describe the shape of the nanotube, and a simple energy of adhesion per unit length Ea to describe

the interaction with the substrate. A natural length Ra is defined, corresponding to the radius of curvature at

the adsorption point when a non zero length of the nanotube is adsorbed on the substrate. Ra results from

an local equilibrium between curvature and adsorption. Comparison of experiment to a numerical integration

of the problem demonstrate that the behavior to the nanotube is well described with these simple ingredients.

The analysis of the experimental data naturally leads to the every quantity of interest in the problem (see table

1): the force plateau is a direct measurement of the energy of adhesion per unit length Ea for each substrate,

and we easily determine Ra from the dynamic stiffness plateau. Mechanical properties of the nanotube itself

(its bending rigidity EI) can be extracted from those values, and prove to be independent of the substrate.

This work provides quantitative values on the adhesion energy between a SWNT and a substrate. The key

point for the method to work is a weak rigidity with respect to adsorption: the radius of curvature at the

adsorption point should be small compared to the length of the nanotube. Further investigation should as well

give numbers on gold or platinum substrate or any metallic surfaces. Therefore, the present experimental setup

should help to design the most appropriate contact electrode for SWNT based nanodevices. Another issue we

can address is the access to quantitative information on interface properties between polymer materials and

carbon nanotubes. This application deals with the important field of designing composite polymer materials

reinforced with CNT [36, 37, 38].

In adsorbed configuration, the SWNT acquires an equilibrium curvature shape with a bending elastic energy

balancing the adhesion energy. A promising development is to further exploit this configuration as a highly

sensitive mechanical nanomachine. Both the flat pulling force (in the nN range) and the spring constant (in

the 10−2N/m range) of this nanomachine are directly related to the energy of adhesion. Therefore, any change

of the adhesion due to molecule surfactant or other perturbation, for instance local variation of pH in liquid

environment, can be monitored with a great precision of 2 independent variables. Periodic perturbations can as

well be detected. In particular if there are any characteristic frequencies governing the contact length fluctuation,

for the frequencies of the perturbation that fall in that range a stochastic resonant process [39] can be called to

amplify the detection sensitivity.
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Appendix : numerical simulation

The equilibrium shape of the elastic line used to describe the nanotube is a solution of the Elastica (equation 2),

which usually doesn’t have simple analytic solutions. We use Matlab to solve this ordinary differential equation

using boundary conditions previously described:

• unabsorbed state: clamped extremity at the suspension point (θ(s = 0) = θ0 = 15◦) and torque free

condition at nanotube end (θ′(s = L) = 0).

• absorbed state: torque free condition at the origin (θ′(s = 0) = 0) and clamped extremity at the contact

point with the substrate (θ(s = Lf ) = π/2, where Lf is the length of the free standing part of the

nanotube above the surface).

The natural control parameter when solving the Elastica is the external force F , whereas the experimental control

parameter is the nanotube compression z = L −
∫ Lf

0
cos(θ)ds. This integral condition is not easy to handle

directly, so we perform a shoot and adjust strategy to find for any z the corresponding force F . An additional

step is required in the adsorbed state as the length of nanotube in contact is also a free parameter. We adjust

this variable by a minimization of the total energy of the system Ec − (L−Lf)Ea, where Ec = EI/2
∫ Lf

0
θ′

2
ds

is the curvature energy of the free standing part, and (L−Lf )Ea the energy of the adsorbed part of the CNT.

When both states can exist for a given z, we compare their total energies to know which of the two is metastable.
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Aimé, and Rodolphe Boisgard. Applied Scanning Probe Methods VIII, chapter Carbon Nanotubes as SPM

Tips: Mechanical Properties of Nanotube Tips and Imaging, pages 137–181. Nano Science and Technolgy.

Springer-Verlag Berlin Heidelberg, 2008.

10



[11] Andras Kis and Alex Zettl. Nanomechanics of carbon nanotubes. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 366(1870):1591–1611, 2008.

[12] Makoto Ishikawa, Ryuichi Harada, Naruo Sasaki, and Kouji Miura. Visualization of nanoscale peeling of

carbon nanotube on graphite. Applied Physics Letters, 93(8):083122, 2008.

[13] Makoto Ishikawa, Ryuichi Harada, Naruo Sasaki, and Kouji Miura. Adhesion and peeling forces of carbon

nanotubes on a substrate. Phys. Rev. B, 80(19):193406, 2009.

[14] Mark C. Strus, Camilo I. Cano, R. Byron Pipes, Cattien V. Nguyen, and Arvind Raman. Interfacial

energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force

microscope. Composites Science and Technology, 69(10):1580 – 1586, 2009.

[15] Changhong Ke, Meng Zheng, Guangwen Zhou, Weili Cui, Nicola Pugno, and Ronald N. Miles. Mechanical

peeling of free-standing single-walled carbon-nanotube bundles. Small, 6(3):438–445, 2010.

[16] Lorin X. Benedict, Nasreen G. Chopra, Marvin L. Cohen, A. Zettl, Steven G. Louie, and Vincent H.

Crespi. Microscopic determination of the interlayer binding energy in graphite. Chemical Physics Letters,

286(5-6):490 – 496, 1998.

[17] B Chen, M Gao, JM Zuo, S Qu, B Liu, and Y Huang. Binding energy of parallel carbon nanotubes. Applied

Physics Letters, 83(17):3570–3571, 2003.

[18] Tobias Hertel, Robert E. Walkup, and Phaedon Avouris. Deformation of carbon nanotubes by surface van

der waals forces. Phys. Rev. B, 58(20):13870–13873, Nov 1998.

[19] A. Kis, K. Jensen, S. Aloni, W. Mickelson, and A. Zettl. Interlayer forces and ultralow sliding friction in

multiwalled carbon nanotubes. Physical Review Letters, 97(2):025501, 2006.

[20] L. Marty, A. Iaia, M. Faucher, V. Bouchiat, C. Naud, M. Chaumont, T. Fournier, and A.M. Bonnot.

Self-assembled single wall carbon nanotube field effect transistors and afm tips prepared by hot filament

assisted cvd. Thin Solid Films, 501(1-2):299 – 302, 2006.

[21] P. Paolino and L. Bellon. Frequency dependence of viscous and viscoelastic dissipation in coated micro-

cantilevers from noise measurement. Nanotechnology, 20(40):405705, 2009.

[22] Ludovic Bellon. Exploring nano-mechanics through thermal fluctuations. HDR, École Normale Supérieure
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Substrate Ea/(nJ/m) kpeelingCNT /(N/m) Ra/(nm) La/(nm) EI/(10−24 Jm) DCNT/(nm)
HOPG 0.98± 0.07 0.036± 0.007 59± 10 85± 15 7.1± 2.5 3.7± 0.4
mica 0.42± 0.04 0.013± 0.003 72± 15 115± 15 4.5± 2.0 3.2± 0.5

Table 1: Measured values for the adhesion energy per unit length Ea, dynamic spring constant plateau kpeelingCNT ,

radius of curvature at adhesion point Ra, stored length in absorbed shape La, bending modulus of the nanotube

EI and estimated nanotube diameter DCNT for two different substrates. Data correspond to mean values

and standard deviations on the plateau of force and stiffness for compression z in the (80 − 220) nm range for

graphite, and (120− 280) nm range for mica, except La which is determined as indicated in figure 6 using the

80 experiments displayed in figure 5.
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1µm

L

d cos θ0

L− z

Z

θ0

Ra

Figure 1: Carbon nanotube tip. The SWNT is grown directly on the tip of an AFM cantilever, as shown on

scanning electron micrograph. The length of the nanotube under study is L ∼ 2µm. In the experiment, it

is pressed against a substrate of graphite or mica, and the deflexion d of the cantilever is measured with a

differential interferometer. The optical path difference between the sensing beam, reflecting on the cantilever

above the tip, and the reference beam on its base, is twice the deflexion d. The nanotube compression z is

inferred from the calibrated measurements of d and Z (sample vertical position), taking into account the common

θ0 = 15◦ angle between the force sensor and the sample. In the adsorbed state, balance between curvature and

adsorption sets the radius of curvature Ra at the last point of the free standing part of the nanotube.

15



P
S
D

S
d
(p
m
/
√

H
z)

Frequency f (kHz)

D
efl

ex
io
n
d
(n
m
)

Time t (s)

p
o
si
ti
o
n
z s

(n
m
)

Time t (s)

1 2 5 10 20 50

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0.1

1

10

−60

−40

−20

0

−500

0

500

P
S
D

S
d
(p
m
/
√

H
z)

F
re
q
u
en

cy
f
(k
H
z)

Time t (s)

0 1 2 3 4 5 6
0.1

1

10

0

10

20

30

40

50

Figure 2: Time frequency analysis of the deflection. Two top graphics present the time trace of the substrate

position Z and cantilever deflexion d during an approach-retract cycle, corresponding to the force-compression

curve of figure 3. In the inset, a power spectrum density (PSD) of the deflexion signal is shown before (yellow)

and during (green) contact: thermal noise excites the first resonance of the mechanical oscillator composed

by the AFM cantilever and the CNT connecting the surface and the AFM tip. Before contact, the fit of the

PSD with a simple harmonic oscillator model (dashed line) leads to the cantilever stiffness k. The dynamic

stiffness kCNT of the nanotube in contact can be computed from the observed frequency shift of the resonance.

We generalize this technique with a time frequency analysis: every 5ms, we compute a PSD of the deflexion

and plot the result in the color coded spectrogram of the bottom graphic. We extract from this plot the time

evolution of the resonance frequency, and thus of the dynamic stiffness.
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Figure 3: Force F and dynamic stiffness kCNT of a nanotube as a function of its compression on a graphite

substrate. A strong hysteresis, due to adhesion, can be noted between approach (blue) and retraction (red). Well

defined plateaux of force (around 0.98 nN) and stiffness (around 0.036N/m) allow one to estimate the energy of

adhesion of the CNT on graphite (EHOPG
a = 0.98nJ/m), as well as the nanotube mechanical properties. The

jumps and steep peaks of the curves are signature of transitions between point contact and adhesion shapes of

various portions of the nanotube, as suggested by the scenario of numbered sketches. Off scale data for kCNT

climb up to 1N/m.

17



Retraction

Approach

S
ti
ff
n
es
s
k
C
N
T
(N

/
m
)

CNT compression zc (nm)

F
o
rc
e
F

(n
N
)

CNT compression zc (nm)

−100 0 100 200 300 400 500

−100 0 100 200 300 400 500

0

0.02

0.04

0.06

0.08

0.1

−2

−1.5

−1

−0.5

0

Figure 4: Force F and dynamic stiffness kCNT of a nanotube as a function of its compression on a mica substrate.

The curve is very similar to that of figure 3 with a graphite surface, except for the vertical scale: the energy of

adhesion is estimated at Emica
a = 0.42nJ/m, about half of that with graphite. Similarly, the dynamic stiffness

of a nanotube adsorbed on mica is one third of that on graphite: kpeelingCNT = 0.013N/m.
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Figure 5: Comparison of force-compression curves for graphite and mica: 40 independent measurements are plot-

ted for each substrate, half with a ramping speed Ż = 0.5µm/s and half with Ż = 5µm/s. The reproducibility

of force plateaux is excellent, and characteristic of the nature of the sample.
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Figure 6: Simulation of CNT compression for L = 5Ra. The nanotube is modeled as an elastic line incompress-

ible along its axis, and different boundary conditions are considered whether it is adsorbed (green curves) or

not (purple curves). Fundamental and metastable states are respectively drawn as thick and thin lines. The

shape of the nanotube for various compression is plotted in the top graphic, while two bottom graphics present

the vertical force F and dynamic stiffness kCNT as a function of compression z. During an approach-retraction

cycle, the nanotube will first switch from its straight shape (black) to a weakly bended state (purple), which

is (meta)stable till the CNT is tangent to the substrate. The nanotube will then adopt an adsorbed state

(green), presenting force and dynamic stiffness plateau except for the highest compressions. Upon retraction,

the nanotube can remain in this state as long as the adsorbed length (horizontal segment between ticks on top

graphic) is not zero. It will then jump back to the weakly bended state, which will eventually correspond to a

fully extended nanotube, presenting a diverging force before overcoming the adhesion energy of the CNT free

end with the substrate. The arc length La stored in the curved shape of the adsorbed nanotube and released

when this state disappear can directly be read on the force-compression curve, and provides an estimation for

Ra: La = 0.85Ra.
20


