
1

Performing Arithmetic Operations on
Round-to-Nearest Representations

Peter Kornerup, Member, IEEE Jean-Michel Muller, Senior Member, IEEE Adrien Panhaleux

!

Abstract—During any composite computation there is a constant
need for rounding intermediate results before they can participate in
further processing. Recently a class of number representations de-
noted RN-Codings were introduced, allowing an un-biased rounding-
to-nearest to take place by a simple truncation, with the property
that problems with double-roundings are avoided. In this paper we
first investigate a particular encoding of the binary representation.
This encoding is generalized to any radix and digit set; however
radix complement representations for even values of the radix turn
out to be particularly feasible. The encoding is essentially an ordinary
radix complement representation with an appended round-bit, but
still allowing rounding to nearest by truncation and thus avoiding
problems with double-roundings. Conversions from radix comple-
ment to these round-to-nearest representations can be performed
in constant time, whereas conversion the other way in general takes
at least logarithmic time. Not only is rounding-to-nearest a constant
time operation, but so is also sign inversion, both of which are at best
log-time operations on ordinary 2’s complement representations.
Addition and multiplication on such fixed-point representations are
first analyzed and defined in such a way that rounding information
can be carried along in a meaningful way, at minimal cost. The
analysis is carried through for a compact (canonical) encoding using
2’s complement representation, supplied with a round-bit. Based on
the fixed-point encoding it is shown possible to define floating point
representations, and a sketch of the implementation of an FPU is
presented.

Index Terms—Signed-digit, round-to-nearest, constant-time round-
ing and sign-inversion, floating-point representation, double-
rounding.

1 Introduction
In a recent paper [1] a class of number representations
denoted RN-Codings were introduced, the “RN” stand-
ing for “round to nearest”, as these radix-β, signed-
digit representations have the property that truncation
yields rounding to the nearest representable value.

PeterKornerup is with University of Southern Denmark,Odense,
Denmark, E-mail: kornerup@imada.sdu.dk; Jean-Michel
Muller is with CNRS-LIP-Arénaire, Lyon, France, E-mail:
Jean-Michel.Muller@ens-lyon.fr; Adrien Panhaleux is with
École Normale Supérieure de Lyon, Lyon, France E-mail:
Adrien.Panhaleux@ens-lyon.fr
Manuscript received October 16, 2009, revised February 12, 2010

They are based on a generalization of the observation
that certain radix representations are known to posses
this property, e.g., the balanced ternary (β = 3) system
over the digit set {−1, 0, 1}. Another such represen-
tation is obtained by performing the original Booth-
recoding [2] on a 2’s complement number into the digit
set {−1, 0, 1}, where it is well-known that the non-
zero digits of the recoded number alternate in sign.
To distinguish between situations where we are not
concerned with the actual encoding of a value, we shall
here use the notation RN-representation.

We shall in Section II (extracted from [1]) cite some
of the definitions and properties of the general RN-
Codings/representations. However, we will in particular
explore the binary representation, e.g., as obtained
by the Booth recoding; the rounding by truncation
property, including the feature that the effect of one
rounding followed by another rounding yields the same
result, as would be obtained by a single rounding to
the same precision as the last.

Section III analyzes conversions between RN-
representations and 2’s complement representations.
Conversion from the latter to the former is per-
formed by the Booth algorithm, yielding a signed-
digit/borrow-save representation in a straightforward
encoding, which for an n-digit word requires 2n bits. It
is then realized that n+ 1 bits are sufficient, providing
a simpler alternative encoding consisting of the bits
of the truncated 2’s complement encoding, with a
round-bit appended, termed the canonical encoding.
Despite being based on a 2’s complement encoding, it
is observed that sign-inversion (negation) is a constant
time operation on this canonical encoding. Conversion
the other way, from RN-representation in this encoding
into 2’s complement representation (essentially adding
in the round-bit) is realizable by a parallel prefix struc-
ture. Section IV generalizes the canonical representa-
tion to other radices and digit sets, showing that for
even values of the radix the encodings employing radix-
complement representations are particularly feasible.

TC-2009-10-0522, copyright IEEE

Digital Object Indentifier 10.1109/TC.2010.134 0018-9340/10/$26.00 © 2010 IEEE

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

Section V then analyzes possible implementations
of addition and multiplication on fixed-point RN-
represented numbers. [3] discussed implementations of
these basic operations based on the signed-digit rep-
resentation of RN-coded numbers, whereas we here
exploit the canonical encoding, which seems to be
more convenient. Since it turns that there are two
possible encodings of the result of an arithmetic op-
eration, interpretations of the encodings as intervals
may be used to uniquely define sums and products in
a consistent way. Section VI sketches how a floating
point RN-representation may be defined and the basic
arithmetic operations of an FPU may be realized. Then
Section VII contains examples on some composite com-
putations where fast and optimal roundings are useful,
and may come for free when RN-representation in the
canonical encoding is employed. Finally Section VIII
concludes the paper.

2 Definitions and Basic Properties (cited
from [1])

Definition 1 (RN-representations): Let β be an in-
teger greater than or equal to 2. The digit sequence
D = dndn−1dn−2 · · · (with −β + 1 ≤ di ≤ β − 1) is an
RN-representation in radix β of x iff

1) x =
∑n
i=−∞ diβ

i (that is D is a radix-β represen-
tation of x);

2) for any j ≤ n,
∣
∣
∣
∣
∣

j−1
∑

i=−∞

diβ
i

∣
∣
∣
∣
∣
≤

1

2
βj ,

that is, if the digit sequence is truncated to the
right at any position j, the remaining sequence is
always the number (or one of the two members in
case of a tie) of the form dndn−1dn−2dn−3 . . . dj
that is closest to x.

Hence, truncating the RN-representation of a number
at any position is equivalent to rounding it to the
nearest.

Although it is possible to deal with infinite rep-
resentations, we shall first restrict our discussions to
finite representations. The following observations on
such RN-representations for general β ≥ 2 are then
easily found:

Theorem 2 (Finite RN-representations):

• if β ≥ 3 is odd, then D = dmdm−1 · · · d! is an
RN-representation iff

∀i,
−β + 1

2
≤ di ≤

β − 1

2
;

• if β ≥ 2 is even then D = dmdm−1 · · · d! is an
RN-representation iff

1) all digits have absolute value less than or
equal to β

2
;

2) if |di| =
β
2

, then the first non-zero digit that
follows on the right has the opposite sign,
that is, the largest j < i such that dj %= 0
satisfies di × dj < 0.

Observe that for odd β the system is non-redundant,
whereas for β even the system is redundant, in the sense
that some non-zero numbers have two representations.
In particular note that for radix 2 the digit set is
{−1, 0, 1}, known by the names of “binary signed-digit”
or “borrow-save”, but here restricted such that the non-
zero digits have alternating signs.

Theorem 3 (Uniqueness of finite representations):

• if β is odd, then a finite RN-representation of x is
unique;

• if β is even, then some numbers may have two
finite representations. In that case, one has its least
significant nonzero digit equal to−β

2
, the other one

has its least significant nonzero digit equal to +β
2

.

Proof: If β is odd, the result is an immediate
consequence of the fact that the digit set is non-
redundant. If β is even, then consider two different
RN-representations representing the same value x, and
consider the largest position j (that is, of weight βj)
such that these RN-representations differ, when trun-
cated to the right of position j. Let xa and xb be the
values represented by these digit strings. Obviously,
xa − xb ∈ {−βj , 0,βj}. Now xa = xb would contradict
the way that j was chosen. Without loss of generality,
then assume xb = xa+βj . This implies x = xa+βj/2 =
xb−βj/2, since the maximal absolute value of a digit is
β/2. Hence, the remaining digit strings (i.e., the parts
that were truncated) are digit strings starting from
position j − 1, representing ±βj/2.

The only way of representing βj/2 by an RN-
representation starting from position j − 1 is

(
β
2

)

0000 · · · 0.

This is seen as follows: if the digit at position j − 1
of a number is less than or equal to β

2
− 1, then that

number is less than or equal to

(
β
2
− 1
)

βj−1 +
(
β
2

) j−2
∑

i=!

βi < βj/2,

since the largest allowed digit is β
2

. Also, the digit at
position j−1 of an RN-representation cannot be larger
than or equal to β

2
+ 1..

If β is even, then a number whose finite represen-
tation (by an RN-representation) has its last nonzero
digit equal to β

2
has an alternative representation end-

ing with −β
2

(just assume the last two digits are d(β
2

):

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

since the representation is an RN-representation, d <
β
2

, hence if we replace these two digits by (d+ 1)(−β
2

)
we still have a valid RN-representation). This has an
interesting consequence: truncating a number which is
a tie will round either way, depending on which of the
two possible representations the number happens to
have. Hence, there is no bias in the rounding.

Note that this rounding rule is different from the
“round-to-nearest-even” rule required by the IEEE
standard [4]. Both roundings provide a “round-to-
nearest” in the case of a tie, but employ different rules
when choosing which way to round. Also note that this
rounding is also deterministic, the direction of rounding
only depends on how the value to be rounded was
derived, as the representation of the value is uniquely
determined by the sequence of operations leading to the
value.

Example:

• In radix 7, with digits {−3,−2,−1, 0, 1, 2, 3}, all
representations are RN-representations, and no
number has more than one representation;

• in radix 10 with digits {−5, . . . ,+5}, 15 has two
RN-representations: 15 and 25.

Theorem 4 (Uniqueness of infinite representations):
We now consider infinite representations, i.e.,
representations that do not ultimately terminate
with an infinite sequence of zeros.

• if β is odd, then some numbers may have two
infinite RN-representations. In that case, one is
eventually finishing with the infinite digit string

β−1
2
β−1

2
β−1

2
β−1

2
β−1

2
β−1

2
· · ·

and the other one is eventually finishing with the
infinite digit string

−β+1
2
−β+1

2
−β+1

2
−β+1

2
−β+1

2
−β+1

2
· · · ;

• if β is even, then two different infinite RN-
representations necessarily represent different
numbers. As a consequence, a number that is not
an integer multiple of an integral (positive or neg-
ative) power of β has a unique RN-representation.

Proof: If β is odd, the existence immediately comes
from

1.−β+1
2
−β+1

2
−β+1

2
−β+1

2
· · · = 0.β−1

2
β−1

2
β−1

2
β−1

2
· · · = 1

2

Now, if for any β (odd or even) two different RN-
representations represent the same number x, then
consider them truncated to the right of some position j,
such that the obtained digit strings differ. The obtained
digit strings represent values xa and xb whose difference
is ±βj (a larger difference is impossible for obvious
reasons).

First, consider the case where β is odd. From the
definition of RN-representations, and assuming xa <
xb, we have x = xa+βj/2 = xb−βj/2. Since β is odd,
the only way of representing βj/2 is with the infinite
digit string (that starts from position j − 1)

β−1
2
β−1

2
β−1

2
β−1

2
· · ·

the result immediately follows.

Now consider the case where β is even. Let us first
show that xa = xb is impossible. From Theorem 3, this
would imply that one of the corresponding digit strings
would terminate with the digit sequence −β

2
00 · · · 00,

and the other one with the digit string +β
2

00 · · · 00. But
from Theorem 2, this would imply that the remaining
(truncated) terms are positive in the first case, and
negative in the second case, which would mean (since
xa = xb implies that they are equal) that they would
both be zero, which is not compatible with the fact that
the representations of x are assumed infinite. Hence
xa %= xb. Assume xa < xb, which implies xb = xa + βj .
We necessarily have x = xa + βj/2 = xb − βj/2.
Although βj/2 has several possible representations in
a “general” signed-digit radix-β system, the only way
of representing it with an RN-representation is to put
a digit β

2
at position j− 1, no infinite representation is

possible.

Example:

• In radix 7, with digits {−3,−2,−1, 0, 1, 2, 3},
the number 3/2 has two infinite representations,
namely 1.3333333333 · · · and 2.3333333333 · · ·

• in radix 10 with digits {−5, . . . ,+5}, the RN-
representation of π is unique.

An important property of the RN-representation is
that it avoids the double rounding problem occurring
with some rounding methods, e.g., with the standard
IEEE round-to-nearest-even. This may happen when
the result of first rounding to a position j, followed by
rounding to position k, does not yield the same result
as if directly rounding to position k, as also discussed
in [5]. We repeat from [1] the following result:

Observation 5 (Double rounding):
Let rni(x) be the function that rounds the value of x
to nearest at position i by truncation. Then for k > j,
if x is represented in the RN-representation, then

rnk(x) = rnk(rnj(x))

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

3 Converting to and from Binary RN-
Representation
3.1 Conversion from 2’s Complement to RN-
Representation

Consider an input value x = −bm2m +
∑m−1
i=! bi2

i in
2’s complement representation:

x ∼ bmbm−1 · · · b!+1b!

with bi ∈ {0, 1} and m > #. Then the digit string

δmδm−1 · · · δ!+1δ! with δi ∈ {−1, 0, 1}

defined (by the Booth recoding [2]) for i = #, · · · ,m as

δi = bi−1 − bi (with b!−1 = 0 by convention) (1)

is an RN-representation of x with δi ∈ {−1, 0, 1}.
That it represents the same value follows trivially by
observing that the converted string represents the value
2x − x. The alternation of the signs of non-zero digits
is easily seen by considering how strings of the form
011 · · · 10 and 100 · · · 01 are converted.

Thus the conversion can be performed in constant
time. Actually, the digits of the 2’s complement repre-
sentation directly provides for an encoding of the con-
verted digits as a tuple: δi ∼ (bi−1, bi) for i = #, · · · ,m
where

−1 ∼ (0, 1)
0 ∼ (0, 0) or (1, 1)
1 ∼ (1, 0),

(2)

where the value of the digit is the difference between
the first and the second component.

Example: Let x = 110100110010 be a sign-
extended 2’s complement number and write the digits
of 2x above the digits of x:

2x 1 0 1 0 0 1 1 0 0 1 0 0

x 1 1 0 1 0 0 1 1 0 0 1 0

x in RN-repr. 1̄ 1 1̄ 0 1 0 1̄ 0 1 1̄ 0

where it is seen that in any column the two upper-most
bits provide the encoding defined above of the signed-
digit below in the column. Since the digit in position
m+1 will always be 0, there is no need to include the
most significant position otherwise found in the two top
rows.

If x is non-zero and bk is the least significant non-
zero bit of the 2’s complement representation of x, then
δk = −1, confirmed in the example, hence the last
non-zero digit is always 1̄ and thus unique. However,
if an RN-represented number is truncated for rounding
somewhere, the resulting representation may have its
last non-zero digit of value 1.

As mentioned in Theorem 3 there are exactly two
finite binary RN-representations of any non-zero binary

number of the form a2k for integral a and k, but
requiring a specific sign of the last non-zero digit makes
the representation unique. On the other hand without
this requirement, rounding by truncation makes the
rounding unbiased in the tie-situation, by randomly
rounding up or down, depending on the sign of the last
non-zero digit in the remaining digit string.

Example: Rounding the value of x in Example 1 by
truncating off the two least significant digits we obtain

rn2(2x) 1 0 1 0 0 1 1 0 0 1

rn2(x) 1 1 0 1 0 0 1 1 0 0

rn2(x) in RN-repr. 1̄ 1 1̄ 0 1 0 1̄ 0 1

where it is noted that the bit of value 1 in the upper
rightmost corner (in boldface) acts as a round bit,
assuring a round-up in cases there is a tie-situation as
here.

The example shows that there is another very com-
pact encoding of RN-represented numbers derived di-
rectly from the 2’s complement representation, noting
in the example that the upper row need not be part
of the encoding, except for the round-bit. We will
denote it the canonical encoding, and note that it is
a kind of “carry-save” in the sense that it contains a
bit not yet added in. The same idea have previously
been pursued in [6] in a floating-point setting, denoted
“packet-forwarding”.

Definition 6 (Binary canonical RN-encoding):
Let the number x be given in 2’s complement rep-
resentation as the bit string bm · · · b!+1b!, such that
x = −bm2m +

∑m−1
i=! bi2

i. Then the binary canonical
encoding of the RN-representation of x is defined as
the pair

x ∼ (bmbm−1 · · · b!+1b!, r) where the round-bit is r = 0

and after truncation at position k, for m ≥ k > #

rnk(x) ∼ (bmbm−1 · · · bk+1bk, r) with round-bit r = bk−1.

If (x, rx) is the binary canonical (2’s complement)
RN-representation of X, then X = x+ rxu where u is
the weight of the least significant position, from which
it follows that

−X = −x−rxu = x̄+u−rxu = x̄+(1−rx)u = x̄+ r̄xu.

Observation 7: If (x, rx) is the canonical RN-
representation of a valueX, then (x̄, r̄x) is the canonical
RN-representation of −X, where x̄ is the 1’s comple-
ment of x. Hence negation of a canonically encoded
value is a constant time operation.

The signed-digit interpretation is available from the
canonical encoding by pairing bits, (bi−1, bi) using the
encoding (2) for i > k and (r, bk), when truncated at
position k.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

There are other equally compact encodings of RN-
represented numbers, e.g., one could encode the signed-
digit string simply by the string of bits obtained as
the absolute values of the digits, together with say the
sign of the most (or least) non-zero digit. Due to the
alternating signs of the non-zero digits, this is sufficient
to reconstruct the actual digit values. However, this
encoding does not seem very convenient for arithmetic
processing, as the correct signs will then have to be
distributed over the bit string.

3.2 Conversion from Signed-Digit RN-
Representation to 2’s Complement

The example of converting 00000001̄ into its 2’s comple-
ment equivalent 11111111 shows that it is not possible
to perform this conversion in constant time, informa-
tion may have to travel an arbitrary distance to the left.
Hence a conversion may in general take at least loga-
rithmic time. Since the RN-representation is a special
case of the (redundant) signed-digit representation, this
conversion is fundamentally equivalent to an addition.

If an RN-represented number is in canonical encod-
ing, conversion into ordinary 2’s complement represen-
tation may require a non-zero round-bit to be added in,
it simply consists in an incrementation, for which very
efficient methods exists based on parallel prefix trees
with AND-gates as nodes.

4 Canonical Representation, the General
Case

The binary canonical representation of RN-
representation is specified by x = (a, ra), which
is a pair of a number and a bit. We could decide to
represent the value of a of that pair in something else
than binary, say using a higher radix β and/or a digit
set different from the set {0, . . . ,β − 1}.

Definition 8 (Canonical encoding: general case):
Let b be a number in radix β using the digit set D, such
that b =

∑m−1
i=! biβ

i with bi ∈ D, and the rounding bit
rb ∈ {0, 1}. The pair (b, rb) then represents the value
b+ urb, where u is the unit in the last place (u = βl).

The definition is very general, as the representation
doesn’t necessarily allow rounding by truncation. We
must redefine the rounding operation so that we avoid
problems with double-roundings, basically by trying
to convert the encoding into an RN-representation
satisfying Definition 1.

4.1 Even Radix

The definition seems to make particular sense when a
(non-negative) number is represented in an even radix

with the regular digit-set {0, . . . ,β − 1}. In that repre-
sentation the link between the canonical encoding and
RN-representation is trivial enough, so that rounding-
to-nearest can be done by truncation of the value b in
the pair (b, rb).

Consider an input value in radix-β with 0 ≤ di ≤
β − 1

(x, rx) = (dmdm−1dn−2 · · · d!, rx),

and define variables ck as

ck+1 =

{

1 if dk ≥
β
2

0 if dk <
β
2

(3)

With c! = rx the digits δk of an RN-representation can
be obtained using

δk = dk + ck − βck+1.

The conversion for an even radix and digit set
{0, . . . ,β − 1} into RN-representation gives us a way
to easily perform rounding-to-nearest by truncation of
(x, rx) in the canonical encoding. For k > #:

rnk(x, rx) ∼ (dndn−1 . . . dk+1dk, r)

with round-bit r =

{

1 if dk−1 ≥ β/2
0 if dk−1 < β/2

so in RN-representation the value can also be expressed
by the digit string δnδn−1 . . . δk ∈ {−

β
2
, · · · , β

2
}.

Example: With radix β = 10 and the regular
digit-set {0, . . . , 9}, for the value 9.25451 represented
by (9.25450, 1), we can truncate using the previous
algorithm:

rn−3(9.25450, 1) = (9.254, 1),

the rounding-bit being 1 because d−4 = 5 ⇒ c−3 = 1.
We only need to generate one carry (c−3) to obtain the
rounding bit.

To confirm that the rounding is correct, we may
represent the value in RN-representation, by generating
all the carries:

ck 1 0 1 0 1 0 1

dk 0 9 2 5 4 5 0

RN-representation 1 1̄ 3 5̄ 5 5̄ 1

With this RN-representation, truncating at position−3
gives:

ck 1 0 1 0 1

dk 0 9 2 5 4

RN-representation 1 1̄ 3 5̄ 5

corresponding to the previous canonical encoding
(9.254, 1). Note that to represent the given positive

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

value, d1 was set to zero. Had the value been a (neg-
ative) 10’s complement represented number, then d1
should by sign extension have been set to 9.

4.2 Other Representations

If we use other representations of b (say binary borrow-
save/signed-digit, odd radices,...), the rounding may
take time O(log(n)):

Example: [Borrow-save:] When trying to round x
in a general borrow-save representation to the nearest
integer, we have for any round bit rx ∈ {0, 1}:

borrow-save rounded

(11̄1̄0.00 . . . 01̄, rx) (11̄1̄1̄, 1)

(11̄1̄0.00 . . . 00, rx) (11̄1̄0, 0)

hence we may have to look arbitrarily far to the right
when rounding the values.
However, borrow-save could be interesting, since ad-
dition then can be performed in O(1), instead of
O(log(n)) for binary canonical encoding using the regu-
lar digit-set {0, 1}. It is important to recall that borrow-
save is not an RN-representation, even though it uses
the same digits. To have an RN-representation, the
non-zero digits must alternate in signs, and trans-
lating an arbitrary number from borrow-save to RN-
representation may take a O(log(n)) time.

Example: [Odd radices:] When trying to round to
the nearest integer, we have similarly:

radix 3 rounded

(10.11 . . . 12, rx) (10, 1)

(10.11 . . . 11, rx) (10, 0)

which means we may have to look arbitrarily far to the
right when rounding the values. It is due to the fact
that the mid-point between two representable numbers
needs to be represented with an infinite number of
digits. If we were to redefine arithmetic from scratch,
odd radices could be a choice to be considered; but
since we have to keep simple conversion to conventional
number systems in mind, we decided in the following
to focus on radix 2.

5 Performing Arithmetic Operations on
Canonically Represented Values
The fundamental idea of the canonical radix-2 RN-
representation is that it is a binary representation of
some value using the digit set {−1, 0, 1}, but such that
non-zero digits alternate in sign. We then introduced an
encoding of such numbers, employing 2’s complement
representation, in the form (a, ra) representing the
value

(2a+ rau)− a = a+ rau,

where u is the weight of the least significant position of
a. Note that there is then no difference between (a, 1)
and (a + u, 0), both being RN-representations of the
same value:

∀a,V(a, 1) = V(a+ u, 0),

where we use the notation V(x, rx) to denote the value
of an RN-represented number.

5.1 An Interval Interpretation

Considered as intervals as described below, the two rep-
resentations (a, 1) and (a+u, 0) describe different inter-
vals. Since different representations of the same number
can give different rounding results when truncated, it is
then important to choose carefully the representation
of the result when performing arithmetic operations
like addition and multiplication. Hence when defining
the result it is essential to choose the encoding of it to
reflect the domains of the operands.

Consider a value A to be rounded at some position
of weight u where the round bit is 1, shown in boldface:

... 0 1 1 ... 1 x ...
... 0 1 ... 1 1 x ...
... 1 0 ... 0

︸ ︷︷ ︸ ︸ ︷︷ ︸

a+ u −u
2
≤ t ≤ 0

... 0 1 x ...
... 0 1 x ...
... 1

︸ ︷︷ ︸ ︸ ︷︷ ︸

a+ u −u
2
≤ t ≤ 0

and similarly when the round bit is 0:

... 1 0 0 ... 0 x ...
... 1 0 ... 0 0 x ...
... 1̄ 0 ... 0

︸ ︷︷ ︸ ︸ ︷︷ ︸

a 0 ≤ t ≤ u
2

... 1 0 x ...
... 1 0 x ...
... 1̄

︸ ︷︷ ︸ ︸ ︷︷ ︸

a 0 ≤ t ≤ u
2

expressing bounds on the tail t thrown away during
rounding by truncation. Observe that the right-hand
ends of the intervals are closed, corresponding to a
possibly infinite sequence of units having been thrown
away. We find that the value A before rounding into

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

V(a, ra) must belong to the interval:

A ∈

{ [

a ; a+ u
2

]

for ra = 0
[

a+ u
2

; a+ u
]

for ra = 1

}

=
[

a+ ra
u

2
; a+ (1 + ra)

u

2

]

= I(a, ra).

In the following we shall use I(a, ra) to denote the
interval, the idea being to remember where the real
number was before rounding.

100 101 110 111
100.1 101.1 110.1

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

(100,0) (100,1) (101,0) (101,1) (110,0) (110,1)

Fig. 1. Example of interpreting RN representations as
intervals with u = 1

We may interpret the representations of an encoding
as an interval of length u/2, as in Fig. 1. In the
figure, any number between 101 and 101.1 (for example
101.01), when rounded to the nearest integer, will
give the RN representation (101, 0). So we may say
that (101, 0) represents the interval [101; 101.1] and in
particular

I(a, 1) =
[

a+ u
2

; a+ u
]

,

I(a+ u, 0) =
[

a+ u ; a+ 3u
2

]

.

Hence even though the two encodings represent the
same value (a+u), when interpreting them as intervals
according to what could have been thrown away, the
intervals are essentially disjoint, except for sharing a
single point. In general we may express the interval
interpretation as pictured in Fig. 2

We do not intend to define an interval arithmetic,
but only require that the interval representation of the

!

"
a

"
a+ u

2

"
a+ u

"
a+ 3u

2

"
a+ 2u

[][][][]
I(a, 0) I(a, 1) I(a+ u, 0) I(a+ u, 1)

Fig. 2. Binary Canonical RN-representations as Intervals

result of an arithmetic operation * satisfies1.

I(A*B) ⊆ I(A)* I(B) = {a* b|a ∈ A, b ∈ B}.

To simplify the discussion, we will in this section
only consider fixed-point representations for some fixed
value of u. We will not discuss overflow problems, as we
assume that we have enough bits to represent the result
in canonically encoded representation.

5.2 Addition of RN-represented Values

Employing the value interpretation we have for addi-
tion:

V(a, ra) = a+ rau
+ V(b, rb) = b+ rbu

V(a, ra) + V(b, rb) = a+ b+ (ra + rb)u

The resulting value has two possible representations,
depending on the rounding bit of the result. To deter-
mine what the rounding bit of the result should be,
Table 1 shows the interval interpretations of the two
possible representations of the result, depending on he
rounding bits of the operands.

Since we want I(V(a, ra) + V(b, rb)) ⊆ I(a, ra) +
I(b, rb), and (a, ra) + (0, 0) = (a, ra), and in order to
keep the addition symmetric, we define the addition of
RN encoded numbers as follows.

Definition 9 (Addition): If u is the unit in the last
place of the operands, let:

(a, ra) + (b, rb) = ((a+ b+ (ra ∧ rb)u), ra ∨ rb)

1. Note that this is the reverse inclusion of that required for
ordinary interval arithmetic, e.g. [7].

I(V(a, ra) + V(b, rb)) I(a, ra) + I(b, rb)

ra = rb = 0
I(a+ b− u, 1) =

[

a+ b− u
2

; a+ b
]

I(a+ b, 0) =
[

a+ b ; a+ b+ u

2

]
!

⊆

[a+ b ; a+ b+ u]

[a+ b ; a+ b+ u]

ra ⊕ rb = 1
I(a+ b, 1) =

[

a+ b+ u

2
; a+ b+ u

]

I(a+ b+ u, 0) =
[

a+ b+ u ; a+ b+ 3u

2

]

}

⊆
[

a+ b+ u

2
; a+ b+ 3u

2

]

ra = rb = 1
I(a+ b+ u, 1) =

[

a+ b+ 3u

2
; a+ b+ 2u

]

I(a+ b+ 2u, 0) =
[

a+ b+ 2u ; a+ b+ 5u

2

]
⊆

!

[a+ b+ u ; a+ b+ 2u]

[a+ b+ u ; a+ b+ 2u]

TABLE 1
Interpretations of additions as intervals

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

Recalling that −(x, rx) = (x̄, r̄x), we observe that
using this definition, (x, rx) − (x, rx) = (−u, 1), with
V(−u, 1) = 0. It is possible alternatively to define
addition on RN-encoded numbers as (a, ra)+2 (b, rb) =
((a + b + (ra ∨ rb)u), ra ∧ rb). Using this definition,
(x, rx)−2 (x, rx) = (0, 0), but then the neutral element
for addition is (−u, 1), i.e., (x, rx) +2 (−u, 1) = (x, rx).

Example: Let us take two examples adding two
numbers that were previously rounded to the nearest
integer.

Addition
not rounded

Addition on rounded
canonical representations

a1 01011.1110 (01011, 1)

b1 01001.1101 (01001, 1)

a1 + b1 010101.1011 (010101, 1)

a2 01011.1010 (01011, 1)

b2 01001.1001 (01001, 1)

a2 + b2 010101.0011 (010101, 1)

Using the definition above, rn0(a1 + b1) = rn0(a1) +
rn0(b1) holds in the first case. Obviously, since some
information may be lost during rounding, there are
cases like in the second example where rn0(a2 + b2) %=
rn0(a2) + rn0(b2). Also note that due to that informa-
tion loss, a2 + b2 is not in I((a2, ra2

) + (b2, rb2))

When interpreted as an interval, I(x, rx) =
[

x+ rx
u
2

; x+ (1 + rx)
u
2

]

then its “mirror
image” interval of negated values is −I(x, rx) =
[

x̄+ r̄x
u
2

; x̄+ (1 + r̄x)
u
2

]

= I(x̄, r̄x). Thus consider
for subtraction

I ((a, ra)− (b, rb))
= I
(

(a, ra) + (b̄, r̄b)
)

= I(a+ b̄+ (ra ∨ r̄b)u, ra ∧ r̄b)
= a+ b̄+ u(ra ∨ r̄b) + u

2
(ra ∧ r̄b) +

[

0 ; u
2

]

= a− b+ u(ra − rb)−
u
2
(ra ∧ r̄b) +

[

0 ; u
2

]

= a− b+ u
2
(ra − rb)−

u
2
(r̄a ∧ rb) +

[

0 ; u
2

]

.

On the other hand,

I(a, ra)− I(b, rb)
=
[

a+ u
2
ra ; a+ u

2
(1 + ra)

]

−
[

b+ u
2
rb ; b+ u

2
(1 + rb)

]

= a− b+ u
2
(ra − rb) +

[

−u
2

; u
2

]

,

hence for all points x ∈ I ((a, ra)− (b, rb)), x is in
I(a, ra)− I(b, rb).

Hence subtraction of (x, rx) can be realized by addi-
tion of the bitwise inverted tuple (x̄, r̄x).

5.3 Multiplying Canonically Encoded RN-
represented values

By definition we have for the value of the product

V(a, ra) = a+ rau
V(b, rb) = b+ rbu

V(a, ra)V(b, rb) = ab+ (arb + bra)u+ rarbu2,

noting that the unit of the result is u2, assuming that
u ≤ 1. Considering the operands as intervals we find
using (4):

I(a, ra)× I(b, rb)

=
[

a+ ra
u
2

; a+ u
2
(1 + ra)

]

×
[

b+ u
2
rb ; b+ u

2
(1 + rb)

]

= a′b′ +

[

0 ; a′ + b′ + u
2

]

× u
2

for a > 0, b > 0

[a′ ; b′]× u
2

for a < 0, b > 0

[b′ ; a′]×!u
2

for a > 0, b < 0
[

a′ + b′ + u
2

; 0
]

× u
2

for a < 0, b < 0

where a′ = a+ ra
u
2

and b′ = b+ rb
u
2
, and it is assumed

that a and a′ share the same sign and similarly for b
and b′ (assumed satisfied if a %= 0 and b %= 0). But for
a < 0 and b < 0, with ra = rb = 0 we would expect
the result (ab, 0) as interval I(ab, 0) = ab+

[

0 ; u
2

]

, to
be in the appropriate interval defined by (5.3), which
is NOT the case!

However, since negation of canonical (2’s comple-
ment) RN-represented values can be obtained by
constant-time bit inversion, multiplication of such
operands can be realized by multiplication of the abso-
lute values of the operands, the result being supplied
with the correct sign by a conditional inversion.

Thus employing bit-wise inversions, multiplication in
2’s complement RN-representations becomes equivalent
to sign-magnitude multiplication, hence assuming that
both operands are non-negative, the “interval product”
is

I(a, ra)× I(b, rb)

=
[

a+ra
u
2

; a+ u
2
(1+ra)

]

×
[

b+rb
u
2

; b+ u
2
(1+rb)

]

=
[

(a+ra
u
2
)(b+rb

u
2
) ; (a+ u

2
(1+ra))(b+

u
2
(1+rb))

]

= (a+ra
u
2
)(b+rb

u
2
)+
[

0 ; (a+ra
u
2
)+(b+rb

u
2
)+ u

2

]
u
2

= ab+
(

arb+bra+
rarb

2
u
)
u
2

+
[

0 ; a+b+(ra+rb+1)u
2

]
u
2

=

ab +
[

0 ; a+b+ u
2

]
u
2

for ra = rb = 0

ab+au
2

+[0 ; a+b+u] u
2

for ra = 0, rb = 1

ab+bu
2

+[0 ; a+b+u] u
2

for ra = 1, rb = 0

ab+(a+b+ u
2
)u

2
+
[

0; a+b+ 3
2
u
]
u
2

for ra = rb = 1

(4)
It then follows that

I ((ab+ (arb + bra)u, rarb) ⊆ I ((a, ra)× (b, rb))

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

with unit u2, since the lefthand RN-representation
corresponds to the interval
[

(ab+(arb+bra)u)+(rarb)
u2

2
; (ab+(arb+bra)u)+(1+rarb)

u2

2

]

and its lower endpoint is greater than or equal to the
lower endpoint from (4):

ab+(arb+ bra)u+(rarb)
u2

2
≥ ab+(arb+ bra+ rarb

2
u)u

2

together with the upper endpoint being smaller than
or equal to that from (4):

ab+(arb+bra)u+(1+rarb)
u2

2

≤ ab+(arb+bra+
rarb

2
u)u

2
+(a+b+(ra+rb+1)u

2
)u

2

both satisfied for a ≥ u, b ≥ u (i.e., non-zero) and all
permissible values of ra, rb.

Definition 10 (Multiplication): If u is the unit in the
last place, with u ≤ 1, we define for non-negative
operands:

(a, ra)× (b, rb) = (ab+ u(arb + bra), rarb) ,

and for general operands by appropriate sign inversions
of the operands and result. If u < 1 the unit is u2 < u
and the result may often have to be rounded to unit u,
which can be done by truncation.

For an implementation some modifications to an
unsigned multiplier will handle the ra and rb round bits,
we just have to calculate the double length product
with two additional rows consolidated into the partial
product array. However, we shall not here go into the
details of the consolidation.

The multiplier (b + rbu) may also be recoded into
radix 2 (actually it is already so when interpreted as a
signed-digit number) or into radix 4, and a term (bit)
dira may be added in the row below the row for the
partial product dia, where di is the recoded i’th digit
of the multiplier. Hence only at the very bottom of the
array of partial products will there be a need for adding
in an extra bit as a new row. The double length product
can be returned as (p, rp), noticing that the unit now is
u′ = u2, but the result may have to be rounded, which
by simple truncation will define the rounded product
as some (p′, r′p).

Example: As an example with u = 1:

Not rounded Canonical Representation

a 01011.1110 (01011, 1)

b 01001.1101 (01001, 1)

a× b 01110100.10000110 (01110111, 1)

The multiplication in canonical representation was
done according to the definition:

ab+ (arb + bra)
= 01100011 + (01011 + 01001)
= 01100011 + 010100 = 01110111,

where we note that (01110111, 1) corresponds to the
interval:

[01110111.1 ; 01111000.0]

clearly a subset of the interval

[01011.1× 01001.1 ; 01100× 01010]
= [01101101.01 ; 01111000.00].

It is obvious that rounding results in larger errors when
performing multiplication.

Similarly, some other arithmetic operations like
squaring, square root or even the evaluation of “well
behaved” transcendental functions may be defined
and implemented, just considering canonical RN-
represented operands as 2’s complement values with
a “carry-in” not yet absorbed, possibly using interval
interpretation to define the resulting round bit.

6 Floating Point representations
For an implementation of a floating point arithmetic
unit (FPU) it is necessary to define a binary encoding,
which we assume is based on the canonical 2’s com-
plement for the encoding of the significand part (say
s encoded in p bits, 2’s complement), supplied with
the round bit (say rs) and an exponent (say e in some
biased binary encoding). It then seems natural to pack
the three parts into a computer word (32, 64 or 128
bits) in the following order:

e s rs

with the round bit in immediate continuation of the
significand part, thus simplifying the rounding by
truncation. As usual we will require the value being
represented is in normalized form, say such that the
radix point is between the first and second bit of the
significand field. If the first bit is zero, the significand
field then represents a fixed point value in the interval
1
2
≤ s < 1, if it is one then −1 ≤ s < − 1

2
.

We shall now sketch how the fundamental oper-
ations may be implemented on such floating point
RN-representations, not going into details on overflow,
underflow and exceptional values.

6.1 Multiplication

Since the exponents are handled separately, forming the
product of the significands is precisely as described pre-
viously for fixed point representations: sign-inverting
negative operands, forming the double-length product,
normalizing and rounding it, and possibly negating the
result, supplying it with the proper sign.

Normalizing here may require a left shift, which
is straight forward on the (positive) product before
rounding by truncation.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

6.2 Addition

In effective subtractions, after cancellation of leading
digits there is a need to left normalize, so a problem
here is to consider what to shift in from the right.
Thinking of the value as represented in signed digit,
binary value, obviously zeroes have to be shifted in.

In our encoding, say for a positive result (d, rd) we
may have a 2’s complement bit pattern:

d ∼ 0 0 · · · 0 1 bk+2 · · · bp−1 and round bit rd

to be left normalized. Here the least significant digit is

encoded as
{
rd
bp−1

}

.

It is then found that shifting in bits of value rd will
precisely achieve the effect of shifting in zeroes in the
signed-digit interpretation:

2kd ∼ 0 1 bk+2 · · · bp−1rd · · · rd with round bit rd,

from 2× (x, rx) = (x, rx) + (x, rx) = (2x+ rxu, rx).

6.2.1 Subtraction, the "near case"

Addition is traditionally now handled in an FPU as
two cases [8], where the “near case” is dealing with
effective subtraction of operands whose exponents differ
by no more than one. Here a significant cancellation of
leading digits may occur, and thus a variable amount of
left-normalization is required. As by the above this left
shifting is handled by shifting in copies of the round-
bit.

6.2.2 Addition, the "far case"

The remaining cases dealt with are the “far case”,
where the result at most requires normalization
by a single right or left shift. Otherwise addi-
tion/subtraction takes place as for the similar operation
in IEEE, sign magnitude representation. There is no
need in general to form the exact sum/difference when
there is a great difference in exponents.

6.3 Division

As for multiplication we assume that negative operands
have been sign-inverted, and that exponents are treated
separately.

Employing our interval interpretation, we must re-
quire the result of division of (x, rx) by (y, ry) to be in
the interval:

[
x+ rx

u
2

y + (1 + ry)
u
2

;
x+ (1 + rx)

u
2

y + ry
u
2

]

.

After some algebraic manipulations it is found that the
exact rational

q =
x+ rxu

y + ryu

belongs to that interval. Hence any standard division
algorithm may be used to develop an approximation to
the value of q to (p+1)-bit precision, i.e., including the
usual round bit where the sign of the remainder may
be used to determine if the exact result is just below
or above the found approximation.

6.4 Discussion of Floating Point Representations

As seen above it is feasible to define a binary floating
point representation where the significand is encoded in
the binary canonical 2’s complement encoding, together
with the round-bit appended at the end of the encoding
of the significand. An FPU implementation of the basic
arithmetic operations is feasible at about the same
complexity as one based on the IEEE-754 standard for
binary floating point, with a possible slight overhead
in multiplication due to extra terms to be added. But
since the round-to-nearest functionality is achieved at
much less hardware complexity, the arithmetic oper-
ations will generally be faster, by avoiding the usual
log-time rounding. The other (directed) roundings can
also be realized at minimal cost. Benefits are obtained
through faster rounding and sign inversion (both con-
stant time), also note that the domain of representable
values is symmetric

7 Applications in Signal Processing
Let us here consider fixed-point RN representations
in high-speed digital signal processing applications,
although there are similar benefits in floating point.

Two particular applications needing frequent round-
ings come to mind: calculation of inner products for
filtering, and polynomial evaluations for approximation
of standard functions. For the latter application, a very
efficient way of evaluating a polynomial is to apply
the Horner Scheme. Let f(x) =

∑n
i=0 aix

i be such
a polynomial approximation, then f(x) is efficiently
evaluated as

f(x) = (· · · ((an) ∗ x+ an−1) ∗ x · · ·+ a1) ∗ x+ a0,

where to avoid a growth in operand lengths, roundings
are needed in each cycle of the algorithm, i.e., after
each multiply-add operation. But here the round-bits
can easily be absorbed in a subsequent arithmetic
operation, only at the very end a regular conversion
may be needed, but normally the result is to be used
in some calculation, hence a conversion may be avoided.

For inner product calculations, the most accurate re-
sult is obtained if accumulation is performed in double
precision, it will even be exact when performed in fixed-
point arithmetic. However, if double precision is not
available it is essential that a fast and optimal rounding
is employed during accumulation of the product terms.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

8 Conclusions and Discussion
We have analyzed a general class of number represen-
tations for which truncation of a digit string yields the
effect of rounding to nearest.

Concentrating on binary RN-represented operands,
we have shown how a simple encoding, based on the
ordinary 2’s complement representation, allows trivial
(constant time) conversion from 2’s complement rep-
resentation to the binary RN-representation. A sim-
ple parallel prefix (log time) algorithm is needed for
conversion the other way. We have demonstrated how
operands in this particular canonical encoding can be
used at hardly any penalty in many standard calcula-
tions, e.g., addition and multiplication, with negation
even being a constant time operation, which often
simplifies the implementation of arithmetic algorithms.

The particular feature of the RN-representation, that
rounding-to-nearest is obtained by truncation, implies
that repeated roundings ending in some precision yields
the same result, as if a single rounding to that precision
was performed. In [5] it was proposed to attach some
state information (2 bits) to a rounded result, allowing
subsequent roundings to be performed in such a way,
that multiple roundings yields the same result as a
single rounding to the same precision. It was shown
that this property holds for any specific IEEE-754 [4]
rounding mode, including in particular for the round-
to-nearest-even mode. But these roundings may still
require log-time incrementations, which is avoided with
the proposed RN-representation.

The fixed point encoding immediately allows for the
definition of corresponding floating point representa-
tions, which in a comparable hardware FPU implemen-
tation will be simpler and faster than an equivalent
IEEE standard conforming implementation.

Thus in applications where many roundings are
needed, and conformance to the IEEE-754 standard is
not required, when employing the RN-representation it
is possible to avoid the penalty of intermediate log-time
roundings. Signal processing may be an application
area where specialized hardware (ASIC or FPGA) is
often used anyway, and the RN-representation can pro-
vide faster arithmetic with round to nearest operations
at reduced area and delay.

References
[1] P. Kornerup and J.-M. Muller, “RN-Coding of Numbers:

Definition and some Properties,” in Proc. IMACS’2005, July
2005, Paris.

[2] A. Booth, “A Signed Binary Multiplication Technique,”
Q. J. Mech. Appl. Math., vol. 4, pp. 236–240, 1951.

[3] J.-L. Beuchat and J.-M. Muller, “Multiplication Algorithms
for Radix-2 RN-Codings and Two’s Complement Num-
bers,” INRIA, Tech. Rep., February 2005, available at:
http://www.inria.fr/rrrt/rr-5511.html.

[4] IEEE, IEEE Std. 754TM-2008 Standard for Floating-Point
Arithmtic, IEEE, 3 Park Avenue, NY 10016-5997, USA, Au-
gust 2008.

[5] C. Lee, “Multistep Gradual Rounding,” IEEE Transactions
on Computers, vol. 38, no. 4, pp. 595–600, April 1989.

[6] A. M. Nielsen, D. Matula, C. Lyu, and G. Even, “An IEEE
Compliant Floating-Point Adder that Conforms with the
Pipelined Packet-Forwarding Paradigm,” IEEE Transactions
on Computers, vol. 49, no. 1, pp. 33–47, January 2000.

[7] R. E. Moore, Interval Analysis. Prentice-Hall, Englewood
Cliffs, NJ, 1963.

[8] P. Farmwald, “On the Design of High Performance Digital
Arithmetic Units,” Ph.D. dissertation, Stanford, Aug. 1981.

Peter Kornerup received the Mag. Sci-
ent. degree in mathematics from Aarhus
University, Denmark, in 1967. After a period
with the University Computing Center, from
1969 involved in establishing the computer
science curriculum at Aarhus University, he
helped found the Computer Science Depart-
ment there in 1971 and served as its chair-
man until in 1988, when he became Profes-
sor of Computer Science at Odense Univer-
sity, now University of Southern Denmark.

Prof. Kornerup has served on program committees for numerous
IEEE, ACM and other meetings, in particular he has been on the
Program Committees for the 4th through the 19th IEEE Symposium
on Computer Arithmetic, and served as Program Co-Chair for these
symposia in 1983, 1991, 1999 and 2007. He has been guest editor
for a number of journal special issues, and served as an associate
editor of the IEEE Transactions on Computers from 1991 to 1995.
He is a member of the IEEE Computer Society.

Jean-Michel Muller was born in Grenoble,
France, in 1961. He received his Ph.D.
degree in 1985 from the Institut National
Polytechnique de Grenoble. He is Directeur
de Recherches (senior researcher) at CNRS,
France, and he is the former head of the
LIP laboratory (LIP is a joint laboratory of
CNRS, Ecole Normale Supérieure de Lyon,
INRIA and Université Claude Bernard Lyon
1). His research interests are in Computer
Arithmetic. Dr. Muller was co-program chair

of the 13th IEEE Symposium on Computer Arithmetic (Asilomar,
USA, June 1997), general chair of SCAN’97 (Lyon, France, sept.
1997), general chair of the 14th IEEE Symposium on Computer
Arithmetic (Adelaide, Australia, April 1999). He is the author of
several books, including "Elementary Functions, Algorithms and
Implementation" (2nd edition, Birkhäuser Boston, 2006), and he
coordinated the writing of the "Handbook of Floating-Point Arith-
metic (Birkhäuser Boston, 2010). He served as associate editor of
the IEEE Transactions on Computers from 1996 to 2000. He is a
senior member of the IEEE.

Adrien Panhaleux was born in Roubaix,
France, in 1985. He received his master
degree in 2008 from the École Normale
Supérieure de Lyon. He is now preparing his
Ph.D. at École Normale Supérieure de Lyon,
France, under the supervision of Jean-Michel
Muller and Nicolas Louvet.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

