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Newton-Raphson Algorithms for Floating-Point Division
Using an FMA

Nicolas Louvet, Jean-Michel Muller, Adrien Panhaleux

Abstract

Since the introduction of the Fused Multiply and Add
(FMA) in the IEEE-754-2008 standard [6] for floating-
point arithmetic, division based on Newton-Raphson’s iter-
ations becomes a viable alternative to SRT-based divisions.
The Newton-Raphson iterations were already used in some
architecture prior to the revision of the IEEE-754 norm.
For example, Itanium architecture already used this kind of
iterations [8]. Unfortunately, the proofs of the correctness
of binary algorithms do not extend to the case of decimal
floating-point arithmetic. In this paper, we present general
methods to prove the correct rounding of division algo-
rithms using Newton-Raphson’s iterations in software, for
radix 2 and radix 10 floating-point arithmetic.

Keywords
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algorithm; Newton-Raphson iterations

1. Introduction

When a floating-point Fused-Multiply and Add (FMA)
instruction is available in hardware, a common method
is to implement the division operation in software us-
ing Newton-Raphson’s iterations. In binary floating-point
arithmetic, this is already the case for example on the
Itanium architecture. The FMA instruction allows to ef-
ficiently compute a correctly rounded quotient, even when
the working precision used to perform the iterations is the
same as the precision of the quotient [2], [8]. Moreover,
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the new IEEE-754-2008 standard [6] for floating-point
arithmetic standardize both binary and decimal floating-
point arithmetic, and introduce a correctly rounded FMA
operation. As a consequence, software implementation
of binary and decimal division may become a common
practice in the near future.

In this paper, we present the techniques we developed
for proving correct rounding for division algorithms based
on Newton-Raphson’s iterations performed with an FMA.
While the previous works on this topic (see [8, chap. 8]
for an overview) only dealt with binary floating-point
arithmetic, the results we propose can be used to prove
also the correctness of decimal division algorithms. For
clarity, we focus here on rounding to the nearest, but
the methods described can also be used for the directed
rounding attributes of the IEEE-754-2008 standard.

Starting from previous results on exclusion intervals
for division by Markstein and Harrison [8], [5] in binary
floating-point arithmetic, we give a bound on the radius of
the exclusion intervals applicable in any radix. To prove
the correct rounding of the reciprocal operation using an
extension of the exclusion interval, we also adapt the worst
cases analysis by Harrison and Cornea [5], [3] for the
reciprocal operation to the case of radix 10.

In a division algorithm, the Newton-Raphson’s itera-
tions are usually performed in a higher precision than
the precision of the operand and of the quotient. When
computing a quotient of floating-point numbers in the
highest available precision, the proofs for radix 2 [9], [8,
chap. 5] does not extend to radix 10: We also propose here
a new method to ensure correct rounding in this case.

We mainly focus in this paper on software aspects, but
the results presented may also be useful for the implemen-
tation of decimal Newton-Raphson’s division algorithms in
hardware [11].

1.1. Notations
In this article, we assume that no overflow nor un-

derflow occurs, and that the inputs are normal numbers.
We note Fj ;, the set of radix-3, precision-p floating-point
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numbers. We call betade an interval of the form [3¢, 3T1).
For any z # 0 in R, if z € [3%s, 3% F1) with e, € Z, then
e. denotes the exponent of z, and ulp(z) := 177 its
unit in the last place.

The middle of two consecutive floating-point numbers
in F ;, is called midpoint in precision p : every midpoint
m in precision p can be written as m = +(s,, + 1/2 -
Br=P)pem, with s, a significand of precision p in [1, 3).
Given z € R, we denote z rounded to the nearest floating-
point value in Fg, by RNg,(z), or more shortly by
RN(z). We assume that the usual round to nearest even
tie-breaking rule is applied when z is a midpoint [6].
Let us also recall that the FMA operation computes
RNgp(a x b+c) for any a,b,c € Fg ).

Since we do not consider overflow or underflow, com-
puting the quotient a/b is equivalent to computing the
quotient of their significand. We then assume without loss
of generality that both a and b lie in the betade [1, ).

In the sequel of the paper, we consider three different
precisions: p; is the precision of the input operands, p,, is
the working precision in which the intermediate computa-
tions are performed, and p, is the output precision. Hence,
given a,b € Fg,,, the division algorithm considered is
intended to compute RNg , (a/b). We only consider the
cases Py, > po and p,, > p;. The computation of a
multiprecision quotient is not the goal of this paper.

Given z € R, we also use the following notation to
distinguish between two kinds of approximation of z: &
denotes any real number regarded as an approximation
of z, and = is the floating-point number obtained after
rounding Z to the nearest.

1.2. Newton-Raphson’s Iterations

To compute a/b, an initial approximation & to 1/b is
obtained from a lookup table addressed by the first digits
of b. One next refines the approximation to 1/b using
iteration (1) below:

ey

Then §,, = ady, is taken as an initial approximation to a/b
that can be improved using

Bt = B + & (1= bity) .

@)

There are several ways of using the FMA to perform
Newton-Raphson iterations. To compute the reciprocal 1/b
using Equation (1), we have the following two iterations:

Unt1 = Gn + In (a - b.'gn) .

, Fni1 = RN(1 — bd,,)
Markst 3
arkstein { Fpy1 = RN(Zp, + Fpy1dn) 3)
71 = RN(1 — bi)
Goldschmidt Fng2 = RN(72 ) “)
5)”4,1 = RN(I’n + 7ﬂ’n,«f»l*xn)
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The Markstein iteration [7], [8] immediately derives from
Equation (1). The Goldschmidt iteration [4] is obtained
from the Markstein iteration (3), by substituting 7,1 with
r2. Even if both iterations are mathematically equivalent,
when we use them in floating-point arithmetic, they behave
differently, as Example 1 shows.

Example 1. In binaryl6 (p, = 11,3 = 2):

b = 1.1001011001
1/b = 0.10100001010 100011...
—_———

11

Goldschmidt’s iteration
Zo= 0.10101010101
71 =—1.11011000100 - 275
Z1= 0.10100000110 // 7...
Zo= 0.10100001010 // 7s...
(Z remains the same)

Markstein’s iteration \
Zo= 0.10101010101
71=—1.1101100010 - 27°
Z1=0.10100000110
Fo= 1.1100111010-27°
Z2=0.10100001011

In the Goldschmidt iteration, 7,42 and Z,4+; can be
computed concurrently. Hence, this iteration is faster due
to its parallelism. However, in this example, only the
Markstein iteration yields the correct rounding. A common
method [8] is to use Goldschmidt’s iterations at the begin-
ning, when accuracy is not an issue, and next to switch
to Markstein’s iterations if needed on the last iterations to
get the correctly rounded result.

Concerning the division, one may consider several
iterations derived from Equation (2). We only consider here
the following ones:

) = RN(a — bijy)
Markst T+l _ e 5
arkstein { i1 = RN (G + Fros1n) )
Goldschmidt Tp42 = RN(f%H) (©6)
yn—f—l = RN(Z} + Tn-i-ljn)

1.3. Outline

Section 2 shows how to prove a faithful rounding, and
how the information of faithful rounding can be used
in the Newton-Raphson division algorithms. Section 3
then introduces necessary conditions that prove the correct
rounding of these algorithms. Section 4 gives error bounds
on the different variations of Newton-Raphson’s iterations.
Finally, Section 5 shows an example on how to prove a
correct rounding of a Newton-Raphson based algorithm.

2. Faithful rounding

In some cases explained in Section 3, a faithful round-
ing is required in order to guarantee correct rounding of the
quotient a/b. One may also only need a faithful rounding
of the quotient or the reciprocal. This section provides a
sufficient condition to ensure a faithful rounding of the



quotient. We then remind the exact residual theorem, that
will be used for proving the correct rounding in Section 3.

2.1. Ensuring a faithful rounding

To prove that the last iteration yields a correct rounding,
we use the fact that a faithful rounding has been computed.
To prove that at some point, a computed approximation ¢,
is a faithful rounding of the exact quotient a/b, we use a
theorem similar to the one proposed by Rump [10], adapted
here to the general case of radix .

Theorem 1. Let & € R be an approximation to z € R.
Let & € F,, be such that ¥ = RN(&). If

1
57 ulp(2), @)
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then T is a faithful rounding of z.

|T — 2| <

The condition of Theorem 1 is tight: Assuming [ is
even, if 2 = 3, then & = » — 55 ulp(z) will round to a
value that is not a faithful rounding of z, as illustrated on
Figure 1.

g z=p
L] 1 |
ul
L

| |

——

Figure 1. Tightness of the condition on |z — z|

2.2. Exact residual theorem

When §,, is a faithful rounding of a/b, The residual
RN(a — bg,) is computed exact. The theorem was first
stated by Markstein [7] and has been more recently proved
by John Harrison [5] and Boldo and Daumas [1] using
formal provers.

Theorem 2 (Exact residual for the division). Let a,b be
two floating-point numbers in Fg ), and assume Y, is a
faithful rounding of a/b. For any rounding mode o, 7,11 =
o(a — byy) is computed exactly (without any rounding),
provided there is no overflow or underflow.

3. Round-to-nearest

In this section, we present several methods to ensure
correct rounding. We first present a general method of
exclusion intervals that only applies if the quotient a/b is
not a midpoint, and how to extend the exclusion intervals
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in the case of reciprocal. We then show how to handle the
midpoint cases separately.

3.1. Exclusion intervals

A common way of proving correct rounding for a
given function in floating-point arithmetic is to study its
exclusion intervals (see [5], [8, chap. 8] or [9, chap. 5]).

Given a,b € Fg ,,, either a/b is a midpoint at precision
Do, Or there is a certain distance between a/b and the
closest midpoint. Hence, if we assume that a/b is not a
midpoint, then for any midpoint m, there exists a small
interval centered at m that cannot contain a/b. Those
intervals are called the exclusion intervals.

More formally, let us define p,,, ,, > 0 as the smallest
value such that there exist a,b € Fg;,, and a midpoint m
in precision p, with |a/b—m| = %/ 1y, If a lower
bound on i, p, is known, next Theorem 3 can be used to
ensure correct rounding, as illustrated by Figure 2 (see [5]
or [9, chap. 12] for a proof).

Theorem 3. Let a,b in Fg,, be such that a/b is not
midpoint in precision p, for the division, and 9 be in R.

If |9 —a/bl < BTy, . then RN(§) = RN(a/b).

To bound the radius of the exclusion intervals, we
generalize the method used by Harrison [5] and Marius
Cornea [3] to the case of radix .

Theorem 4. Assuming p, > 2 and p; > 1, a lower bound
on [l ». is given by

> lﬂfpifpo.

25 ®)

Hop;.po

Proof: By definition of u,, , , it can be proved that

a/b is not a midpoint. Let m be the closest midpoint to
a/b, and note §3°/>+! the distance between a/b and m:

Z:m+wwﬁﬁ ©)
By definition, p,, ,, is the smallest possible value of
|0]. As we excluded the case when a/b = m, we have
d # 0. We write a = AB'"Pi, b = Bp'"P and
m = (M + 1/2)3' ~Petea/v with A, B, M integers and
BPi—l < A, B, M < jPi. Equation (9) becomes
2BfPe§ = 2A[Po" 17/ —2BM — B.  (10)
Since 2A43Pe~1=¢/b —2BM — B is an integer and § #
0, we have [2B3P§| > 1. Since BPi~! < B < f3Pi, the
conclusion follows. O
In radix 2, the following example illustrates the sharp-
ness of the result of Theorem 4.



Exclusion interval

I I
I I
Vosss soal
t; !

Figure 2. Use of exclusion intervals for prov-
ing the correct rounding

Example 2. In radix 2, for any precision p; = p,, b =
1.11...1 =2 —2'7Pi gives

1 1 —1=2pi

=427 tPi L . —10.100...0100...01...

b 2+ +1_27pi 0.100...0100...0
\—v:/ p; bits p; bits
555a/b

From this example, an upper bound on i, ,, can be
deduced, and for any precision p; > 1 one has

1-2 2~ 1%
27T <y <
— :u’Pz»Pz —1—=92-pi
The following result can also be seen as a consequence
of Theorem 3 (see [8, chap. 8] or [9, p.163] for a proof).

Theorem 5. In binary arithmetic, when p,, = p,, if T is
a correct rounding of 1/b and § is a faithful rounding of
a/b, then an extra Markstein’s iteration yields RN, (a/b).

3.2. Extending the exclusion intervals

When p,, = p, = p;, the error bounds of Section 4
might remain larger than the bound on the radius of the
exclusion intervals of Section 3.1. A way to prove correct
rounding is then by extending the exclusion intervals.

In this subsection, we describe a method to determine
all the inputs (a,b) € F3 . such that the quotient a/b is
not a midpoint and lies within a distance 3°/¢*!y from
the closest midpoint m. Once all such worst cases are de-
termined, correct rounding can be guaranteed considering
two cases:

o If a/b corresponds to one of the worst cases, we then
run the Newton-Raphson algorithm on the input (a, b)
and check that the result is correct.

o If (a,b) is not one of those worst cases and § is an ap-
proximation to a/b that satisfies |§—a/b| < 3%/>T1y,
then RN, () = RNy, (a/).

Unfortunately, there are too many worst cases for the
division, but one can apply this method for the reciprocal.
Starting from Equation (10) of Section 3.1, one has:

287itPe — 2B@Pe§ = B(2M + 1).
——
A

L
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Factorizing 23PitPe — A, with |A] € {1,2,...} into
B(2M + 1) with respect to the range of these integral
significands isolates the worst cases. After finding all the
worst cases such that |A| < n, the extended radius is such
that o > S~Pi~Pon /2. Table 1 shows how many values of
b have to be checked to extend the exclusion interval.

n 2 3 4 5 6 7
binary64 2|1 68 | 68 | 8 | 8 | 86
decimall128 | 1 1 3 3 19 | 22

Table 1. Number of b to check separately
according to the extended radius of the ex-
clusion interval ;. > 3= Pi=Pon /2

There is a particular worst case that is worth mention-
ing: When b = [ — 1/2 ulp(f8), the correctly rounded
reciprocal is 1/3+ulp(1/), but if the starting point given
by the lookup table is not RNg ,, (1/b), even Markstein’s
iterations cannot give a correct rounding, as shown in
Example 3.

Example 3. In binaryl6, (p, = p; = p, = 11,3 = 2):
b= 1.1111111111

= 0.1 = Table-lookup(b)

= 2711 (exact)

=0.1

S PR

Hence, z will always equals 0.1, which is not the correct
rounding of RN(1/b).

A common method [8] to deal with this case is to
tweak the lookup table for this value. If the lookup
table is addressed by the first k& digits of b, then the
output corresponding to the address 3 — 3'~* should be

1/6+ 7P,
3.3. The midpoint case

Theorem 3 can only be used to ensure correct rounding
when a/b cannot be a midpoint. In this subsection, we
summarize our results about the midpoints for division and
reciprocal.

3.3.1. Midpoints in radix 2. Markstein already proved for
radix 2 that for any a, b in Fy ,,, a/b cannot be a floating-
point number of precision p with p > p; [8]. This means
that a/b cannot be a midpoint in a precision greater or
equal to p;. However, Example 4 shows that when p; > p,,
a/b can be a midpoint.

Example 4. Inputs: binary32, output: binary16.
a=1.00000001011001010011111

b=1.00101100101000000000000
a/b=0.11011011001 1
—_——

po=11



When computing reciprocals, we have the following.

Theorem 6. In radix 2, and for any precisions p; and p,,
the reciprocal of a floating-point number in o, cannot
be a midpoint in precision p,.

Proof: Given a floating-point number b € Iy, in
[1,2), we write b = B2'~Pi, where B is an integer. If 1/b
is a midpoint in precision p,, then 1/b = (2Q + 1)27P~!
with @ an integer. This gives B(2Q + 1) = 2PiTPo_ Since
B and @ are integers, this equality can hold only if @ = 0.
This implies b = 2'+P<, which contradicts b € [1,2). O

3.3.2. Midpoints in radix 10. In decimal floating-point
arithmetic, the situation is quite different. As in radix 2,
there are cases where /b is a midpoint in precision p,, but
they can occur even when p; = p,, as shown in Example 5.
Contrarily to the binary case, there are also midpoints for
the reciprocal function, characterized by Theorem 7.

Example 5. In decimal32 (p; = p, = 7,3 = 10):

a = 2.000005, b= 2.000000, a/b=1.0000025

Theorem 7. In radix 10, for any precisions p; and p,,
there are at most two floating-point numbers in a single
betade of F1¢ p,, whose reciprocal is a midpoint in precision
po. Their integral significands are By = 2PitPe5% and

By = 2PitPo522 yyith
B In(2) In(10) B In(2)
z21 = ’sz poln(5) 111(5) y22 = |Pi — Do 111(5) .

Proof of Theorem 7.: Given a floating-point number
b € F1p,p, in the betade [1, 10), we rewrite it b = B10'~P:.
If 1/b is a midpoint, we then have 1/b = (10Q +
5)107P-~1 with Q € Z, which gives B(2Q + 1) =
2PitPo 5PitPo—1 Since 2QQ41 is odd, we know that 2Pi +Po
divides B. Therefore we have B = 5%2Pi*Pe with z an
integer. Moreover, we know that 1 < b < 10, which gives

2 Wi _ o
poln5 In5 — = P poln5'

The difference between the two bounds is In10/In5 ~
1.43. Therefore, there can be at most two integers z
between the two bounds. 0

Using Theorem 7, we isolate the at most two values
of b whose reciprocal is a midpoint. These values are
checked separately when proving the correct rounding of
the reciprocal. Table 2 gives the corresponding b when
P; = Po, for the IEEE 754-2008 decimal formats.

Di —

3.4. Correctly handling midpoint cases

Let us recall that the midpoints cases for reciprocal can
be handled as explained in §3.3.1 §3.3.2. Hence, we only
focus here on division.
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decimal32 decimal64 decimal128
p 7 16 34
b1 | 2.048000 |1.67772160...0 |1.12589990684262400...0
bo | 2.048000 |8.38860800...0 |5.62949953421312000...0

Table 2. Decimal floating-point numbers
whose reciprocal is a midpoint in the same
precision

When p;, p, and the radix are such that division admits
midpoints, the last Newton-Raphson iteration must be
adapted to handle the case where a/b is a midpoint. We
propose two methods, depending whether p,, = p,. Both
methods rely on the exact residual theorem 2 of section
2.2, so it is necessary to use a Markstein iteration (5) for
the last iteration.

3.4.1. When p,, > p,. The exclusion interval theorem of
Section 3.1 does not apply, since there are several cases
where a/b is a midpoint in precision p,. In that case, we
use the following Theorem 8 instead of Theorem 3.

Theorem 8. We assume (3 is even and p,, > p,, and we
perform a Markstein iteration:

{ 7 = RNgp, (a — b7),

¥ = RNgp, (§ + 7).
If § is a faithful rounding of a/b in precision p,, and
|9 — a/b|] < B/ Ty, ., then §' = RNg,, (a/b).
Proof of theorem 8: 1If a/b is not a midpoint in
precision p,, Theorem 3 proves that ¢ is the correct
rounding of a/b. Now, we assume that a/b is a midpoint
in precision p,. Since § is even and p, > p,, a/b is a
floating-point number in precision p,,. Since ¥ is a faithful
rounding of a/b in precision p,,, we have § = a/b. Using
Theorem 2, we know that 7 = 0, which gives §' = a/b,
hence §' = RN, (9') = RNg,, (a/b). |
Example 6 shows why it is important to round directly
in precision p, in the last iteration.

Example 6. inputs: binary32, output: binary16.

a=1,b=1.01010011001111000011011

=0.110000010010111111111111 (faithful)

7=1.01010011000111000011011 - 2724 (exact)

¢'=0. 11000001001 1000000000000 = RNoy (7 + 77)
—_——

11 bits
§"=0.11000001010 = RNy (§)

Due to the double rounding, §” is not RNy;(a/b).

3.4.2. When p,, = p,. The quotient a/b cannot be a
midpoint in radix 2. For decimal arithmetic, Example
7 suggests that it is not possible in this case to round
correctly using only Markstein’s iterations.



Example 7. In decimal32 (p; = p, = py, = 7,06 = 10):
a = 6.000015, b = 6.000000

Z = RN(1/b) = 0.1666667, a/b = 1.000002 5
Jo = RN(aZ) = 1.000003
71 = RN(a — bjo) =—0.000003
71 = RN(o + 71.&) = 1.000002
7y = RN(a —bj;) = 0.000003
g2 = RN(g; + 723) = 1.000003

Algorithm 1 can be used in this case to determine
the correct rounding of a/b from a faithfully rounded
approximation.

bs =0 ulp(a/b) ;
/* Assume g faithful =/
F=a—>by; /* 7 exactly computed. =/
if 7 > 0 then

¢ = RN(2F — bs);

if ¢ =0 then return

if ¢ < 0 then return

if ¢ > 0 then return
else /= 7 <0 =/

¢ = RN(27 + bs);

if ¢ =0 then return

if ¢ <0 then return

if ¢ > 0 then return
end

/> bs S FﬁJ]w */

{{N(g + £ ulp(a/b));
Y,
g + ulp(a/b);

RN(g — % ulp(a/b));
gz— ulp(a/b);
Y;

Algorithm 1: Returning the correct rounding in dec-
imal arithmetic when p,, = p,.

Theorem 9. Let us assume that 3 = 10 and p,, = p, and
that § is a faithful rounding of a/b. Then, Algorithm 1
yields the correct rounding of a/b.

Proof: By assumption, § is a faithful rounding of a/b.
Thus, there exists € such that — ulp(a/b) < € < ulp(a/b)
and § = a/b+ e. Also, according to Theorem 2, 7 = —be.
Six cases, depending on the signs of 7 and ¢, have to be
considered for the whole proof. We only present here two
cases, the others being similar.

e Case 7 > 0 and 27 — b ulp(a/b) < 0: Since 7 is
positive, —e < 0. Moreover, since 27 — b ulp(a/b) < 0 we
have —1/2 ulp(a/b) < € < 0. Hence, the correct rounding
of a/bis .

e Case 7 < 0 and 27 + b ulp(a/b) = 0: From 27 +
b ulp(a/b) = 0, we deduce that a/b is a midpoint and
RN(a/b) = RN(y — 1/2 ulp(a/b)). O

4. Error bounds

In this section, we present the techniques we used to
bound the error in the approximation to the reciprocal 1/b
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or to the quotient a/b obtained after a series of Newton-
Raphson iterations. As our aim is to analyze any reasonable
sequence combining both Markstein’s or Goldschmidt’s
iterations, we only give the basic results needed to analyze
one step of these iterations. The analysis of a whole
sequence of iterations can be obtained by combining the
induction relations proposed here: This is a kind of running
error analysis (see [9, chap. 6]) that can be used together
with the results of Sections 3.1 and 3.2 to ensure correct
rounding.

All the arithmetic operations are assumed to be per-
formed at precision p,,, which is the precision used for
intermediate computations. Let us denote by e the unit
roundoff: In round-to-nearest rounding mode, one has
€ = 33'P=. In the following, we note

Gni=2n — 1/0], Gni=|En — 1/0],
wn:wn - a/b|7 ¢n1=|ﬂn - a/b\,

p~n5:|fn - (1 - bjn—l)|a &n:|fn - (a - bgn—l)l-
4.1. Reciprocal iterations

Both for Markstein’s iteration (3) and for Goldschmidt’s
iteration (4), the absolute error ¢,, in the approximation z,,
is bounded as

Sni1 < (Sn + [1/6)fns1 + |0]G2,
Gni1 < (1+ )by + [e/].

Hence it just remains to obtain induction inequalities for
bounding p,4 1.

12)
13)

4.1.1. Reciprocal with the Markstein iteration (3). One
has 7,41 = RN(1 — bZ,,), hence

Pr+1 < |€[b]n-

The initial value of the recurrence depends on the lookup-
table used for the first approximation to 1/b. Inequal-
ity (12) together with (14) can then be used to ensure
either faithful or correct rounding for all values of b in
[1,3), using Theorems 1 or 3.

At iteration n, if Z,, is a faithful rounding of 1/b, then
Theorem 2 implies p,+; = 0. Hence in this case one has
gf)m_l < ggi which means that no more accuracy improve-
ment can be expected with Newton-Raphson iterations.
Moreover, if we exclude the case b = 1, since b belongs
to [1, 3) by hypothesis, it follows that 1/b is in (371, 1).
Since ,, is assumed to be a faithful rounding of 1/b, one
has ulp(Z,) = ulp(1/b), and we deduce

d;nJrl < ‘b|¢~5721 +1/2 ulp(Z,),

which gives a sharper error bound on an+1 than (12) when
Z, is a faithful rounding of 1/.

(14)

(15)



4.1.2. Reciprocal with the Goldschmidt iteration (4).
For the Goldschmidt iteration, one has

ﬁn-‘rl S (1 + 6) <ﬁn + |b‘§£n—1 + 1) ﬁn + €.

Combining ( 1A6) into (13), one can easily deduce a bound
on the error ¢y, 1.

(16)

4.2. Division iterations

Both for Markstein’s iteration (5) and for Goldschmidt’s
iteration (6), one may check that

/‘ﬁn+1 < |b|/l;ném + (ggm + ll/b‘>6n+17
1;n-&-l < (1 + 6)1&”4‘1 + 6|a/b|~

Now let us bound &, 1.

a7
(18)

4.2.1. Division with the Markstein iteration (5). In this
case, one has ~
&n—i-l S €|bW}n~

Again, if g, is a faithful rounding of a/b, due to the exact
residual theorem 2, one has ¢n+1 < |b\1ﬁnq3m, which is
the best accuracy improvement that can be expected from
one Newton-Raphson iteration.

19)

4.2.2. Division with the Goldschmidt iteration (5).

Using the same method as in §4.1.2, we now bound G,,41:
(1+e)(on + |b\77/~1n_1)(\b|1/~)n_1 + |b|¢~5m +n)
+(14 €)Gn + €lal. (20)

<

&n+1
Then, from (17), a bound on 1[)n+1 can be obtained.

5. Experiments

Using the induction relations of Section 4, one can
bound the error on the approximations to a/b for a
given series of Newton-Raphson iterations, and use it
with the sufficient conditions presented in Section 3 to
ensure correct rounding. Let us consider three examples :
Algorithms 2, 3 and 4 below. The certified error on  and
y for those algorithms is displayed on Figure 3.

Algorithm 2 computes the quotient of two binaryl28
(p; = 113) numbers, the output being correctly rounded
to binary64 (p, = 53). The internal format used for
the computations is also binary128 (p,, 113). Since
Pp; > Po, there are midpoints for division, as stated in
Section 3.3. After the MD; iteration, we know from
Theorem 1 that § is a faithful rounding of a/b, as shown in
Figure 3(a). An extra Markstein’s iteration gives an error
on ¢ that is smaller than the radius of the exclusion in-
terval ﬁea/b+1u113753, as illustrated by Figure 3(a). Hence,
Theorem 8 of Section 3.4.1 applies and guarantees that
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Z = Table-lookup(b); {Error less than 278}

T = RN113(1 - b.’i),

T = RNllg(ii‘—f'Tif); {MRl} | | = RN113(f2);
T = RNllg(.’f?—f— T‘.i’); {GRQ} | | T = RN113(7:2);
T = RN113(i‘ + T.f); {GRg}

§ = RN113(a); {yo}

T = RN113(a - bﬂ),

37 = RNug(g] + fiﬁ); {MDl}

T = RN113((I - bg),

§ = RNs3(j +72);  {MDy}

Algorithm 2: Computing the quotient of two bi-
nary128 numbers, output in binary64.

% = Table-lookup(b); {Error less than 278}
T = RN53(1 — bi‘),

& = RNg3(Z +72); {MRi} || 7= RNs3(7);
T = RN{,d(l - b{f),

T = RNs3(7 +77); {MR3}

T = RN53(1 — bi‘),

# = RNs3(i +7); {MRy}

§ = RNs3(a); {yo}

7 = RN33(a — by);

§ = RNs3(§ +72); {MDy}

T = RN53(a — bg),

§ = RNs3(9 +72); {MD2}

Algorithm 3: Computing the quotient of two binary64
numbers, output in binary64.

Algorithm 2 yields a correct rounding of the division, even
for the midpoint cases.

Algorithm 3 computes the quotient of two binary64
numbers, with p; = p,, = p, = 53. Since binary arithmetic
is used and p,, = p,, there are no midpoints for division.
After the MR, iteration, 7 is less than 2 - 3°/6F1 55 5o,
Hence, by excluding two worst cases as explained in
Section 3.2, and checking thoses cases, we ensure a correct
rounding of the reciprocal using Theorem 3. Since a
faithful rounding of a/b at iteration MD; is ensured by
the error bounds of Section 4, Theorem 5 proves that the
next Markstein’s iteration outputs a correct rounding.

Algorithm 4 computes the quotient of two decimal128
numbers, with p; = p,, = p, = 34. The starting error
given by the lookup table is less than 5 - 107°. Since
Pw = Po, Algorithm 1 is needed to ensure the correct
rounding of the division. Notice that to improve the latency,
bs in Algorithm 1 can be computed concurrently with the
first Newton-Raphson iterations. As shown in Figure 3(c),



Z = Table-lookup(b); || bs = bulp($);
= RN34(1 - bi’),

T = RN34((E —‘r?:.i‘); {MRl} | ‘ = RN34(7’ ),
T = RN3y(Z +77); {GRa} || 7 = RN3y(7?);
T = RN34(i‘ + fi‘), {GRg}

§ = RN34(al); {yo}

7= RN34(LL - bg),

¥ = RN34(y + 77); {MD;}

= RN34(a - bg),

Call Algorithm 1.

Algorithm 4: Computing the quotient of two deci-
mall28 numbers, output in decimal128.

y is a faithful rounding after the MD; iteration. Hence,
Theorem 9 ensures correct rounding for Algorithm 4.

Conclusion

In this paper, we gave general methods of proving
correct rounding for division algorithms based on Newton-
Raphson’s iterations, for both binary and decimal arith-
metic. Performing the division in decimal arithmetic of
two floating-point numbers in the working precision seems
to be costly, and we recommend to always use a higher
internal precision than the precision of inputs.

We only considered the round-to-nearest rounding mode
in this paper. To achieve correct rounding in other rounding
modes, only the last iteration of the Newton-Raphson
algorithm has to be changed, whereas all the previous
computations should be done in the round-to-nearest mode.
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